遗传性耳聋家系的基因定位及基因诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:两个Waardenburg综合征Ⅳ型家系的临床特征及相关基因突变研究
     目的:收集了两个Waardenburg综合征Ⅳ型家系(WSO1家系和WS02家系),拟对其进行临床诊断分析和基因突变检测研究。
     方法:对两个家系成员进行了病史采集、临床听力学分析及体格检查,并进行了Waardenburg综合征Ⅳ型相关基因(EDNRB.EDN3.SOX10基因)的外显子测序以筛查致病突变。
     结果:WS01家系一共两代5人,先证者与其大姐分别为Waardenburg综合征Ⅳ型和Waardenburg综合征Ⅱ型患者,两位患者均表现为左眼虹膜异色,先证者伴有先天性巨结肠;WS02家系先证者为1岁女童,Waardenburg综合征Ⅳ型患者,双侧虹膜异色,伴有先天性巨结肠。三位患者听力学检查均提示双耳极重度感音神经性聋,眼底检查呈现晚霞状改变,无皮肤毛发颜色异常及内眦移位。WSOl家系的先证者及其大姐均检测到有SOX10基因的2号外显子上存在c.254G>A (P. Trp85X)杂合突变,而先证者的母亲(正常人)SOX10基因的2号外显子上也检测到有c.254G>A杂合突变,多次测序后发现突变峰的高度仅为正常峰高度的1/3;WS02家系的先证者SOX10基因的4号外显子测序发现一个剪接位点的杂合突变c.698-2A>T,患者的父母未携带此突变。用直接测序法对100例不相关的正常人进行SOX10基因突变c.254G>A和c.698-2A>T的检测,结果没有检测到相同突变。
     结论:1.本研究所报道的Waardenburg综合征Ⅳ型病例属国内首次报道;2.SOX10基因突变位点c.254G>A(P. Trp85X)和c.698-2A>T属于新发突变位点,目前国内外尚无此突变位点的报道;3.SOX10基因可能存在镶嵌体。
     第二章:一个常染色体显性遗传性耳聋大家系的致病位点定位研究
     目的:为明确一来自湖南张家界地区非综合征型常染色体显性遗传耳聋家系的基因诊断,对此家系进行了初步的定位及候选基因筛查工作
     方法:收集了一4代人的常染色体显性遗传非综合征型耳聋家系,家系中一共有41人,由于家系发病年龄在20-30岁左右,故将未到达发病年龄的家系成员排除在研究外。本研究共对家系中14名成员(其中包括7名患者和7名正常人)进行了临床诊断分析、遗传基因定位及基因筛查研究。首先,根据家系耳聋患者的临床表型及遗传方式,对家系成员进行了最常见的非综合征型显性耳聋基因COCH、EYA4、GJB2、GJB3基因的直接测序排查及与家系表型相似的耳聋致病位点的排除定位分析。排除分析后应用Illumina linkage芯片对该家系进行了全基因组扫描以初步定位致病区间,在初步定位的区间内挑选MARKER进行精细定位。最后,对精细定位区间内的已知耳聋基因进行直接测序筛查家系致病突变。
     结果:家系临床特征表现为:语后聋,20-30岁左右发病,发病初期表现为耳鸣及高频听力下降,40岁左右进行性发展为双耳重至极重度聋。排除COCH、EYA4、GJB2、GJB3基因及相关耳聋致病位点后进行了全基因组扫描及微卫星精细定位,经过多点Lod值的计算及单体型分析最终将该家系的致病区间定位在chr1:P34.2-P34.3 (D1S2656;D1S3721)约8.21cM的区间,在D1S2729和D1S2892marker得到了最大多点lod值3.1,此区间与已定位的DFNA2位点重叠,对DFNA2位点上两个己克隆耳聋基因GJB3和KCNQ4进行直接测序筛查后未发现与家系相关的致病突变。
     结论:DFNA2位点上可能存在其他的基因参与该家系耳聋的发生。
     第三章:Illumina Goldengate 384k高通量耳聋基因筛查芯片的设计、研发及其对遗传性耳聋家系的检测
     目的:设计、制备Illumina Goldengate 384K高通量耳聋基因筛查芯片,采用此芯片以期在更广的范围内对已知耳聋突变位点进行筛查和对耳聋大家系进行己定位耳聋位点的排除定位。
     方法:芯片设计原则:由于芯片的引物探针需间隔60bp以上才能确保准确的杂交,故我们在找出所有己知耳聋相关突变位点的基础上,首先挑选出目前文献报道有2篇以上的突变位点,再依据60bp距离尽可能多的将剩余的突变位点设计在芯片上,一共选取了240个耳聋相关突变位点,包括77个显性突变位点及163个隐性突变位点。另外,我们在亚洲人群中报道的己克隆耳聋相关基因中,选取了144个SNP位点,整张芯片共384个检测点。该芯片可进行已知耳聋相关突变位点的高通量筛查和耳聋相关家系的初步排除定位。我们通过对465例DNA样本进行Illumina GoldenGate 384K高通量耳聋基因芯片筛查,统计芯片Call rate、对其准确性进行了验证、对芯片中144个SNP位点的等位基因频率进行了统计分析及对芯片的排除定位连锁分析进行了验证。对90个耳聋家系的135例DNA样本的芯片检测结果进行分析。
     结果:1.芯片总的Call rate为96.32%,Call rate达到100%的位点有110个;2.对芯片上的GJB2_235delC突变检测点进行了准确性验证后发现芯片此检测点的假阳性率为3/97(3.1%),假阴性率为0;3.芯片中有8个基因的19个SNP位点的最小等位基因频率小于0.1(10%);4.芯片对本研究中一耳聋家系的定位位置与传统的微卫星定位扫描定位的位置相同,认为该芯片能较准确的进行耳聋相关基因的排除定位连锁分析;5.在此次患者样本检测中共有12个基因的31个突变检测位点在耳聋家系患者中有检出,剩余有189个检测位点在此次检测中无检出。这189个耳聋突变位点在中国耳聋家系人群中则可能属于罕见的突变位点。对90个耳聋家系的135例DNA样本的芯片检测结果进行分析后发现GJB2_235delC、SLC26A4_IVS7-2A>G等突变位点与目前国内报道的突变检出率相似,PJVK_988delG (57.36%)、SLC26A4_Gly497Ser (7.14%)等既往报道中的非热点突变在此次耳聋家系患者中也具有很高的突变检出率。结论:研究所设计的高通量耳聋基因筛查芯片可以更广范围内对
     一些不常检测的耳聋相关突变位点进行检测及可对耳聋家系进行初步排除定位。PJVK_988delG (57.36%)、SLC26A4_Gly497Ser (7.14%)等既往报道中的非热点突变在耳聋家系患者中具有很高的突变检出率,其是否是多肽或是与检测人群不同有关还是芯片检测的准确性问题?我们将在下一步工作中对有检出的突变位点进行准确性验证,并对芯片设计内容进行调整,剔除突变频率较低、Call rate及准确性低的耳聋相关突变位点,加入由于突变位点引物设计要求60bp间距而在此次设计中未加入芯片的耳聋相关突变位点,剔除最小等位基因频率<10%的SNP位点,并选择同一位置的其他SNP位点进行替换,进一步完善芯片。
Chapter 1:Analysis of the clinical features and family-related gene mutations for two pedigrees of typeⅣWaardenburg syndrome
     Objective:Analysis of the clinical features and family-related gene mutation for the two pedigrees of typeⅣWaardenburg syndrome (WSIV) which were collected (WSO1 and WS02) in the last year.
     Methods:After History taking, clinical analysis, haring test and physical examination for the two pedigrees, EDNRB、EDN3、SOX1O sequencing was taken for the two pedigrees to identify the Pathogenic mutation.
