猪圆环病毒衣壳蛋白核定位信号对其复制的影响及突变体病毒的免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒(Porcine circovirus,PCV)属于圆环病毒科,圆环病毒属,无囊膜,直径约17nm,是最小的动物病毒之一,其因组为一单链环状DNA。PCV分为两个基因型,PCV1无致病性,广泛存在于猪群中。而PCV2被认为是断奶仔猪多系统衰竭综合征(PMWS)的主要致病因子,可引起消瘦、可视黏膜苍白、呼吸困难、间歇性腹泻及淋巴结肿胀等症状,对养猪业构成了严重威胁。PCVl和PCV2均包含ORF1、ORF2和ORF3三个主要的开放阅读框。其中ORF2编码病毒的衣壳蛋白,并且是PCV2的主要毒力因子和免疫原性蛋白。研究表明,植物单链环状病毒核衣壳蛋白核定位信号(NLS)的破坏或缺失直接导致ssDNA积聚减少,从而影响病毒的复制增殖。核衣壳蛋白有可能通过与复制相关蛋白的作用而参与调节病毒基因组的复制。对PCV2核衣壳蛋白的研究将有助于深入了解病毒复制、致病性,开发有效的病毒疫苗。而猪圆环病毒2型(PCV2)是引起猪多系统衰竭综合征的病原之一,严重影响养猪业的健康发展,目前还没有有效疫苗。本项目以PCV2 ORF2为基础,在对浙江省及周边地区猪场PCV2感染血清学和分子流行病学调查的基础上,比较深入地开展了PCV核衣壳蛋白核定位信号对PCV2复制的影响和重组病毒的免疫原性研究。由于该病毒在体外培养细胞中的增殖较慢,是影响疫苗研发的瓶颈问题,本研究针对PCV2复制问题开展的研究,具有重要的理论和实际意义。
     首先,分别应用PCR和ELISA方法对2003-2007年浙江省及其周边上海、江苏等地猪场采集的169份病猪组织和1779份血清进行了PCV2及其特异性抗体的检测。结果显示,淋巴结中PCV2的PCR阳性率为52.07%(88/169),猪群PCV2抗体阳性率为46.0%(819/1779)。其中断奶后仔猪(54.1%,223/412)和肥育猪血清(49.9%,423/848)PCV2抗体阳性率显著高于哺乳仔猪的阳性率(33.3%,173/519)。进一步扩增27株2004-2007年不同地区PCV2毒株的ORF2基因,进行测序并分析其分子流行特点。结果显示该地区PCV2毒株彼此间核苷酸的同源性较高(98%-100%),但与国内其它地区或国外毒株相比具有明显的氨基酸变异,特别是衣壳蛋白的两个主要抗原表位区内氨基酸位点变异率非常高,导致其亲水性发生明显改变。遗传进化分析发现该地区的所有PCV2毒株与部分国内毒株处于同一分支内,而与大部分国内或国外的PCV2毒株亲缘关系较远。以上结果说明PCV2感染在浙江省及周边省市呈广泛流行并呈上升趋势,而且其毒株具有独特的分子特征。
     PCV衣壳蛋白在胞浆内合成后通过其自身核定位信号的作用转运至细胞核内参与病毒的复制和组装。预测结果表明PCV1 ORF2蛋白的N端也含有多个可能的单一型或双分型核定位信号序列(NLS)。本研究将PCV1 ORF2及其突变体与eGFP融合,插入真核表达质粒pcDNA3,使其能融合表达两个不同基因。转染细胞后观察荧光,以分析和确证PCV1 ORF2蛋白中的核定位元件。试验结果表明,PCV1 ORF2蛋白C端190个氨基酸缺失后不影响融合蛋白的核定位,即蛋白均集中于细胞核内,与野生型ORF2-EGFP融合蛋白一致。而其N端43位氨基酸序列的缺失导致融合蛋白丧失了核定位功能而使蛋白散布于PK-15细胞的胞浆内。这说明PCV1 ORF2蛋白的核定位功能由其N端序列决定。进一步对N端NLS序列中的碱性氨基酸残基分别进行点突变,结果表明氨基酸短肽9RRRR12的突变和25RRPYLAHPAFRNRYRWRRK43中后6个碱性氨基酸的突变导致融合表达产物分布于整个细胞,丧失了完整的核定位功能,说明这两个序列为PCV1 ORF2蛋白的核定位元件,与PCV2 ORF2蛋白的NLS有较大差异。
     应用反向遗传学技术可以详细研究病毒的基因结构和编码蛋白的功能。我们将PCV2基因组克隆入pUC-18载体,并在其3’端亚克隆入一段重复序列,构建了mPCV2感染性克隆。其中的重复序列有助于DNA在细胞内通过同源重组自身环化并从质粒中释放。以同样策略构建了PCV1基因组为骨架、含有PCV2ORF2的杂合型PCV12感染性克隆以及PCV2 ORF2核定位信号序列(NLS)被PCV1 ORF2相应序列替换的PCV2-2NLS1和PCV12-2NSL1两种杂合型感染性克隆,以研究PCV核定位信号元件对于病毒复制的影响。结果表明4个感染性克隆转染PK-15细胞后均能产生感染性的病毒粒子。连续传代稳定后,mPCV2和PCV12病毒分别能达到105.5和105TCID50/ml,滴度与野毒株PCV2相似。而杂合病毒PCV2-2NLS1和PCV12-2NLS1的滴度则显著低于野毒PCV2(103.5TCID50/ml)。mPCV2和PCV12要比PCV2-2NLS1和PCV12-2NLS1在PK-15细胞具更强的复制能力:mPCV2和PCV12从感染后12h的102TCID50/ml达到96h时的104TCID50/ml左右,但PCV2-2NLS1和PCV12-2NLS1只达到103TCID50/ml左右。
     将各重组病毒以相同剂量接种8周龄的BALB/c小鼠,比较它们在体内的复制能力、致病性和免疫原性差异。虽然mPCV2组小鼠血清中病毒含量显著高于PCV12接种组,但它们诱导的血清抗体效价没有显著差异,表明它们在体内具有相似的免疫原性。而PCV2-2NLS1和PCV12-2NLS1组小鼠只有少数能从血清中检测到低水平的病毒量和PCV特异性抗体。致病性试验发现各病毒接种组均未出现明显的肺部病变。野毒株PCV2 (SH04)和(?)nPCV2组小鼠脾脏均出现了轻度的显微病变,与对照组相比差异显著。但三个杂合型病毒PCV12、PCV2-2NLS1和PCV12-2NLS1接种组小鼠脾脏的病变程度与对照组差异不显著。流式细胞检测结果显示SH04和mPCV2接种后,小鼠外周血CD4+和CD8+T淋巴细胞含量显著低于其余各组(p<0.05)。但PCV12接种组小鼠外周血T淋巴细胞亚群变化与对照组相比不明显。因此,PCV12在体内的致病性明显低于野毒株SH04和重组PCV2病毒,但与PCV2野毒株具有相似的免疫原性。然而,PCV2-2NLS1和PCV12-2NLS1在体内外都只表现较弱的复制增殖能力,表明将PCV1核衣壳蛋白NLS序列替换PCV2相应部位序列并没有提高PCV2病毒的复制能力。相反地,由于包含PCV1和PCV2 ORF2蛋白核定位信号的N端核衣壳序列的互换可能使杂合型核衣壳蛋白核定位功能减弱或丧失,甚至导致蛋白结构和功能的改变,从而影响病毒的复制和组装。
     综上所述,本论文对浙江省及其周边地区猪场中PCV2的流行进行了系统的调查,发现PCV2感染呈广泛流行并有明显上升趋势,且其毒株与国内外其它毒株相比在ORF2蛋白的两个主要抗原表位区具有较大差异。同时,我们发现PCV1ORF2蛋白的核定位功能由其N端氨基酸短肽9RRRR12和25RRPYLAHPAFRNRYRWRRK43决定,与PCV2 ORF2蛋白的NLS有较大差异。重组病毒体内外特性研究表明PCV12对小鼠的致病性明显低于野毒株PCV2和mPCV2病毒,但它们却具有相似的复制能力和免疫原性。而PCV2-2NLS1和PCV12-2NLS1病毒在体内外复制能力都较弱,表明将PCV1核衣壳蛋白NLS序列替换PCV2相应部位序列并没有明显提高PCV2病毒的复制能力。提示PCV2-2NLS1和PCV12-2NLS1病毒核衣壳蛋白的核定位元件中可能存在关键碱性氨基酸位点对于病毒复制具有重要影响或致死性的,从而影响了病毒的复制和组装。进一步研究可对PCV1和PCV2核衣壳蛋白不同的核定位元件中的碱性氨基酸位点进行突变,从而在更大程度上保证Cap蛋白的完整性和兼容性,以研究核定位元件在病毒复制中的作用。而本研究中基于质粒的病毒感染性克隆构建方法的建立及成功运用将有助于我们对PCV病毒复制和蛋白功能的进一步研究。而小鼠感染模型也为进一步的研究提供了便利。
Porcine circovirus (PCV), which belongs to the family Circoviridae, genus Circovirus, is one of the smallest animal viruses with unenveloped, single-stranded circular genome and a size of 17 nm in diameter. Two species of PCV, PCV1 and PCV2, have been characterized. PCV1 is considered to be non-pathogenic to pigs by experimental inoculation and was circulating widely in swine population in the world. PCV2 has been shown to be the causative agent of post-weaning multisystemic wasting syndrome (PMWS) of pigs. The affected pigs show progressive weight loss, respiratory and enlarged lymph nodes and characteristic microscopic lesions including granulomatous interstitial pneumonia, lymphadenopathy, hepatitis, nephritis and pancreatitis. PMWS has been a big threat to the swine industry worldwide. Three major open reading frames (ORF), ORF1, ORF2 and ORF3, are oriented in opposite directions in the genome of PCVs. ORF2 is highly variable between PCV1 and PCV2 (less than 60% homology) and encodes the only structural capsid (Cap) protein that contains the dominant immunological regions. It was reported that disruption or loss of nuclear localization of Cap might result in a reduced level of ssDNA in geminiviruses, which might result in low level of viral replication. Therefore, it is generally believed that PCV Cap is not merely involved in encapsidation and might contribute to replication control by way of interactions between Cap and Rep in the nucleoplasm. Mutagenic studies on PCV2 ORF2 could be helpful to understanding the mechenism of viral replication, pathogenesis and development of vaccines. The present study was aimed to investigate the status of PCV2 infection in swine population in southeastern China by ELISA and PCR based on PCV2 ORF2, the genetic diversity of PCV2 strains from southeastern China originating from PMWS cases, and the effects of nuclear localization signals (NLS) of PCV ORF2 protein on viral replication in vitro and in vivo using the recombinant PCV viruses by reverse genetic approaches.