     Results:There were 5 persons from a 2 generations pedigree of WS01.The proband was a WSIV patient and his eldest sister was WSII. Both of them showed heterochromia iridis of left eye. Hirschsprung disease was found in the proband of WS01. Proband of WS01, a 1 year old girl, is a WSIV patient showed heterochromia iridis of eyes, hirschsprung disease. All of the patients presented bilateral profound hearing loss, a generalized decrease in retinal pigment with a focal hypopigmented lesion in the eyes with blue irides, without dystopia canthorum and pigmentary abnormalities of hair and skin. Heterozygous mutation Trp85X(c.254G>A) was detected in the proband, eldest sister and mother of WS01 pedigree. But the height of mutation peak was One third lower than that of normal one in the mother who was a healthy subject; Heterozygous mutation c.698-2A>T was detected in the proband of WS02 pedigree. However the mutation was not detected in the parents of the proband. All the mutations identified in these patients were not seen in any other unaffected family members and 100 unrelated control subjects.
     Conclusions:1.This was the first report of WSIV in Chinese patients.2. P.Trp85X (c.254G>A) and c.698-2A>T were the novel mutation for SOX 10 gene.3. SOX 10 gene was suspected of having mosaicism.
     Chapter 2:Localization for an autosomal dominant non-syndromic deafness family of China
     Objective:We collected a four-generation family from the southern part of China with autosomal dominant sensorineural hearing impairment. In order to identify the responsible pathogenic mutations of the family, we set out to identify the locus and to sequentially analyze the candidate genes in the identified region.
     Methods:After family ascertainment and clinical analysis, exclusive analysis was performed. And then a Genome-wide scan was performed by using Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM). Fine-mapping markers were genotyped to identify the locus. Finally, we performed haplotype analyses, and candidate gene DNA sequencing for the family.
     Results:The known genetic loci and genes were not associated with our family. The genome-wide scan and haplotype analyses traced the disease to chromosome 1p34.2-p34.3 with maximum multi-point LOD score of 3.2 which overlaps with DFNA2. We failed to identify any of the known or novel variants within KCNQ4, a voltage-gated potassium channel gene, and GJB3, a gene that encodes the gap junction protein connexin 31, which were the cloned deafness gene in DFNA2.
     Conclusions:There could be another candidate gene in DFNA2 which be responsible for hearing loss phenotype.
     Chapter 3:Designing and development of Illumina Goldengate 384k high-throughput BeadArrey for deafness gene mutations screening, and screening for patients in deafness pedigrees
     Objective:Designing and development of Illumina Goldengate 384k high-throughput BeadArrey. Screen for patients in deafness pedigrees and exclude locus for large deafness pedigrees by use of the BeadArrey.
     Methods:Design principles:Interval of 60bp for primer probe was needed to ensure accurate cross over on BeadArrey. So we selected mutations which have been reported twice, and then put the other mutations on the BeadArrey according the design priciple. Totally 240 mutations were selected, including 77 dominant mutations and 163 recessive mutations. On the other side, we selected 144 SNPs in deafness genes which were reported in Asian populations. Therefore, the BeadArrey we designed could screen for the deafness gene mutations and exclude locus for large deafness pedigrees. We conducted a call rate statistics and accurate verification for the BeadArrey. An allele frequency analysis of the 144 SNPs and exclusive location analysis were carried on. Finally, we analyzed the test results of BeadArrey for 135 DNA samples of 90 deafness pedigrees which were collected by ENT clinic of Xiangya Hospital and State Key Laboratory of Medical Genetics in 1997-2010.
     Results:1. Total Call rate of the BeadArrey was 96.32%,110 of 384 test points' Call rate were 100%.2. False negative rate was 3/97 (3.1%) and false positive rate was 0 for test point GJB2_235delC.3. Minimum allele frequencies of 19 SNPs in 8 genes were less than 0.1 (10%).4. The region located by BeadArrey was similar to which was located by traditional micro-satellite scan.5. We detected 31 mutations of 12 genes in the BeadArrey screening for 135 patients.189 mutations which might be the rare mutations in Chinese deafness were not detected. Detection rate of GJB2 1 BP DEL 235C and SLC26A4 IVS7-2A>G were the same as previous reports. But mutations like PJVK(DFNB59)_1_BP_DEL_988G (57.36%) and SLC26A4_Gly497Ser (7.14%) which were not the hot mutations had a high detection rate.
     Conclusions:Illumina Goldengate 384k high-throughput BeadArrey could test more mutations for the patients and exclude locus for large deafness pedigrees. PJVK(DFNB59)_1_BP_DEL_988G (57.36%) and SLC26A4_Gly497Ser (7.14%) et al which were not the hot mutations had a high detection rate. To find the reason whether they are snps or the low accuracy, in the next step, we will conduct a accurate verification for more test point and remove the points with low call rate, mutation frequency and accuracy, add in the other mutation points which did not add in the BeadArrey as a result of the principle of 60bp Interval. We will remove the SNPs which allele frequencies are less than 10% and add in the other SNPs in the similar position.
引文
[1]Nayak CS, Isaacson G. Worldwide distribution of Waardenburg dyndrome. Ann Otol Rhinol Laryngol,2003,112(9 Pt 1):817-20.
    [2]Farrer LA,Grundfast KM,Amos J,et al. Waardenburg syndrome(WS)type Ⅰ is caused by defects at multiple loci,one of which is near ALPP on chromose 2:first report of the WS Consortium.Am Hum Genet,1992,50(5):902-913.
    [3]杨建强,王培光,杨森等Waardenburg综合征的分子遗传学进展.国际皮肤性病学杂志,2008,34(4):261-263.
    [4]Touraine RL, Attie-Bitach T, Manceau E, et al. Neurological Phenotype in Waardenburg Syndrome Type 4 Correlates with Novel SOX 10 Truncating Mutations and Expression in Developing Brain. Am J Hum Genet.2000, 66(5):1496-503.
    [5]Liu XZ,Newton VE,Read AP. Waardenburg syndrome type Ⅱ:phenotypic finding and diagnostic criteria.Am J Med Genet,1995,55(1):95-100.
    [6]Waardenburg PJ,A new syndrome combinating developmental anomalies of the eyelids,eyebrows and nose root with pigmental defects of the iris and head hair and with congenital deafness. Am J Hum Genet,1951,3(3):195-253.
    [7]Karaman A.Aliagaoglu C. Waardenborg syndrome type 1. Dermatol Online J. 2006,12(3):21.
    [8]Arias S. Genetic heterogeneity in the Waardenburg syndrome. Birth Defects Orig Artic Ser.1971,7(04):87-101
    [9]Klein D. Historical background and evidence for dominant inheritance of the Klein-Waardenburg syndrome(type Ⅲ). Am J Med Genet,1983,14:231-239.(2)
    [10]Shah K N,Dalal S J, Desai M P,et al.White forelock, pigmentary disorder of irides, and long segment Hir-schsprung disease:possible variant of Waardenburg syndrome.J Pediatr,1981,99:432-435
    [11]Hageman MJ. Waardenburg's syndrome in Kenyan Africans. Trop Geog Med, 1978,30(1):45-55.
    [12]Yang SZ,Cao JY,Zhang RN, et al. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients. Chin Med J,2007,120 (1):46-49.
    [13]Chang T, Hashimoto K, Bawle EV. Spontaneous contraction of leukodermic patches in Waardenburg syndrome. J Dermatol (Tokyo),1993,20(11):707-11.
    [14]Marcini AJ. Waardenburg syndrome type Ⅱ in a Taiwanese woman with a family history of pseudoxanthoma elasticum. Int J Dermatol, 1997,36(12):933-5.
    [15]Tagra S, Talwar AK, Walia RL, et al.Waardenburg syndrome. Indian J Dermatol Venereol Leprol,2006,72(4):326.
    [16]Marta L, Tamayo, Nancy Gelvez, Marcela Rodriguez, et al. Screening Program for Waardenburg Syndrome in Colombia:Clinical Definition and Phenotypic Variability. Am J Med Genet A.2008,146A(8):1026-31.
    [17]Newton V.Hearing loss and Waardenburg's syndrome:implications for genetic counselling. Laryngol Otol.1990,104(2):97-103.
    [18]Madden C, Halsted MJ, Hopkin RJ, et al. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome. Laryngoscope. 2003,113(11):2035-41.
    [19]Ohno N, Kiyosawa M, Mori H, et al. Clinical findings in Japanese patients with Waardenburg syndrome type 2. Jpn J Ophthalmol.2003,47(1):77-84.
    [20]Read AP,Newton VE.Waardenburg syndrome.J Med Genet.1997.34(8):656-665.
    [21]Silan F, Zafer C, Onder I. Waardenburg syndrome in the Turkish deaf population. Genet Couns,2006,17(1):41-48.