     The prevalence of PCV2 infection in swine herds in southeastern China was investigated by ELISA and PCR. Seroprevalence of PCV2 in samples collected from 89 swine herds was significantly higher by ELISA in post-weaning (54.1%) and growing piglets (49.9%) than that of suckling pigs (33.3%) with an average rate of 46.0%(819/1779). Seventy-eight cases out of 159 diseased pigs from these herds were PCV2 positive by PCR. To provide new insights into the extent of genetic heterogeneity of PCV2 isolates in southeastern China, the ORF2 genes of 27 isolates from the area from January 2004 to March 2007 were sequenced and aligned. While closely related to each other with identity of 98.0%-100%, these isolates displayed lower homologies to those from other regions of China or to some foreign isolates. Alignment of deduced amino acid sequences of capsid protein identified two major hypervariable regions (positions 53-91 and 185-215) in isolates obtained in this study, which were within or close to the putative epitope domains. The substitutions consequently resulted in higher hydrophilicity of the epitope region (positions 47-85). Phylogenetic analysis revealed two clusters of 48 isolates including those from Genbank:the larger cluster I consisting of two subgroups and cluster II containing most of foreign isolates owing to the residue substitutions in epitope domains (amino acid positions 80,86,88 and 91). While the subgroup Ib contained all the isolates with ORF2 of 705 bp in length, the 27 isolates we sequenced were clustered exclusively in subgroup la together with some other Chinese strains. We conclude that PCV2 isolates prevailing in southeastern China were genetically different from those of other countries.
     Since PCV2 ORF2 protein was synthesized in cytoplasm and imported into nucleus via its own nucleus localization signal (NLS) to participate in viral replication and assembly, it was predicted that PCV1 ORF2 protein contains several potential monopartite or bipartite nuclear localization signals in its N-terminus. Contribution of these partially overlapping motifs to nuclear importing was identified by expression of mutated PCV1 Cap versions fused to enhanced green fluorescent protein (eGFP). The C-terminus truncated PCV1 Cap-EGFP was localized in nuclei of PK-15 cells similar to the wild-type PCV1 Cap-EGFP, whereas truncation of the N-terminus rendered the fusion protein distributed throughout cytoplasm, indicating that the nuclear import of PCV1 Cap was efficiently mediated by its N-terminal region. Substitutions of basic residues in stretches 9RRRR12 or the right part of 25RRPYLAHPAFRNRYRWRRK43 resulted in a diffused distribution of the fusion protein in both nuclei and cytoplasm, indicating that the two NLSs were responsible for restricted nuclear targeting of PCV1 Cap, which was different from that of PCV2 Cap.
     We constructd a DNA clone that contains a PCV2 genome and partial duplication in pUC-18. Also, a chimeric PCV12 DNA clone was consucted, in which PCV1 ORF2 was replaced by PCV2 ORP2 in PCV1 genome. Other two chemeric DNA clones were constucted based on PCV2 and PCV12 DNA clones, in which the nuclear localization signal sequence of PCV2 ORF2 was replaced by that of PCV1 ORF2, resulting in PCV2-2NLS1 and PCV12-2NLS1 infectious clones. The transfection of PK-15 cells with each of the four DNA clones led to the expression of a functional virus genome, indicating that they are all infectious. To confirm the viability of the progeny viruses after initial transfection and to compare the in vitro replication levels, the four recombinant viruses were subjected to 14 passages in PK-15 cells and the virus titers reached 105.5 and 105 50% tissue culture infective doses (TCID50/ml) for progeny virues PCV2 (mPCV2) and PCV12. However, PCV2-2NLS1 and PCV12-2NLS1 had lower titers of only 103.5 TCID50/ml. To further determine the growth characteristics of the four viruses, a one-step growth curve was performed simultaneously for each virus. By 96 h postinfection, mPCV2 and PCV12 had a titer of 104.5 and 104 TCID50/ml respectively, while PCV2-2NLS1 and PCV12-2NLS1 titers were only 103 TCID50/ml, indicating that mPCV2 and PCV12 showed higher replication levels in vitro.
     To evaluate the immunogenicity and pathogenicity of the recombinant viruses, ninety-six 8 weeks-old BALB/c mice were randomly assigned into six groups,16 per group, and inoculated with the viruses or MEM as control. The results showed that they had similar level of antibody to PCV2 ORF2 although the mice inoculated with mPCV2 developed more viremic than those inoculated with PCV12. However, only a few mice inoculated PCV2-2NLS1 or PCV12-2NLS1 had low level of viremia and low PCV antibody response. Almost none of the mice in the study had lung lesions. Nevertheless, mild to moderate microscopic lesions in spleens of mice inoculated with wild type PCV2 and mPCV2 were observed, which were significantly different from those of mice in other groups (p<0.05). However, there were no statistical differences of spleen lesions between mice inoculated with three chimeric viruses and those in control group. Consistently, mice inoculated with wild type PCV2 and mPCV2 showed significant downshifts of the CD4+ and CD8+ T-cell subsets of peripheral blood lymphocytes compared with the control mice (p<0.05), while the proportions of the CD4+ and CD8+ T-cells in PCV 12 inoculated mice were similar to that of control mice (p>0.05). Thus, PCV 12 could serve as a vaccine candidate as it showed high replication level both in vitro and in vivo, and induced specific antibody response similar to that of wild PCV2 but was somehow attenuated in vivo. However, PCV2-2NLS1 and PCV12-2NLS1 showed only low level of replication in vitro or in vivo, indicating that replacement of N-terimus of PCV2 ORF2 containing NLS of PCV1 may result in the disruption of the structure or function of the Cap, and lead to low level of viral replication.
     In conclusion, PCV2 infections were spreading widely in southeastern China by an epidemiology study and the PCV2 isolates in this area were significantly different from those of other regions especially on its epitopes in ORF2 protein. And we first reported that the nuclear localization of PCV1 ORF2 protein was directed by two motifs (9RRRR12 and 25RRPYLAHPAFRNRYRWRRK43) in its N-terminus. The progeny virus of PCV12 displayed a low pathogenesis in mice copared with that of PCV2 SH04 and mPCV2, however, they all showed similar replicating characteristic and immunogenicity. The construction and application of infectious clones of PCV based on pUC-18 plasmid and infection of viruses in mice are useful for further study which may focus on the mutation of the key amino acids of PCV2 NLS rather than the whole N-terminal sequence, which can ensure the integrality and compatibility of ORF2 protein.
引文
1) Tischer, I, Rasch, R, Tochtermann, G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol [Orig A],1974,226: 153-167.
    2) Tischer, I, Gelderblom, H, Vettermann, W, Koch, M A. A very small porcine virus with circular single-stranded DNA. Nature,1982,295:64-66.
    3) Clark E.G. Postweaning multisystemic wasting syndrome. In Proceedings of American Association of Swine Practitioners,1997,499-501.
    4) Harding, J C S, Clark, E G. Recognising and diagnosing postweaning multisystemic wasting syndrome (PMWS). Swine Health Prod,1997,5:201-203.
    5) Allan, G, Meehan, B, Todd, D, Kennedy, S, McNeilly, F, Ellis, J, Clark, E G, Harding, J, Espuna, E, Botner, A, Charreyre, C. Novel porcine circoviruses from pigs with wasting disease syndromes. Vet Rec,1998,142:467-468.
    6) Segales, J. and Domingo, M. Postweaning multisystemic wasting syndrome (PMWS) in pigs: a review. Vet Q,2002,24:109-124.
    7) Hamel, A L, Lin, L L, Nayar, G P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol,1998,72:5262-5267.