    [22]Tamayo ML, Gelvez N, Rodriguez M,et al. Screening program for Waardenburg syndrome in Colombia:Clinical definition and phenotypic variability. Am J Med Genet PartA,2008,146A(8):1026-31.
    [23]杨淑芝.综合征型耳聋临床表型特征分析及相关基因研究:[博士学位论文].北京:中国人民解放军军医进修学院,2005.
    [24]Liu X, Newton V, Read A. Hearing loss and pigmentary disturbances in Waardenburg syndrome with reference to WS type Ⅱ. J Laryngol Otol. 1995,109(2):96-100.
    [25]Karaca I, Turk E. Ortac R,et al. Waardenburg syndrome with extended aganglionosis:report of 3 new cases.Karaca I, Turk E, Ortac R, Kandirici A. J Pediatr Surg.2009,44(6):E9-13.
    [26]Inoue K, Khajavi M, Ohyama T, et al.Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet. 2004 Apr;36(4):361-9. Epub 2004 Mar 7.
    [27]Bondurand N, Dastot-Le Moal F, Stanchina L,et al. Deletions at the SOX10gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet,2007,81(6):1169-85.
    [28]Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996,12(4):442-4.
    [29]Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease.1994, 79(7):1257-66.
    [30]Pingault V, Bondurand N, Kuhlbrodt K. et al. SOX 10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet.1998,18(2):171-3.
    [31]Verheij JB, Kunze J, Osinga J, et al. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene. Am J Med Genet.2002 108(3):223-5.
    [32]Sangkhathat S, Chiengkriwate P, Kusafuka T,et al. Novel mutation of Endothelin-B receptor gene in Waardenburg-Hirschsprung disease. Pediatr Surg Int.2005,21(12):960-3.
    [33]Pingault V, Girard M, Bondurand N, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet.2002,111(2):198-206.
    [34]Pingault V, Bondurand N, Le Caignec C, et al.The SOX10 transcription factor: evaluation as a candidate gene for central and peripheral hereditary myelin disorders. J Neurol.2001,248(6):496-9.
    [35]Sham MH, Lui VC, Chen BL, et al. Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome. J Med Genet.2001, 38(9):E30.
    [36]Syrris P, Carter ND, Patton MA. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease. Am J Med Genet.1999,87(1):69-71.
    [37]E. Michelle Southard-Smith, Misha Angrist, Jane S. Ellison, et al.The Sox10Dom Mouse:Modeling the Genetic Variation of Waardenburg-Shah (WS4) Syndrome.Genome Res.19999:215-225.
    [38]Chen H, Jiang L, Xie Z, et al. Novel mutations of PAX3, MITF, and SOX10 genes in Chinese patients with type Ⅰ or type Ⅱ Waardenburg syndrome. Biochem Biophys Res Commun.2010,397(1):70-4.
    [39]Sznajer Y, Coldea C, Meire F, A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am J Med Genet A. 2008,146A(8):1038-41.
    [40]Pingault V, Ente D, Dastot-Le Moal F, et al. Review and update of mutations causing Waardenburg syndrome. Hum Mutat.2010,31(4):391-406. Review.
    [41]Toki F, Suzuki N, Inouc K, et al. Epub 2003 Dec 23.Intestinal aganglionosis associated with the Waardenburg syndrome:report of two cases and review of the literature. Pediatr Surg Int.2003,19(11):725-8.
    [42]Bondurand N, Kuhlbrodt K, Pingault V, et al. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome:SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet.1999,8(9):1785-9.
    [43]Morin M, Vinuela A, Rivera T, et al. A de novo missense mutation in the gene encoding the SOX 10 transcription factor in a Spanish sporadic case of Waardenburg syndrome type IV. Am J Med Genet A.2008.146A(8):1032-7.
    [44]Iso M, Fukami M, Horikawa R, et al.SOX10 mutation in Waardenburg syndrome type Ⅱ. Am J Med Genet A.2008.146A(16):2162-3.
    [45]Vinuela A. Morin M, Villamar M, et al.Genetic and phenotypic heterogeneity in two novel cases of Waardenburg syndrome type Ⅳ. Am J Med Genet A. 2009,149A(10):2296-302.
    [46]Barnett CP, Mendoza-Londono R, Blaser S, et al. Aplasia of cochlear nerves and olfactory bulbs in association with SOX 10 mutation. Am J Med Genet A. 2009,149A(3):431-6.
    [47]Inoue K, Shilo K, Boerkoel CF, et al. Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease:phenotypes linked by SOX 10 mutation. Ann Neurol.2002,52(6):836-42.
    [48]Pingault V, Guiochon-Mantel A. Bondurand N, et al. Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness:a developmental "neural crest syndrome" related to a SOX10 mutation. Ann Neurol.2000,48(4):671-6.
    [49]Korsch E, Steinkuhle J, Massin M. et al. Impaired autonomic control of the heart by SOX 10 mutation. Eur J Pediatr.2001.160(1):68-9.
    [50]Touraine RL, Attie-Bitach T, Pelet A, et al. Expression of Sox 10 in human embryo and fetal brain accounts for a neurological phenotype in Waardenburg type 4 spectrum. Am J Hum Genet 1998,63:A174.
    [51]Yokoyama S, Takeda K, shibahara s, et al. SOX10,in combination with Spl, regulates the endothlelin receptor type B gene in human melanocyte lineage cells. FEBS J,2006,273(8):1805-1820.
    [52]Wagner T, Wirth J, Meyer J,et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell.1994,79(6):1111-20.
    [53]L. Van Laer, W.T. McGuirt, T. Yang, et al. Autosomal dominant nonsyndromic hearing impairment. Am J Med Genet 89 (1999) 167-74.