    8) Rodriguez-Arrioja, G.M., et al., Retrospective study on porcine circovirus type 2 infection in pigs from 1985 to 1997 in Spain. J Vet Med B Infect Dis Vet Public Health,2003,50:99-101.
    9) Zlotowski, P., et al., Muco-cutaneous candidiasis in two pigs with postweaning multisystemic wasting syndrome. Vet J,2005,11.
    10) Harms, P., P.G. Halbur, and S.D. Sorden, Three cases of porcine respiratory disease complex associated with PCV2 infection. J Swine Health Prod.,2002.10:27-30.
    11) Segales, J., C. Rosell, and M. Domingo, Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol,2004.98:137-49.
    12) Marco, E., PMWS-field observations in Spanish herds. The Pig Journal,2002.50:135-142.
    13) Bolin, S., et al., Postweaning multisystemic wasting syndrome induced after experimental inoculation of cesarean-derived colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Invest,2001.13:185-194.
    14) Balasch, M., et al., Experimental inoculation of conventional pigs with tissue homogenates from pigs with postweaning multisystemic wasting syndrome. J Comp Pathol,1999.121: 139-148.
    15) Albina, E., et al., An experimental model for postweaning multisystemic wasting syndrome in growing piglets. J Comp Pathol,2001.125:292-303.
    16) Lukert P, Boer G F, Dale J L. The Circoviridae. In Virus Taxcnomy:Sixth Report of the International Committee on Taxonomy of Viruses,1995,166-168.
    17) Islam MR, Johne R, Raue R, et al. Sequence analysis of the full-length cloned DNA of a chicken anemia virus (CAV) strain from Bangladesh:evidence for genetic grouping of CAV strains based on the deduced VP1 amino acid sequences. J Vet Med B Infect Dis Vet Public Health,2002,49:32-337.
    18) Todd D, Weston JH, Soike D, et al. Genome sequence determinations and analyses of novel circoviruses from goose and pigeon. Virology,2001,286:354-62.
    19) Hattermann K, Schmitt C, Soike D, et al. Cloning and sequencing of Duck circovirus (DuCV). Arch Virol.2003,148:2471-80.
    20) Kiatipattanasakul-Banlunara W, Tantileartcharoen R, Katayama K, et al. Psittacine beak and feather disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand. J Vet Med Sci.2002,64:527-9.
    21) Smyth JA, Weston J, Moffett DA, et al. Detection of circovirus infection in pigeons by in situ hybridization using cloned DNA probes. J Vet Diagn Invest.2001,13:475-482.
    22) Phenix KV, Weston JH, Ypelaar I, et al. Nucleotide sequence analysis of a novel circovirus of canaries and its relationship to other members of the genus Circovirus of the family Circoviridae. J Gen Virol.2001,82:2805-9.
    23) Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun,1997,241(1):92-97
    24) Miyata H, Tsunoda H, Kazi A, Yamada A, Khan MA, Murakami J, Kamahora T, et al. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol,1999, 73:3582-3586
    25) Umemura T, Yeo AE, Sottini A, et al. SEN virus infection and its relationship to transfusion-associated hepatitis. Hepatology,2001,33:1303-1311
    26) Wilson LE, Umemeru T, Astemborski J, Ray SC, Alter HJ, Strathdee SA, Vlahov D, et al. Dynamics of SEN virus infection among injection drug users. J Infect Dis, 2001,184:1315-1319
    27) Takahashi K, Iwasa Y, Hijikata M, Mishiro S. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol,2000,14:979-993
    28) Biagini P, Gallian P, Attoui H, Touinssi M, Cantaloube J, De Micco P, de Lamballerie X. Genetic analysis of full-length genomes and subgenomic sequences of TT virus-like mini virus human isolates. J Gen Virol,2001,82:379-383
    29) Boevink P, Chu PW, Keese P. Sequence of subterranean clover stunt virus DNA:affinities with the geminiviruses. Virology.1995,207:354-61.
    30) Rohde W, Randles JW, Langridge P, et al. Nucleotide sequence of a circular single-stranded DNA associated with coconut foliar decay virus. Virology,1990,176:648-651.
    31) Harding RM, Burns TM, Hafner G, et al. Nucleotide sequence of one component of the banana bunchy top virus genome contains a putative replicase gene. J Gen Virol, 1993,74:323-38.
    32)陆承平。最新动物病毒分类简介。中国病毒学,2005,20:682-688.
    33) Pringle CR. Virus Taxonmy at the XI th International Congress of Virology, Sydney, Australia. Arch Virol,1999,144.
    34) Royer R L, Nawagitgul P, Halbur P G, et al. Susceptibility of porcine circovirus type 2 to commercial and laboratory disinfectants. J Swine Health Prod,2001,9:281-284.
    35) Tischer I, Peters D, Rasch R, et al. Replication of porcine circovirus:induction by glucosamine and cell cycle dependence. Arch Virol.1987,96:39-57.
    36) Allan, G M, Phenix, K V, Todd, D, McNulty, M S. Some biological and physico-chemical properties of porcine circovirus. Zentralbl Veterinarmed B,1994,41:17-26.
    37) Stevenson, G W, Kiupel, M, Mittal, S K, Kanitz, C L. Ultrastructure of porcine circovirus in persistently infected PK-15 cells. Vet Pathol,1999,36:368-378.
    38) Meerts, P, Misinzo, G, Nauwynck, H J. Enhancement of porcine circovirus 2 replication in porcine cell lines by IFN-gamma before and after treatment and by IFN-alpha after treatment. J Interferon Cytokine Res,2005,25:684-693.
    39) Fenaux, M, Opriessnig, T, Halbur, P G, Elvinger, F, Meng, X J. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J Virol,2004,78(24):13440-13446.
    40) de Boisseson C., Beven V., Bigarre L., Thiery R., Rose N., Eveno E., Madec F., Jestin A. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs. J Gen Virol,2004,85: 293-304.
    41) Morozov I., Sirinarumitr T., Sorden S.D., Halbur P.G., Morgan M.K., Yoon K.J., and Paul P.S. Detection of a novel strain of circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol,1998,36:2535-2541.
    42) Olvera A., Cortey M., and Segales J. Molecular evolution of porcine circovirus type 2 genomes:Phylogeny and clonality. Virology,2006,357:175-85.
    43) Mankertz A, Mankertz J, Wolf K, et al. Identification of a protein essential for replication of porcine circovirus. J Gen Virol.1998,79:381-4.
    44) Mankertz, A, Mankertz, J, Wolf, K, Buhk, H J. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    45) Mankertz, A, Persson, F, Mankertz, J, Blaess, G, Buhk, H J. Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol,1997,71(3):2562-2566.
    46) Mankertz, A, Hillenbrand, B. Analysis of transcription of Porcine circovirus type 1. J Gen Virol,2002,83:2743-2751.
    47) Nawagitgul, P, Morozov, I, Bolin, S R, Harms, P A, Sorden, S D, Paul, P S. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol,2000,81: 2281-2287.
    48) Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope Mapping of the Major Capsid Protein of Type 2 Porcine Circovirus (PCV2) by Using Chimeric PCV1 and PCV2. J Virol,2004,78 (15):8135-8145.
    49) Liu Q, Tikoo SK, Babiuk LA. Nuclear Localization of the ORF2 Protein Encoded by Porcine Circovirus Type 2. Virology,2001,285:91-9
    50) Shuai JB, Wei W, Jiang LL, Li XL, Chen N and Fang WH. Mapping of the nuclear localization signals in open reading frame 2 protein from porcine circovirus type 1. Acta Bioch Biophy Sin.2008,40:71-77
    51) Finsterbusch T, Steinfeldt T, Caliskan R, MankertzA. Analysis of the subcellular localization of the proteins Rep, Rep'and Cap of porcine circovirus type 1. Virology 2005,343:36-46.
    52) Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. Virology,2006,87:3215-3223.
    53) Mahe'D, Blanchard P, Truong C, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol, 2000,81:1815-1824.
    54) Liu Q, Willson P, Attoh-Poku S, et al. Bacterial Expression of an Immunologically Reactive PCV2 ORF2 Fusion Protein. Protein Expr Purif,2001,21 (1):115-120.
    55) Liu Q, Wang L, Willson P, et al. Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica. Can J Vet Res,2002,66 (4):225-231.
    56) Blanchard PH, Mahe D, Cariolet R, et al. An ORF2 protein-based ELISA for porcine circovirus type 2 antibodies in post-weaning multisystemic wasting syndrome. Vet Microbiol, 2003,94(3):183-194.
    57) Liu J, Chen I and Kwang J. Characterization of a Previously Unidentified Viral Protein in Porcine Circovirus Type 2-Infected Cells and Its Role in Virus-Induced Apoptosis. J Virol, 2005,79,8262-8274
    58) Liu J, Chen I, Du Q, Chua H and Kwang J. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. J Virol,2006,80,5065-5073.
    59) Mankertz A, Mueller B, et al. New Reporter Gene-Based Replication Assay Reveals Exchangeability of Replication Factors of Porcine Circovirus Types 1 and 2. J viroly,2003, 9885-9893.
    60) Cheung, A K. Detection of template strand switching during initiation and termination of DNA replication of porcine circovirus. J Virol,2004,78(8):4268-4277.