    [54]Wang QJ,Lu CY,Li N,et al.Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family.J Med Genet,2004,41(6):e80.
    [55]Hanein S, Martin E, Stevanin G, et al. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet.2008,82: 992-1002.
    [56]Patel H, Cross H, Proukakis C, et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nature Genet.2002,31:347-348.
    [57]Cross HE, McKusick VA. The Mast syndrome:a recessively inherited form of presenile dementia with motor disturbances. Arch Neurol.1967,16:1-13.
    [58]Simpson MA, Cross H, Proukakis C, et al. Maspardin is mutated in Mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet.2003,73:1147-1156.
    [59]Abdallat A, Davis SM, Farrage J, et al. Disordered pigmentation, spastic paraparesis and peripheral neuropathy in three siblings:a new neurocutaneous syndrome. JNNP.1980,43:962-966.
    [60]N. Hilgert, R.J. Smith, and G. Van Camp, Forty-six genes causing nonsyndromic hearing impairment:which ones should be analyzed in DNA diagnostics? Mutat Res 681 (2009) 189-96.
    [61]F. Donaudy, R. Snoeckx, M. Pfister, H.P. Zenner, N. Blin, M. Di Stazio, A. Ferrara, C. Lanzara, R. Ficarella, F. Declau, C.M. Pusch, P. Nurnberg, S. Melchionda, L. Zelante, E. Ballana, X. Estivill, G. Van Camp, P. Gasparini, and A. Savoia, Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am J Hum Genet 74 (2004) 770-6.
    [62]E.N. Manolis, N. Yandavi, J.B. Nadol, Jr., R.D. Eavey, M. McKenna, S. Rosenbaum, U. Khetarpal, C. Halpin, S.N. Merchant, G.M. Duyk, C. MacRae, C.E. Seidman, and J.G. Seidman, A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12-13. Hum Mol Genet 5 (1996) 1047-50.
    [63]S. Usami, K. Takahashi, I. Yuge, A. Ohtsuka, A. Namba, S. Abe, E. Fransen, L. Patthy, G. Otting, and G. Van Camp, Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. Eur J Hum Genet 11 (2003) 744-8.
    [64]S. Wayne, N.G. Robertson, F. DeClau, N. Chen, K. Verhoeven, S. Prasad, L. Tranebjarg, C.C. Morton, A.F. Ryan, G. Van Camp, and R.J. Smith, Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10 (2001) 195-200.
    [65]M.E. O'Neill, J. Marietta, D. Nishimura, S. Wayne, G. Van Camp, L. Van Laer, C. Negrini, E.R. Wilcox, A. Chen, K. Fukushima, L. Ni, V.C. Sheffield, and R.J. Smith, A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to chromosome 6. Hum Mol Genet 5 (1996) 853-6.
    [66]M.R. Brown, M.S. Tomek, L. Van Laer, S. Smith, J.B. Kenyon, G. Van Camp, and R.J. Smith, A novel locus for autosomal dominant nonsyndromic hearing loss, DFNA13, maps to chromosome 6p. Am J Hum Genet 61 (1997) 924-7.
    [67]O. Vahava, R. Morell, E.D. Lynch, S. Weiss, M.E. Kagan, N. Ahituv, J.E. Morrow, M.K. Lee, A.B. Skvorak, C.C. Morton, A. Blumenfeld. M. Frydman, T.B. Friedman, M.C. King, and K.B. Avraham, Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279(1998) 1950-4.
    [68]S.J. Bom, H.P. Kunst, P.L. Huygen. F.P. Cremers, and C.W. Cremers, Non-syndromal autosomal dominant hearing impairment:ongoing phenotypical characterization of genotypes. Br J Audiol 33 (1999) 335-48.
    [69]C.C. Greene, P.M. McMillan. S.E. Barker. P. Kurnool. M.I. Lomax, M. Burmeister, and M.M. Lesperance, DFNA25. a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet 68 (2001) 254-60.
    [70]S. Xiao, C. Yu, X. Chou, W. Yuan, Y. Wang, L. Bu, G. Fu, M. Qian, J. Yang, Y. Shi, L. Hu, B. Han, Z. Wang, W. Huang, J. Liu, Z. Chen, G. Zhao, and X. Kong, Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27 (2001) 201-4.
    [71]E. Flex, M. Mangino, M. Mazzoli, A. Martini, V. Migliosi, A. Colosimo, R. Mingarelli, A. Pizzuti, and B. Dallapiccola, Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA43) to chromosome 2p12. J Med Genet 40 (2003) 278-81.
    [72]P. D'Adamo, F. Donaudy, A. D'Eustacchio, E. Di Iorio, S. Melchionda, and P. Gasparini, A new locus (DFNA47) for autosomal dominant non-syndromic inherited hearing loss maps to 9p21-22 in a large Italian family. Eur J Hum Genet 11 (2003) 121-4.
    [73]P. D'Adamo, M. Pinna, S. Capobianco, A. Cesarani, A. D'Eustacchio, P. Fogu, M. Carella, M. Seri, and P. Gasparini, A novel autosomal dominant non-syndromic deafness locus (DFNA48) maps to 12q13-ql4 in a large Italian family. Hum Genet 112 (2003) 319-20.
    [74]P. Qiong, Z. Hu, Y. Feng, Q. Pan, J. Xia, and K. Xia, Bioinformatics analysis of candidate genes and mutations in a congenital sensorineural hearing loss pedigree:detection of 52 genes for the DFNA52 locus. J Laryngol Otol 122 (2008) 1029-36.