    61) Cheung, A K. Identification of the essential and non-essential transcription units for protein synthesis, DNA replication and infectious virus production of Porcine circovirus type 1. Arch Virol,2004,149(5):975-988.
    62) Cheung, A K. Identification of an octanucleotide motif sequence essential for viral protein, DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirus type 2. Virology,2004,324(1):28-36.
    63) Heath L, Williamson AL, Rybicki E.P. The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus. J Virol,2006,80:7219-25.
    64) Fagerlund R, Mele'n K, Kinnune L, and Julkunen I. Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions between Dimeric STATs and Importin a5. J Biol Chem,2002,277:30072-30078.
    65) Palanichelvam K, Kunik T, Citovsky V, Gafni Y. The capsid protein of tomato yellow leaf curl virus binds cooperatively to singlestranded DNA. J Gen Virol,1998,79:2829-2833.
    66) Qin S, Ward BM, Lazarowitz SG. The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol,1998, 72:9247-9256.
    67) Padidam M, Beachy RN, Fauquet CM. A phage singlestranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J Virol,1999,73:1609-1616.
    68) Finsterbusch T, Steinfeldt T, Caliskan R, MankertzA. Analysis of the subcellular localization of the proteins Rep, Rep'and Cap of porcine circovirus type 1. Virology 2005,343:36-46.
    69) de Boisseson C., Beven V., Bigarre L., Thiery R., Rose N., Eveno E., Madec F., Jestin A. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs. J Gen Virol,2004,85, 293-304.
    70) Wen, L, Guo, X, Yang, H. Genotyping of porcine circovirus type 2 from a variety of clinical conditions in China Vet Microbiol,2005,110(1-2):141-146.
    71) Steinfeldt T, Finsterbusch T, Mankertz A. Rep and Rep'protein of porcine circovirus type 1 bind to the origin of replication in vitro. Virology,2001,291(1):152-160.
    72) Cheung, A K, Bolin, S R. Kinetics of porcine circovirus type 2 replication. Arch Virol,2002,
    147(1):43-58.
    73) Cheung AK. Comparative analysis of the transcriptional patterns of pathogenic and nonpathogenic porcine circoviruses. Virology,2003,310(1):41-49.
    74) Fenaux, M., et al., Cloned genomic DNA of type 2 porcine circovirus is infectious when injected directly into the liver and lymph nodes of pigs:characterization of clinical disease, virus distribution, and pathologic lesions. J Virol,2002.76(2):p.541-51.
    75) Fenaux, M, Opriessnig, T, Halbur, P G, Elvinger, F, Meng, X J. A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J Virol,2004,78(12):6297-6303.
    76) Fenaux M, Opriessnig T, Halbur PG, and Meng XJ. Immunogenicity and pathogenicity of chimeric infectious DNA clones of pathogenic porcine circovirus type 2 (PCV2) and nonpathogenic PCV1 in weanling pigs. J Virol,2003,77:11232-43.
    77) Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope Mapping of the Major Capsid Protein of Type 2 Porcine Circovirus (PCV2) by Using Chimeric PCV1 and PCV2. J Virol,2004,78 (15):8135-8145.
    78) Fenaux, M, Halbur, P G, Gill, M, Toth, T E, Meng, X J. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2. J Clin Microbiol,2000,38(7):2494-2503.
    79) M. Roca, M. Balasch, J. Segale's, et al. In vitro and in vivo characterization of an infectious clone of a European strain of porcine circovirus type 2. J Gen Virol,2004,86,1259-1266.
    80)陈溥言,芦银华,华修国,崔立,谈国蕾,许立华,黄伟坚,陈德胜.感染性猪圆环病毒2型基因组DNA的分子克隆.中国病毒学,2003,18(4):371-375.
    81)郗鑫,陈焕春,陈华平,曹胜波,琚春梅.猪Ⅱ型圆环病毒全基因组的克隆及感染性鉴定.微生物学报,2004,44(2):172-176.
    82)韩凌霞,刘建华,陈艳,仇华吉,王云峰,童光志.PCV2感染性分子克隆的制备及体内外感染性试验.中国预防兽医学报,2006,28(3):241-247.
    83) Chae C. A review of porcine circovirus 2-associated syndromes and diseases. Vet J,2005, 169:26-336.
    84) Ladekjaer-Mikkelsen, A S, Nielsen, J, Storgaard, T, Botner, A, Allan, G, McNeilly, F. Transplacental infection with PCV-2 associated with reproductive failure in a gilt. Vet Rec, 2001,148(24):759-760.
    85) Harding JCS. The clinical expression and emergence of porcine circovirus 2. Vet Microbiol, 2004,98:131-135
    86) Ellis, J, Krakowka, S, Lairmore, M, Haines, D, Bratanich, A, Clark, E, Allan, G, Konoby, C, Hassard, L, Meehan, B, Martin, K, Harding, J, Kennedy, S, McNeilly, F. Reproduction of
    lesions of postweaning multisystemic wasting syndrome in gnotobiotic piglets. J Vet Diagn Invest,1999,11(1):3-14
    87) Kim, J, Chung, H K, Chae, C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J,2003,166(3):251-256.
    88) Harms, P A, Sorden, S D, Halbur, P G, Bolin, S R, Lager, K M, Morozov, I, Paul, P S. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol,2001, 38(5):528-539.
    89) Allan, G M, McNeilly, F, Ellis, J, Krakowka, S, Meehan, B, McNair, I, Walker, I, Kennedy, S. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol,2000,145(11):2421-2429.
    90) Thacker, E L. Immunology of the porcine respiratory disease complex. Vet Clin North Am Food Anim Pract,2001,17(3):551-565.
    91) Choi J, Stevenson GW, Kiupel M, et al. Sequence analysis of old and new strains of porcine circovirus associated with congenital tremors in pigs and their comparison with strains involved with postweaning multisystemic wasting syndrome. Can J Vet Res. 2002,66(4):217-24.
    92) Kennedy S, Segales J, Rovira A, et al. Absence of evidence of porcine circovirus infection in piglets with congenital tremors. J Vet Diagn Invest.2003,15(2):151-6.
    93) Choi, C, Chae, C. Colocalization of porcine reproductive and respiratory syndrome virus and porcine circovirus 2 in porcine dermatitis and nephrology syndrome by double-labeling technique. Vet Pathol,2001,38(4):436-441.
    94) Thomson, J R, Higgins, R J, Smith, W J, Done, S H. Porcine dermatitis and nephropathy syndrome. clinical and pathological features of cases in the United Kingdom (1993-1998). J Vet Med A Physiol Pathol Clin Med,2002,49(8):430-437.
    95) Choi, C, Kim, J, Kang, I J, Chae, C. Concurrent outbreak of PMWS and PDNS in a herd of pigs in Korea Vet Rec,2002,151(16):484-485.
    96) Lie, J T. Vasculitis associated with infectious agents. Curr Opin Rheumatol,1996,8(1): 26-29.
    97) Agnello, V, Abel, G. Localization of hepatitis C virus in cutaneous vasculitic lesions in patients with type Ⅱ cryoglobulinemia. Arthritis Rheum,1997,40(11):2007-2015.
    98) Chae, C., Postweaning multisystemic wasting syndrome:a review of aetiology, diagnosis and pathology. Vet J,2004.168:41-49.
    99) Segales, J., et al., Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol,2004.98(2):151-8.
    100) Richardson, P., Meat and Livestock Commission Conference.2001:Stoneleigh, UK.
    101) Cook, A.J.C., The Pig Journal,2001.48:53-60.
    102) Zlotowski, P., et al., Muco-cutaneous candidiasis in two pigs with postweaning multisystemic wasting syndrome. Vet J,2005.11
    103)Segales, J. and M. Domingo, Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q,2002,24(3):109-24.
    104) Thomson, J., et al., Porcine dermatitis and nephropathy syndrome. Clinical and pathological features of cases in the United Kingdom (1993-1998). J Vet Med,2002.49:430-437.
    105)Segales, J., C. Rosell, and M. Domingo, Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol,2004.98(2):137-49.
    106)Meerts, P., et al., Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol,2005.150(3):427-41.
    107) Rosell, C., et al., Pathological, immunohistochemical, and in situ hybridiation studies of natural cases of PMWS in pigs. J Comp Pathol,1999.120:59-78.
    108)McNeilly, F., et al., A comparison of in situ hybridisation and immunohistochemistry for the detection of a new porcine circovirus in formalin fixed tissues from pigs with postweaning multisystemic wasting syndrome (PMWS). J Virol Methods,1999.80:123-128.
    109) Allan, G., et al., Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J. Comp. Pathol.,1999.121:1-11.
    110) Wellenberg, G.J., et al., The presence of co-infections in pigs with clinical signs of PMWS in The Netherlands:a case-control study. Res Vet Sci,2004.77(2):177-84.
    111)Kyriakis, S., et al., The effects of immunodulation on the clinical and pathological expression of PMWS. J. Comp. Pathol.,2001.126:p.38-46.
    112)Krakowka, Opriessnig, T., et al., Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus. Vet Pathol,2003.40(5):p.521-9.
    113) Opriessnig, T., X.J. Meng, and P.G. Halbur. Effect of timing of vaccination with a commercially available bacterin on PCV2-associated lesions, in 18th IPVS.2004. Hamburg.