    [75]D. Yan, X. Ke, S.H. Blanton, X.M. Ouyang, A. Pandya, L.L. Du, W.E. Nance, and X.Z. Liu, A novel locus for autosomal dominant non-syndromic deafness, DFNA53, maps to chromosome 14q11.2-q12. J Med Genet 43 (2006) 170-4.
    [76]Liu X, Xu L. Nonsyndromic hearing loss:an analysis of audiograms. Ann Otol Rhinol Laryngol 1994;103:428-33.
    [77]Willems PJ, Genetic causes of hearing loss. N Engl J Med,2000,342(15): 1101-1109.
    [78]Morton NE. LODs past and present. Genetics.1995,140:7-12.
    [79]P. Coucke, G. Van Camp, B. Djoyodiharjo, S.D. Smith, R.R. Frants, G.W. Padberg, J.K. Darby, E.H. Huizing, C.W. Cremers, W.J. Kimberling. and et al., Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N Engl J Med 331(1994) 425-31.
    [80]C. Kubisch, B.C. Schroeder, T. Friedrich, B. Lutjohann, A. El-Amraoui, S. Marlin, C. Petit, and T.J. Jentsch, KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96 (1999)437-46.
    [81]P.J. Coucke, P. Van Hauwe, P.M. Kelley, H. Kunst, I. Schatteman, D. Van Velzen, J. Meyers, R.J. Ensink, M. Verstreken, F. Declau, H. Marres, K. Kastury, S. Bhasin, W.T. McGuirt, R.J. Smith, C.W. Cremers, P. Van de Heyning, P.J. Willems, S.D. Smith, and G. Van Camp, Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 8 (1999) 1321-8.
    [82]Mehl AL and Thomson V, The Colorado newborn hearing screening project, 1992-1999:on the threshold of effective population-based universal newborn hearing screening. Pediatrics,2002,109(1):E7.
    [83]张华,刘宇清,王幼勤等.遗传性耳聋基因芯片检测及其临床意义.临床耳鼻咽喉头颈外科杂志,2009,23(22):1032-1035.
    [84]Delmaghani, S., del Castillo, F. J., Michel, V., et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genet.2006,38:770-778.
    [85]Chaleshtori, M. H., Simpson, M. A., Farrokhi, E., et al. Novel mutations in the pejvakin gene are associated with autosomal recessive non-syndromic hearing loss in Iranian families. Clin. Genet.2007,72:261-263.
    [86]Collin RW, Kalay E, Oostrik J,et al. Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum Mutat. 2007,28(7):718-23.
    [87]Ebermann, I., Walger, M., Scholl, H. P. N., et al. Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum. Mutat.2007,28:571-577.
    [88]Schwander, M., Sczaniecka, A., Grillet. N.,et al. A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J. Neurosci.2007.27:2163-2175.
    [89]Kelsell, D.P., J. Dunlop, H.P. Stevens, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature,1997.387(6628): 80-83.
    [90]Denoyelle, F.. G. Lina-Granade, H. Plauchu. et al. Connexin 26 gene linked to a dominant deafness. Nature,1998,393(6683):319-320.
    [91]Morle L,Bozon M,Alloisio N,et al.A novel C202F mutation in the connexin26 gene (GJB2)associated with autosomal dominant isolated hearing loss.J Med Genet,2000,37(5):368-370.
    [92]Richard G, Rouan F,Willoughby CE, et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet,2002.70(5):1341-1348.
    [93]Kenneson A,Van Naarden Braun K, and Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss:a HuGE review. Genet Med, 2002.4(4):258-74.
    [94]Denoyelle F, Weil D, Maw MA. Prelingual deafness:high prevalence of a 30de1G mutationi in the connexin26 gene.Hum Mol Genet,1997,6(2):2173-7.
    [95]Tekin M, Akar N, Cin S, etal. Connexin 26 (GJB2)mutations in the Turkish population:implications for the origin and high frequency of the 35de1G mutation in Caucasians.Hum Genet[J],2001,108(5):385-389.
    [96]Liu Y. Ke X, Qi Y, et al. Connexin26 gene (GJB2):prevalence of mutations in the Chinese population. J Hum Genet,2002,47 (12):688-690.
    [97]KudoT, Ikeda K, S. Kure S, et al. Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet,2000.90(2):141-5.
    [98]Yan D, Park HJ, Ouyang XM, et al. Evidence of a founder effect for the 235de1C mutation of GJB2 (connexin 26) in east Asians. Human Genetics, 2003,114(1):44-50.
    [99]Usami S, Abe S, Weston M D, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet, 1999,104(2):188-92.
    [100]Tsukamoto K, Suzuki H, Harada D, et al., Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese. Eur J Hum Genet,2003,11(12):916-922.
    [101]Wang, QJ, Zhao YL, Rao SQ, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin. Genet, 2007,72(3):245-54.
    [102]Prasad S, Kolln KA, Cucci RA, et al., Pendred syndrome and DFNB4-mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of eleven novel mutations. Am J Med Genet,2004,124A(1):1-9.
    [103]Campbell C, Cucci RA, Prasad S, et al.Pendred syndrome, DFNB4,and PDS /SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations.Hum Mutat,2001,17(5):403-411.
    [104]Fugazzola L,Cerutti N,Mannavola D,et al.Differential diagnosis between pendred and pseudo-pendred syndromes:clinical,radiologic,and molecular studies.Pediatric Research,2002,51(4):479-484.
    [105]Park HJ, Lee, SJ, Jin HS, et al. Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans. Clin. Genet,2005,67(2):160-165.
    [106]戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307
    [107]戴朴,黄德亮,王嘉陵,等.PDS基因检测一诊断大前庭水管综合征的新方法.中华耳科学杂志,2005,3(4):241-244.
    [108]Yang JJ, Tsai C, Hsu H, et al. Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDS gene. Hear Res,2005,199(1-2):22-30..
    [109]Wu CC, Yeh TH, Chen PJ, et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia:a unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope.2005,115(6):1060-4.
    [110]Xia. J., Liu, C., Tang, B., et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nature Genet.1998,20:370-373.
    [111]Van Hauwe p, Coucke PJ, Declau F,et al. Deafness linked to DFNA2:one locus but how many genes? Nat Genet.1999,21:263.
    [112]Jayne A. Goldstein, Anil K. Lalwani, et al. Further evidence for a third deafness gene within the DFNA2 locus.Am J Med Genet.2002.108(4):304-9.
    [1]Adato A, Raskin L, Petit C, et al. Deafness heterogenelty in a Druze isolate from the Middl East:novel OTOF and PDS mutations, low prevalence of GJB2 3SdelG mutation and indication for a new DFNB locus. Eur Hum Genet, 2000,8 (6):437-442.
    [2]L. Van Laer, W.T. McGuirt, T. Yang, et al. Autosomal dominant nonsyndromic hearing impairment. Am J Med Genet 89 (1999) 167-74.
    [3]Wang QJ, Lu CY, Li N, et al. Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet,2004,41(6):e80.
    [4]Lalwani AK, Castelein CM. Cracking the auditory genetic code: non-syndromic hereditary hearing impairment. Am J Otol,1999, 20(1):115-132.
    [5]P. Coucke, G. Van Camp, B. Djoyodiharjo, S.D. Smith, R.R. Frants, G.W. Padberg, J.K. Darby, E.H. Huizing, C.W. Cremers, W.J. Kimberling, and et al., Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N Engl J Med 331 (1994) 425-31.
    [6]C. Kubisch, B.C. Schroeder, T. Friedrich, B. Lutjohann, A. El-Amraoui, S. Marlin, C. Petit, and T.J. Jentsch, KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96 (1999)437-46.
    [7]P.J. Coucke, P. Van Hauwe, P.M. Kelley, H. Kunst, I. Schatteman, D. Van Velzen, J. Meyers, R.J. Ensink, M. Verstreken, F. Declau, H. Marres, K. Kastury, S. Bhasin, W.T. McGuirt, R.J. Smith, C.W. Cremers, P. Van de Heyning, P.J. Willems, S.D. Smith, and G. Van Camp, Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 8 (1999) 1321-8.
    [8]Trussel PM, Tait EA. Private university contributes to community health through a continuing nursing education program. Int Nurs Rev.1971; 18(1):66-75.
    [9]Xia, J., Liu, C., Tang, B., et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nature Genet.1998,20:370-373.
    [10]Liu XZ, Xia XJ, Xu LR, et al. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. HumMolGenet,2000,9:63.
    [11]Lopez-Bigas N, Olive M, Rabionet R, et al. Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet,2001,10:947.
    [12]李庆忠,工秋菊,赵立东等。国人非综合征型遗传性聋患者GJB3基因突变分析。听力学及言语疾病杂志,2005,13:145-148。
    [13]Giepmans BN, Verlaan I, et al. Connexin-43 interactions with ZO-1 and alpha-and beta-tubulin. Cell Commun Adhes 2001;8:219-23
    [14]Van Hauwe p, Coucke PJ, Declau F,et al. Deafness linked to DFNA2:one locus but how many genes? Nat Genet.1999,21:263.
    [15]Jayne A. Goldstein, Anil K. Lalwani, et al. Further evidence for a third deafness gene within the DFNA2 locus.Am J Med Genet.2002,108(4):304-9.
    [16]Leon PE, Raventos H, Lynch E, et al. The gene for an inherited form of deafness maps to chromosome 5q31. Proc Natl Acad Sci U S A.1992; 89(11):5181-4.
    [17]Lynch ED, Lee MK, Morrow JE, et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous Science.1997; 278(5341):1315-8.
    [18]Chaib H, Lina-Granade G, Guilford P, et al. A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1 recessive deafness gene interval.1994; 3(12):2219-22.
    [19]Denoyelle F, Lina-Granade G, Plauchu H, et al. Connexin 26 gene linked to a dominant deafness. Nature.1998; 393(6683):319-20.
    [20]Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness.1997; 387(6628):80-3.
    [21]Grifa A, Wagner CA, D'Ambrosio L, et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet.1999; 23(1):16-8.
    [22]Donaudy F, Snoeckx R, Pfister M,et al. Epub 2004 Mar 10.Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am J Hum Genet.2004; 74(4):770-6.
    [23]van Camp G, Coucke P, Balemans W. et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum Mol Genet. 1995; 4(11):2159-63.
    [24]Van Laer L, Huizing EH, Verstreken M. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet.1998; 20(2):194-7.
    [25]Lesperance MM, Hall JW 3rd, Bess FH. et al. A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3. Hum Mol Genet. 1995; 4(10):1967-72.
    [26]Bespalova IN, Van Camp G, Bom SJ et al.Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet.2001:10(22):2501-8.
    [27]Fagerheim T, Nilssen O, Raeymaekers P, et al. Identification of a new locus for autosomal dominant non-syndromic hearing impairment (DFNA7) in a large Norwegian family. Hum Mol Genet.1996; 5(8):1187-91.
    [28]Robertson NG, Lu L, Heller S, Merchant SN, et al. Nat Genet. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction.1998; 20(3):299-303.