    114)Hoogland, M., et al. Effect of commonly used bacterin adjuvants on PCV2 associated lesions. in 18th IPVS.2004. Hoogland, M., et al. Effect of commonly used bacterin adjuvants on PCV2 associated lesions. in 18th IPVS.2004. Hamburg.
    115) Segales, J., M. Calsamiglia, and M. Domingo. How we diagnose PMWS. in 4th International Sympposium on Emerging and Re-emerging Pig Diseases.2003. Rome.
    116)Sorden, S.D., Update on porcine circovirus and porcine multisystemic wasting syndrome. J. Swine Health Prod.,2000.8:133-136.
    117) Segales, J. and H. Morvan, PMWS:How to diagnose the herd case., in PCV2 Diseases:from research back to the field.5th issue of the Merial White Book.2004, Merial SAS.
    118)Donadeu, M., J. Waddilove, and E. Marco, European management strategies for PMWS. The Pig Journal,2004.53:164-175.
    119)Madec. F, La maladie de l'amaigrissement du porcelet (MAP) en France.1. Aspects descriptifs, impact en elevage. Journees de la Rech. Porcine en France.,1999.31:347-354.
    120)Muirhead, M., The control of PMWS and PDNS. Meat and Livestock Commission:Milton Keynes, UK.2002.
    121)Chianini, F, Majo, N, Segales, J, Dominguez, J, Domingo, M. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2003,94(1-2):63-75.
    122)Resendes, A.R., et al., Apoptosis in lymphoid organs of pigs naturally infected by porcine circovirus type 2. J Gen Virol,2004.85:2837-44.
    123)Misinzo, G, Meerts, P, Bublot, M, Mast, J, Weingartl, H M, Nauwynck, H J. Binding and entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol,2005,86:2057-2068.
    124)Misinzo, G, Delputte, P L, Meerts, P, Lefebvre, D J, Nauwynck, H J. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol,2006,80(7):3487-3494.
    125)Rovira, A., et al. Determination of cell types that support PCV2 replication in pigs with PMWS. in 17th IPVS.2002. Ames, Iowa.
    126) Sanchez, R E, Jr., Meerts, P, Nauwynck, H J, Pensaert, M B. Change of porcine circovirus 2 target cells in pigs during development from fetal to early postnatal life. Vet Microbiol,2003, 95(1-2):15-25.
    127)Opriessnig, T., et al. Evaluation of differences in host susceptibility to PCV2-associated diseases, in 18th IPVS.2004. Hamburg.
    128)Lopez-Soria, S., et al., Genetic influence on the expression of PCV disease. Vet Rec,2004. 155(16):504.
    129) Sarli, G., et al., Immunohistochemical characterisation of the lymph node reaction in pig postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2001. 83:53-67.
    130)Nielsen, J, Vincent, I E, Botner, A, Ladekaer-Mikkelsen, A S, Allan, G, Summerfield, A, McCullough, K C. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2003, 92(3-4):97-111.
    131) Segales, J., et al., Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2001. 81(1-2):37-44.
    132)Gilpin, D., et al., In vitro studies on the infection and replication of PCV2 in cells of the porcine immune system. Vet Immunol Immunopathol,2003.94:149-161.
    133)Darwich, L, Pie, S, Rovira, A, Segales, J, Domingo, M, Oswald, I P, Mateu, E. Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. J Gen Virol,2003,84:2117-2125.
    134)Darwich, L, Balasch, M, Plana-Duran, J, Segales, J, Domingo, M, Mateu, E. Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol, 2003,84:3453-3457.
    135)周双海,杨汉春,郭鑫,司兴奎,赵东升.PCV2感染对猪MCP-1和IL-8mRNA表达的影响.中国兽医科学,2006,36(6):468-471
    136)Hines RK, Lukert PD. Porcine circovirus:a serological survey of swine in the United States. Swine Health Prod.1995,3:71-73.
    137) Edwards S, Sands JJ. Evidence of circovirus infection in British pigs. Vet Rec,1994, 134(26):680-681.
    138) Wellenberg GJ, Stockhofe-Zurwieden N, Boersma WJ, et al. The presence of co-infections in pigs with clinical signs of PMWS in The Netherlands:a case-control study. Res Vet Sci.2004,77(2):177-84.
    139)G. M. Rodri guez-Arrioja, J.Segale'sl, C.Rosell1, A. Roviral, J.Pujols J.Plana-Dura'n and M. Domingo. Retrospective study on porcine circovirus type 2 infection in pigs from 1985 to 1997 in Spain. J. Vet. Med. B 2003,50:99-101.
    140)Celera V Jr, Carasova P. First evidence of porcine circovirus type 2 (PCV-2) infection of pigs in the Czech Republic by semi-nested PCR. J Vet Med B Infect Dis Vet Public Health. 2002,49(3):155-9.
    141) Kiss I, Kecskemeti S, Tuboly T, et al. New pig disease in Hungary:postweaning multisystemic wasting syndrome caused by circovirus (short communication). Acta Vet Hung. 2000,48(4):469-75.
    142)Spillane P, Kennedy S, Meehan B, Allan G. Porcine circovirus infection in the Republic of Ireland. Vet Rec,1998,143(18):511-512
    143) Allan GM, McNeilly F, Meehan BM, Kennedy S, Mackie DP, Ellis JA, Clark EG, et al. Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. Vet Microbiol,1999,66(2):115-123
    144) Choi C, Chae C, Clark EG. Porcine postweaning multisystemic wasting syndrome in Korean pig:detection of porcine circovirus 2 infection by immunohistochemistry and polymerase chain reaction. J Vet Diagn Investig,2000,12(2):151-153
    145) Mori M, Sato K, Akachi S, et al. Retrospective study of porcine circovirus 2 infection in Japan:seven cases in 1989. Vet Pathol.2000,37 (6):667-9.
    146) Lang HW(郎洪武),Zhang GC(张广川),WUFQ(吴发权)et al. Detection of serum antibody against Post-weaning multisystemic wasting syndrome in pigs.Chin J Vet Sci Tech((中国兽医科技),2000,30(3):3-5.
    147)Shuai JB, Wei W, Li XL, Chen N Zhang ZF Chen XY and Fang WH. Genetic characterization of porcine circovirus type 2 (PCV2) from pigs in high sero-prevalence areas in southeastern China. Virus gen,2007,35:619-627.
    148) VICENTE J, SEGALES J, HOFLE U, BALASCH M, PLANA-DURAN J, DOMINGO M, GORTAZAR C. Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet. Res.2004.35:243-253.
    149)Schulze, C, Segales, J, Neumann, G, Hlinak, A, Calsamiglia, M, Domingo, M. Identification of postweaning multisystemic wasting syndrome in European wild boar (Sus scrofa). Vet Rec, 2004,154(22):694-696.
    150)Nayar GP, Hamel AL, Lin L, et al. Evidence for circovirus in cattle with respiratory disease and from aborted bovine fetuses. Can Vet J.1999,40(4):277-8.
    151) Allan GM, McNeilly F, McNair I, et al. Absence of evidence for porcine circovirus type 2 in cattle and humans, and lack of seroconversion or lesions in experimentally infected sheep. Arch Virol.2000;145(4):853-7.
    152) Ellis JA, Konoby C, West KH, et al. Lack of antibodies to porcine circovirus type 2 virus in beef and dairy cattle and horses in western Canada. Can Vet J.2001,42(6):461-4.
    153)Arteaga-Troncoso, G, Guerra-Infante, F, Rosales-Montano, L M, Diaz-Garcia, F J, Flores-Medina, S. Ultrastructural alterations in human blood leukocytes induced by porcine circovirus type 1 infection. Xenotransplantation,2005,12(6):465-472.
    154)Kiupel, M, Stevenson, G W, Choi, J, Latimer, K S, Kanitz, C L, Mittal, S K. Viral replication and lesions in BALB/c mice experimentally inoculated with porcine circovirus isolated from a pig with postweaning multisystemic wasting disease. Vet Pathol,2001,38(1):74-82.
    155) Liu J, Chen I, Du Q, Chua H, and Kwang J. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. J virol,2006,80:5065-5073.
    156)Magar R, Larochelle R, Thibault S, et al. Experimental transmission of porcine circovirus type 2 (PCV2) in weaned pigs:a sequential study. J Comp Pathol.2000,123(4):258-69.
    157) Krakowka S, Ellis JA, Meehan B, et al. Viral wasting syndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol.2000,37(3):254-63.
    158) West KH, Bystrom JM, Wojnarowicz C, et al. Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. J Vet Diagn Invest. 1999,11(6):530-2.
    159) O'Connor B, Gauvreau H, West K, et al. Multiple porcine circovirus 2-associated abortions and reproductive failure in a multisite swine production unit. Can Vet J.2001,42(7):551-3.
    160) Larochelle R, Bielanski A, Muller P, et al. PCR detection and evidence of shedding of porcine circovirus type 2 in boar semen. J Clin Microbiol.2000,38(12):4629-32.
    161)Kim J, Han DU, Choi C, et al. Differentiation of porcine circovirus (PCV)-1 and PCV-2 in boar semen using a multiplex nested polymerase chain reaction. J Virol Methods. 2001,98(1):25-31.
    162)Nawagitgul P, Harms PA, Morozov I, et al. Modified indirect porcine circovirus (PCV) type 2-based and recombinant capsid protein (ORF2)-based enzyme-linked immunosorbent assays
    for detection of antibodies to PCV. Clin Diagn Lab Immunol.2002,9(1):33-40.
    163) Walker IW, Konoby CA, Jewhurst VA, et al. Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Invest.2000,12(5):400-5.
    164) Liu, Q, Wang, L, Willson, P, O'Connor, B, Keenliside, J, Chirino-Trejo, M, Melendez, R, Babiuk, L. Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica. Can J Vet Res,2002,66(4):225-231.
    165)McNeilly F, McNair I, O'Connor M, et al. Evaluation of a porcine circovirus type 2-specific antigen-capture enzyme-linked immunosorbent assay for the diagnosis of postweaning multisystemic wasting syndrome in pigs:comparison with virus isolation, immunohistochemistry, and the polymerase chain reaction. J Vet Diagn Invest. 2002,14(2):106-12.
    166)Sorden SD, Harms PA, Nawagitgul P, et al. Development of a polyclonal-antibody-based immunohistochemical method for the detection of type 2 porcine circovirus in formalin-fixed, paraffin-embedded tissue. J Vet Diagn Invest.1999,11(6):528-30.
    167) Racine, S, Kheyar, A, Gagnon, C A, Charbonneau, B, Dea, S. Eucaryotic expression of the nucleocapsid protein gene of porcine circovirus type 2 and use of the protein in an indirect immunofluorescence assay for serological diagnosis of postweaning multisystemic wasting syndrome in pigs. Clin Diagn Lab Immunol,2004,11(4):736-741.
    168) Liu Q, Wang L, Willson P, et al. Quantitative, competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol.2000,38(9):3474-7.
    169) Kim J, Chae C. Differentiation of porcine circovirus 1 and 2 in formalin-fixed, paraffin-wax-embedded tissues from pigs with postweaning multisystemic wasting syndrome by in-situ hybridisation. Res Vet Sci.2001,70(3):265-9.
    170)Larochelle R, Antaya M, Morin M, et al. Typing of porcine circovirus in clinical specimens by multiplex PCR. J Vir Meth,1999,80:69-75.
    171)Ouardani M, Wilson L, Jette R, et al. Multiplex PCR for detection and typing of porcine circovirus. J Clin Microbiol,2000,38(4):1707-1712.
    172) Kim J, Han DU, Choi C, et al. Simultaneous detection and differentiation between porcine circovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chain reaction. J Vet Med Sci.2003,65(6):741-4.
    173) Liu, Q. Wang, L. Willson, P. Babiuk, L. A. Quantitative, competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol.2000,38:3474-8.
    174) Brunborg, I. M. Moldal, T. Jonassen, C. M. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J Virol Methods. 2004.122:171-8.
    175) Chung, W. B. Chan, W. H. Chaung, H. C. Lien, Y. Wu, C. C. Huang, Y. L. Real-time PCR for quantitation of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 in naturally-infected and challenged pigs. J Virol Methods.2005.124:11-9.
    176)Segales, J. Calsamiglia, M. Olvera, A. Sibila, M. Badiella, L. Domingo, M. Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet Microbiol.2005,111:223-9.
    177) Kim J, Chae C. Double in situ hybridization for simultaneous detection and differentiation of porcine circovirus 1 and 2 in pigs with postweaning multisystemic wasting syndrome. Vet J. 2002,164(3):247-53.
    178)Sirinarumitr T, Sorden SD, Morozov I, et al. Double in situ hybridization for simultaneous detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCV). J Vet Diagn Invest.2001,13(1):68-71.
    179) Hamel AL, Lin LL, Sachvie C, et al. PCR detection and characterization of type-2 porcine circovirus. Can J Vet Res.2000,64(1):44-52.
    [1]Allan G.M., McNeilly F., Cassidy J.P., Reilly G.A., Adair B., Ellis W.A. and McNulty M.S. Pathogenesis of porcine circovirus; experimental infections of colostrums deprived piglets and examination of pig foetal material. Vet Microbiol,1995,44:49-64.
    [2]Hamel A.L., Lin L. and Nayar G.P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wastng syndrome in pigs. J Virol,1998,72:5262-5267.
    [3]Chun W., Huang T.S., Huang C.C., Tu C., Jong M.H., Lin S.Y., and Lai S.S. Characterization of porcine circovirus type 2 in Taiwan. Virology,2004,66:469-475.
    [4]Ellis J., Krakowka S., Lairmore M., Haines D., Bratanich A., Clark E., Allan G., Konoby C., Hassard L., Meehan B., Martin K., Harding J., Kennedy S., and McNeilly F., J Vet Diagn Invest,1999,11:3-14.
    [5]Rosell C., Segales J., Plana-Duran J., Balasch M., Rodriguez-Arrioja G.M., Kennedy S., Allan G.M., McNeilly F., Latimer K.S., and Domingo M. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol,1999,120:59-78.
    [6]Clark E.G. Postweaning multisystemic wasting syndrome, In Proceedings of American Association of Swine Practitioners,1997,499-501.
    [7]Chae, C., Postweaning multisystemic wasting syndrome:a review of aetiology, diagnosis and pathology. Vet J,2004,168:41-49.
    [8]Garkavenko, O., R.B. Elliott, and M.C. Croxson, Identification of pig circovirus type 2 in New Zealand pigs. Transplantation Pro,2005,37:506-9.
    [9]Wallgren, P., Hasslung, F. Bergstrom, G. Linder, A. Belak, K. Hard af Segerstad, C. Stampe, M. Molander, B. Bjornberg Kallay, T. Norregard, E. Ehlorsson, C. J. Tornquist, M. Fossum, C. Allan, G. M.Robertsson, J. A Postweaning multisystemic wasting syndrome--PMWS. the first year with the disease in Sweden. Vet Q,2004,26:170-87.
    [10]Brunborg, I. M. Moldal, T. Jonassen, C. M. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J Virol Methods, 2004,122:171-8.
    [11]Mankertz A, Mankertz J, Wolf K, Buhk HJ. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    [12]Liu Q, Willson P, Attoh-Poku S, Babiuk LA Bacterial Expression of an Immunologically Reactive PCV2 ORF2 Fusion Protein. Pro Exp Pur,2001,21:115-120.
    [13]Liu J, Chen I and Kwang J. Characterization of a Previously Unidentified Viral Protein in Porcine Circovirus Type 2-Infected Cells and Its Role in Virus-Induced Apoptosis. J Virol, 2005,79:8262-8274
    [14]Liu J, Chen I, Du Q, Chua H and Kwang J. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. J Virol,2006,80:5065-5073.
    [15]Olvera A., Cortey M., and Segales J. Molecular evolution of porcine circovirus type 2 genomes:Phylogeny and clonality. Virology,2006,357:175-85.
    [16]de Boisseson C., Beven V., Bigarre L., Thiery R., Rose N., Eveno E., Madec F., Jestin A. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs. J Gen Virol,2004,85: 293-304.
    [17]Morozov I., Sirinarumitr T., Sorden S.D., Halbur P.G., Morgan M.K., Yoon K.J., and Paul P.S. Detection of a novel strain of circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol,1998,36:2535-2541.
    [18]Fenaux M., Halbur P.G., Gill M., Toth T.E. and Meng X.J. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2. J Clin Microbiol,2000,38:2494-2503.
    [19]Meehan B., McNeilly F., McNair I., Walker I., Ellis J.A., Krakowka S., and Allan G.M. Isolation and characterisation of porcine circovirus 2 from cases of sow abortion and porcine dermatitis and nephropathy syndrome. Arch Virol,2001,146:835-842.
    [20]Lekcharoensuk, P., Morozov, I., Paul, P.S., Thangthumniyom, N., Wajjawalku, W., Meng, X.J. Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. Journal of Virology,2004,78:8135-45.
    [21]Liu Q, Tikoo SK, Babiuk LA. Nuclear Localization of the ORF2 Protein Encoded by Porcine Circovirus Type 2. Virology,2001,285:91-9.
    [22]Balasch, M., Segales J, Rosell C, Domingo M, Mankertz A, Urniza A, Plana-Duran J. Experimental inoculation of conventional pigs with tissue homogenates from pigs with postweaning multisystemic wasting syndrome. J Comp Pathol.1999,121:139-148.
    [23]Albina, E., Truong, C. Hutet, E. Blanchard, P. Cariolet, R. L'Hospitalier, R. Mahe, D. Allee, C. Morvan, H. Amenna, N. Le Dimna, M. Madec, F. Jestin, A. An experimental model for postweaning multisystemic wasting syndrome in growing piglets. J Comp Pathol,2001,125: 292-303.
    [24]Fenaux, M., Halbur, P. G. Haqshenas, G. Royer, R. Thomas, P. Nawagitgul, P.Gill, M. Toth, T. E.Meng, X. J. Cloned genomic DNA of type 2 porcine circovirus is infectious when injected directly into the liver and lymph nodes of pigs:characterization of clinical disease, virus distribution, and pathologic lesions. J Virol,2002,76:541-51.
    [25]Allan, G. M., McNeilly, F., Kennedy, S., Daft, B., Clark, E. G., Ellis, J. A., Haines, D. M., Meehan, B. M.& Adair, B. M. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest.1998,10:3-10.
    [26]Segales, J. and Domingo, M. Postweaning multisystemic wasting syndrome (PMWS) in pigs: a review. Vet Q,2002,24:109-124.
    [27]Ladekjaer-Mikkelsen, A. S. Nielsen, J. Stadejek, T. Storgaard, T. Krakowka, S. Ellis, J. McNeilly, F. Allan, G. Botner, A. Reproduction of postweaning multisystemic wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-old piglets experimentally infected with porcine circovirus type 2 (PCV2). Vet Microbiol,2002,89: 97-114.
    [28]Allan, G., Kennedy, S. McNeilly, F. Foster, J. C. Ellis, J. A. Krakowka, S. J. Meehan, B. M.Adair, B. M. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol,1999.121,1-11.
    [29]Harms, P., Sorden, S. D. Halbur, P. G. Bolin, S. R. Lager, K. M. Morozov, I. Paul, PS. Experimental reproduction of severe disease in CD/CD pigsconcurrently infected with type 2 porcine circovirus and PRRSV. Vet Pathol,2001.38,528-539.
    [30]Larochelle R., Magar R., and D'Allaire SR. Genetic characterization and phylogenetic analysis of porcine circovirus type 2 (PCV2) strains from cases presenting various clinical conditions. Virus Res,90,101-12,2002.
    [1]Chae, C. Postweaning multisystemic wasting syndrome:a review of aetiology, diagnosis and pathology. Vet J,2004.168:41-49.
    [2]Garkavenko, O., R.B. Elliott, and M.C. Croxson, Identification of pig circovirus type 2 in New Zealand pigs. Transplant Proc,2005.37(1):506-9.
    [3]Wallgren, P., et al., Postweaning multisystemic wasting syndrome--PMWS. the first year with the disease in Sweden. Vet Q,2004.26(4):170-87.
    [4]Allan GM, McNeilly F, Kennedy S, et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest,1998,10 (1):3-10.
    [5]Meehan BM, McNeilly F, Todd D, et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol,1998,79(9):2171-2179.
    [6]Mahe'D, Blanchard P, Truong C, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol, 2000,81(7),1815-1824.
    [7]Liu Q, Willson P, Attoh-Poku S, et al. Bacterial Expression of an Immunologically Reactive PCV2 ORF2 Fusion Protein. Protein Expr Purif,2001,21 (1):115-120.
    [8]Liu Q, Wang L, Willson P, et al. Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica. Can J Vet Res,2002,66 (4):225-231.
    [9]Blanchard PH, Mahe D, Cariolet R, et al. An ORF2 protein-based ELISA for porcine circovirus type 2 antibodies in post-weaning multisystemic wasting syndrome. Vet Microbiol, 2003,94(3):183-194.
    [10]Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope Mapping of the Major Capsid Protein of Type 2 Porcine Circovirus (PCV2) by Using Chimeric PCV1 and PCV2. J Virol,2004,78 (15):8135-8145.
    [11]Morozov I, Sirinarumitr T, Sorden SD, et al. Detection of a novel strain of circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol,1998,36:2535-2541.
    [12]Segales J., Rosell C., and Domingo M., Vet Microbiol,2004,98:137-149.
    [13]Liu Q., Wang L., Willson P., O'Connor B., Keenliside J., Chirino-Trejo M., Melendez R., and Babiuk L., Can J Vet Res,2002,66:225-31.
    [14]Segales J., Calsamiglia M., Olvera A., Sibila M., Badiella L., and Domingo M., Vet Microbiol, 2005,111:223-9.
    [15]Harding J. Post-weaning multisystemic wasting syndrome (PMWS), preliminary epidemiology and clinical presentation. Proc Can Assoc Swine Pract,1996,21.
    [16]Ellis J, Hassard L, Clark E et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J,1998,39 (1):44-51.
    [17]Rosell C, Segale's J, Plana-Duran J, et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol,1999,120 (1):59-78.
    [18]Nawagitgul P, Morozov I, Bolin SR, et al. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol,2000,81(9):2281-2287.
    [19]Blanchard PH, Mahe D, Cariolet R, et al. An ORF2 protein-based ELISA for porcine circovirus type 2 antibodies in post-weaning multisystemic wasting syndrome. Vet Microbiol, 2003,94(3):183-194.
    [20]Shibata I., Okuda Y., Yazawa S., Ono M., Sasaki T., Itagaki M., Nakajima N., Okabe,Y., and Hidejima I., J Vet Med Sci,2003,65:405-408.
    [1]Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P, Mueller B, Schmitt C, Steinfeldt, T and Finsterbusch, T. Molecular biology of porcine circovirus:analyses of gene expression and viral replication. Vet Microbiol,2004,98:81-8.
    [2]Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. Mapping and characterisation of the origin of DNA replication of porcine circovirus. J Virol,1997,71:2562-2566.
    [3]Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol,1998,72,5262-5267.
    [4]Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature 1982,295:64-66.
    [5]Allan GM, McNeilly F, Kennedy S, Daft B, Clark EG, Ellis JA, Haines DM, Meehan, BM and Adair, BM. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest,1998,10:3-10.
    [6]Meehan BM, McNeilly F, Todd D, Kennedy S, Jewhurst VA, Ellis JA, Hassard LE, Clark, EG, Haines, DM,Allan, GM. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol,1998,79:2171-2179.
    [7]Mankertz A, Mankertz J, Wolf K, Buhk HJ. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    [8]Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS. Detection of a novel strain of circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol,1998,36:2535-2541.
    [9]Heath L, Williamson AL, Rybicki E.P. The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus. J Virol,2006,80:7219-25.
    [10]Liu Q, Tikoo SK, Babiuk LA. Nuclear Localization of the ORF2 Protein Encoded by Porcine Circovirus Type 2. Virology 285,91-9,2001.
    [11]Cheung AK, Bolin SR. Kinetics of porcine circovirus type 2 replication. Arch Virol,2002, 147:43-58.
    [12]Fagerlund R, Mele'n K, Kinnune L, and Julkunen I. Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions between Dimeric STATs and Importin α5. J Biol Chem,2002,277:30072-30078.
    [13]Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition:a key control point in nuclear transport? Bioessays,2000,22:532-544.
    [14]Knudsen NO, Nielsen FC, Vinther L, Bertelsen R, Holten-Andersen S, Liberti SE, Hofstra R, Kooi K and Rasmusen LJ. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1). Nuc Acids Res,2007,35:2609-2619.
    [15]Finsterbusch T, Steinfeldt T, Caliskan R, MankertzA. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1. Virology 2005,343:36-46.
    [16]Cheung, A.K., Bolin, S.R.,2002. Kinetics of porcine circovirus type 2 replication. Arch Virol, 147,43-58.
    [17]Mankertz A, Hillenbrand B. Analysis of transcription of Porcine circovirus type 1. J Gen Virol,2002,83:2743-2751.
    [18]Silver PA. How proteins enter the nucleus. Cell 1991,64:489-497.
    [19]Palanichelvam K, Kunik T, Citovsky V, Gafni Y. The capsid protein of tomato yellow leaf curl virus binds cooperatively to singlestranded DNA. J Gen Virol,1998,79:2829-2833.
    [20]Qin S, Ward BM, Lazarowitz SG. The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol,1998,72: 9247-9256.
    [21]Padidam M, Beachy RN, Fauquet CM. A phage singlestranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J Virol,1999,73:1609-1616.
    [22]Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. Virology,2006,87:3215-3223.
    [1]Tischer, I, Rasch, R, Tochtermann, G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol [Orig A],1974,226(2): 153-167.
    [2]Tischer, I, Gelderblom, H, Vettermann, W, Koch, M A. A very small porcine virus with circular single-stranded DNA. Nature,1982,295:64-66.
    [3]Steinfeldt, T, Finsterbusch, T, Mankertz, A. Demonstration of nicking/joining activity at the origin of DNA replication associated with the rep and rep' proteins of porcine circovirus type 1. J Virol,2006,80(13):6225-6234.
    [4]Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. Mapping and characterisation of the origin of DNA replication of porcine circovirus. J Virol,1997,71:2562-2566.
    [5]Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol,1998,72,5262-5267.
    [6]Dulac, G C, Afshar, A. Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs. Can J Vet Res,1989,53(4):431-433.
    [7]Ellis J., Krakowka S., Lairmore M., Haines D., Bratanich A., Clark E., Allan G., Konoby C., Hassard L., Meehan B., Martin K., Harding J., Kennedy S., and McNeilly F. J Vet Diagn Invest 11,3-14,1999.
    [8]Rosell C., Segales J., Plana-Duran J., Balasch M., Rodriguez-Arrioja G.M., Kennedy S., Allan G.M., McNeilly F., Latimer K.S., and Domingo M. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol,1999,120,59-78.
    [9]Harding JCS, Clark EG. Recognizing and diagnosing postweaningmuhisystemie wasting syndrome(PMWS). Swine Health Prod.1997,5:201-203.
    [10]朗洪武,张广川,吴发权,等。断奶猪多系统衰弱综合征血清抗体检测。中国兽医科技,2000,30(3):3-5.
    [11]曹胜渡,陈焕春,肖少波等。猪环状病毒2型的PCR检测方法的建立与应用.华中农业大学学报,20001,20(1):53-56
    [12]王忠田,杨汉春,郭鑫。规模化猪场猪圆环病毒2型感染的流行病学调查。中国兽医杂志,2002,38(10):3-5。
    [13]周继勇,陈庆新,叶菊秀等。猪圆环病毒2型感染的血清学分析。中国兽医学报,2004,24(1):13。
    [14]琚春梅,陈焕春,曹胜波等。应用在大肠杆菌中表达的猪2型圆环病毒ORF2蛋白建立一种ELISA诊断方法.畜牧兽医学报,2004,35(6):689-693。
    [15]Mankertz A, Mankertz J, Wolf K, Buhk HJ. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    [16]Liu Q, Willson P, Attoh-Poku S, Babiuk LA Bacterial Expression of an Immunologically Reactive PCV2 ORF2 Fusion Protein. Pro Expr Pur,2001,21:115-120.
    [17]Cheung, A K. Detection of template strand switching during initiation and termination of DNA replication of porcine circovirus. J Virol,2004,78(8):4268-4277.
    [18]Cheung, A K. Identification of the essential and non-essential transcription units for protein synthesis, DNA replication and infectious virus production of Porcine circovirus type 1. Arch Virol,2004,149(5):975-988.
    [19]Cheung, A K. Identification of an octanucleotide motif sequence essential for viral protein, DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirus type 2. Virology,2004,324(1):28-36.
    [20]Cheung, A K. Palindrome regeneration by template strand-switching mechanism at the origin of DNA replication of porcine circovirus via the rolling-circle melting-pot replication model. J Virol,2004,78(17):9016-9029.
    [21]M. Fenaux, T. Opriessnig, P. G. Halbur and X. J. Meng. Immunogenicity and Pathogenicity of Chimeric Infectious DNA Clones of Pathogenic Porcine Circovirus Type 2 (PCV2) and NonpathogenicPCV1 in Weanling Pigs. J Virol,2003,77:11232-11243.
    [22]Qin S, Ward BM, Lazarowitz SG. The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol,1998,72: 9247-9256.
    [23]Padidam M, Beachy RN, Fauquet CM. A phage singlestranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J Virol,1999,73:1609-1616.
    [24]Heath L, Williamson AL, Rybicki E.P. The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for Transporting the replication-associated protein into the nucleus. J Virol,2006,80:7219-25.
    [25]Fenaux, M., P. G. Halbur, G. Haqshenas, R. Royer, P. Thomas, P. Nawagitgul, M. Gill, T. E. Toth, and X. J. Meng. Cloned genomic DNA of type 2 porcine circovirus is infectious when injected directly into the liver and lymph nodes of pigs:characterization of clinical disease, virus distribution, and pathologic lesions. J Virol,2002,76:541-551.
    [26]M. Roca, M. Balasch, J. Segale's, et al. In vitro and in vivo characterization of an infectious clone of a European strain of porcine circovirus type 2. J Gen Virol,2004,86,1259-1266.
    [27]Mankertz A, Mankertz J, Wolf K, Buhk HJ. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    [28]Mankeaz A, Mueller B, Steinfeidt T, et al. New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovimstypes 1 and 2. J Virol,2003,77(18): 9885-9893.
    [29]Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. Virology,2006,87:3215-3223.
    [30]Finsterbusch T, Steinfeldt T, Caliskan R, MankertzA. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1. Virology 2005,343:36-46.
    [31]Liu Q, Tikoo SK, Babiuk LA. Nuclear Localization of the ORF2 Protein Encoded by Porcine Circovirus Type 2. Virology 285,91-9,2001.
    [32]Shuai JB, Wei W, Jiang LL, Li XL, Chen N and Fang WH. Mapping of the nuclear localization signals in open reading frame 2 protein from porcine circovirus type 1. Acta Biochem Biophy Sin.2008,40:71-77.
    [33]Shuai JB, Wei W, Li XL, Chen N Zhang ZF Chen XY and Fang WH. Genetic characterization of porcine circovirus type 2 (PCV2) from pigs in high sero-prevalence areas in southeastern China. Virus genes,2007,35:619-627.
    [34]Cheung, A K. Detection of rampant nucleotide reversion at the origin of DNAreplication of porcine circovirus type 1. Virology,2005,333:22-30.
    [35]Cheung, A K. A stem-loop structure, sequence non-specific, at the origin of DNA replication of porcine circovirus is essential for termination but not for initiation of rolling-circle DNA replication. Virology,2007,363:229-235.
    [1]Allan GM., McNeilly F., Cassidy J.P., et al. Pathogenesis of porcine circovirus; experimental infections of colostrums deprived piglets and examination of pig foetal material. Vet Microbiol,1995,44:49-64.
    [2]Hamel A.L., Lin L. and Nayar G.P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wastng syndrome in pigs. J Virol,1998,72:5262-5267.
    [3]Chun W., Huang T.S., Huang C.C., Tu C., Jong M.H., Lin S.Y., and Lai S.S. Characterization of porcine circovirus type 2 in Taiwan. Virology,2004,66:469-475.
    [4]Ellis J., Krakowka S., Lairmore M., et al. J Vet Diagn Invest,1999,11:3-14.
    [5]Rosell C., Segales J., Plana-Duran J., et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol,1999,120:59-78.
    [6]Nawagitgul, P, Morozov, I, Bolin, S R, et al. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol,2000,81:2281-2287.
    [7]Morozov I., Sirinarumitr T., Sorden S.D.,et al. Detection of a novel strain of circovirus in pigs with postweaning multisystemic wasting syndrome. J Clini Microbiol,1998,36: 2535-2541.
    [8]Nawagitgul, P, Morozov, I, Bolin, S R, Harms, P A, Sorden, S D, Paul, P S. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol,2000,81: 2281-2287.
    [9]Liu Q, Tikoo SK, Babiuk LA. Nuclear Localization of the ORF2 Protein Encoded by Porcine Circovirus Type 2. Virology,2001,285:91-9.
    [10]Shuai JB, Wei W, Jiang LL, Li XL, Chen N and Fang WH. Mapping of the nuclear
    localization signals in open reading frame 2 protein from porcine circovirus type 1. Acta Biochimica et Biophysica Sinica.2008,40:71-77.
    [11]Finsterbusch T, Steinfeldt T, Caliskan R, MankertzA. Analysis of the subcellular localization of the proteins Rep, Rep'and Cap of porcine circovirus type 1. Virology,2005,343:36-46.
    [12]Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. Virology,2006,87:3215-3223.
    [13]Chianini, F, Majo, N, Segales, J, Dominguez, J, Domingo, M. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2003,94(1-2):63-75.
    [14]Nielsen, J, Vincent, I E, Botner, A, et al. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2003,92(3-4):97-111.
    [15]Segales, J., et al., Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol,2001. 81(1-2):p.37-44.
    [16]Darwich, L, Pie, S, Rovira, A, Segales, J, Domingo, M, Oswald, I P, Mateu, E. Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. J Gen Virol,2003,84:2117-2125.
    [17]Darwich, L, Balasch, M, Plana-Duran, J, et al. Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol,2003,84:3453-3457.
    [18]Kiupel, M, Stevenson, G W, Choi, J, Latimer, K S, Kanitz, C L, Mittal, S K. Viral replication and lesions in BALB/c mice experimentally inoculated with porcine circovirus isolated from a pig with postweaning multisystemic wasting disease. Vet Pathol,2001,38(1):74-82.
    [19]Liu J, Chen I, Du Q, Chua H, and Kwang J. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. J Virol,2006,80:5065-5073.
    [20]Tischer, I, Peters, D, Rasch, R, Pociuli, S. Replication of porcine circovirus:induction by glucosamine and cell cycle dependence. Arch Virol,1987,96(1-2):39-57.
    [21]Zhu Y, Lau A, Lau J, Jia Q, et al. Enhanced replication of porcine circovirus type 2 (PCV2) in
    a homogeneous subpopulation of PK15 cell line.2007,369:423-30.
    [22]Mankertz A, Mankertz J, Wolf K, Buhk HJ. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-384.
    [23]Cheung, A K. Identification of the essential and non-essential transcription units for protein synthesis, DNA replication and infectious virus production of Porcine circovirus type 1. Arch Virol,2004,149(5):975-988.
    [24]Cheung, A K. Identification of an octanucleotide motif sequence essential for viral protein, DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirus type 2. Virology,2004,324(1):28-36.
    [25]Mankeaz A, Mueller B, Steinfeidt T, et al. New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovimstypesl and 2. J Virol,2003,77(18): 9885-9893.
    [26]Allan, G. M., S. Kennedy F., McNeilly, JC., et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol,1999,121:1-11.
    [27]Allan, G. M., and J. A. Ellis.2000. Porcine circoviruses:a review. J. Vet. Diagn. Investig. 12:3-14
    [28]Fenaux M, Opriessnig T, Halbur PG, and Meng XJ. Immunogenicity and pathogenicity of chimeric infectious DNA clones of pathogenic porcine circovirus type 2 (PCV2) and nonpathogenic PCV1 in weanling pigs. J Virol,2003,77:11232-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700