    [29]O'Neill ME, Marietta J, Nishimura D, et al. A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to chromosome 6.1999; 5(6):853-6.
    [30]Wayne S, Robertson NG, DeClau F, Chen N, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet.2001; 10(3):195-200.
    [31]Tamagawa Y, Kitamura K, Ishida T, et al. A gene for a dominant form of non-syndromic sensorineural deafness (DFNA11) maps within the region containing the DFNB2 recessive deafness gene. Hum Mol Genet.1996; 5(6):849-52.
    [32]Liu XZ, Walsh J, Mburu P, et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet.1997; 16(2):188-90.
    [33]Verhoeven K, Van Laer L, Kirschhofer K, et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet.1998; 19(1):60-2.
    [34]Brown MR, Tomek MS, Van Laer L, et al. A novel locus for autosomal dominant nonsyndromic hearing loss, DFNA13, maps to chromosome 6p. Am J Hum Genet.1997; 61(4):924-7.
    [35]McGuirt WT, Prasad SD, Griffith AJ, et al. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet.1999; 23(4):413-9.
    [36]Vahava O, Morell R, Lynch ED, et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science. 1998 Mar; 279(5358):1950-4.
    [37]Fukushima K, Kasai N, Ueki Y, et al.A gene for fluctuating, progressive autosomal dominant nonsyndromic hearing loss, DFNA16, maps to chromosome 2q23-24.3. Am J Hum Genet.1999; 65(1):141-50.
    [38]Lalwani AK, Luxford WM, Mhatre AN, et al. A new locus for nonsyndromic hereditary hearing impairment, DFNA17, maps to chromosome 22 and represents a gene for cochleosaccular degeneration. Am J Hum Genet.1999; 64(1):318-23.
    [39]Lalwani AK, Goldstein JA, Kelley MJ, et al. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet.2000; 67(5):1121-8.
    [40]Bonsch D, Scheer P, Neumann C,et al. A novel locus for autosomal dominant, non-syndromic hearing impairment (DFNA18) maps to chromosome 3q22 immediately adjacent to the DM2 locus. Eur J Hum Genet.2001; 9(3):165-70.
    [41]Morell RJ, Friderici KH, Wei S, et al. A new locus for late-onset, progressive, hereditary hearing loss DFNA20 maps to 17q25. Genomics.2000; 63(1):1-6.
    [42]van Wijk E, Krieger E, Kemperman MH, et al.A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet.2003; 40(12):879-84.
    [43]Kunst H, Marres H, Huygen P,et al. Clin Otolaryngol Allied Sci. Non-syndromic autosomal dominant progressive non-specific mid-frequency sensorineural hearing impairment with childhood to late adolescence onset (DFNA21).2000; 25(1):45-54.
    [44]Melchionda S, Ahituv N, Bisceglia L, et al. MY06, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet.2001; 69(3):635-40.
    [45]Salam AA, Hafner FM, Linder TE, et al. A novel locus (DFNA23) for prelingual autosomal dominant nonsyndromic hearing loss maps to 14q21-q22 in a Swiss German kindred. Am J Hum Genet.2000:66(6):1984-8.
    [46]Hafner FM, Salam AA, Linder TE, et al. A novel locus (DFNA24) for prelingual nonprogressive autosomal dominant nonsyndromic hearing loss maps to 4q35-qter in a large Swiss German kindred. Am J Hum Genet.2000; 66(4):1437-42.
    [47]Hafner FM, Salam AA, Linder TE, et al. A novel locus (DFNA24) for prelingual nonprogressive autosomal dominant nonsyndromic hearing loss maps to 4q35-qter in a large Swiss German kindred. Am J Hum Genet.2000; 66(4):1437-42.
    [48]Greene CC, McMillan PM, Barker SE, et al. DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet.2001; 68(1):254-60.
    [49]Peters LM, Anderson DW, Griffith AJ, et al. Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet.2002;11(23):2877-85.
    [50]Mangino M, Flex E, Capon F, et al. Mapping of a new autosomal dominant nonsyndromic hearing loss locus (DFNA30) to chromosome 15q25-26 Eur J Hum Genet.2001; 9(9):667-71.
    [51]Snoeckx RL, Kremer H, Ensink RJ, et al.A novel locus for autosomal dominant non-syndromic hearing loss, DFNA31, maps to chromosome 6p21.3. J Med Genet.2004;41(1):11-3.
    [52]Bonsch D, Schmidt CM, Scheer P, et al. A new gene locus for an autosomal-dominant non-syndromic hearing impairment (DFNA 33) is situated on chromosome 13q34-qter. HNO.2009;57(4):371-6.
    [53]Kurima K, Peters LM, Yang Y, et al.Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function.Nat Genet.2002; 30(3):277-84.
    [54]Xiao S, Yu C, Chou X, et al. Entinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet.2001; 27(2):201-4.
    [55]Blanton SH, Liang CY, Cai MW, et al. A novel locus for autosomal dominant non-syndromic deafness (DFNA41) maps to chromosome 12q24-qter. J Med Genet.2002;39(8):567-70.
    [56]Xia J, Deng H, Feng Y, et al. A novel locus for autosomal dominant nonsyndromic hearing loss identified at 5q31.1-32 in a Chinese pedigree. J Hum Genet.2002; 47(12):635-40.
    [57]Flex E, Mangino M, Mazzoli M, et al. Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA43) to chromosome 2p12. J Med Genet.2003; 40(4):278-81.
    [58]Modamio-Hoybjor S, Moreno-Pelayo MA, Mencia A, et al. A novel locus for autosomal dominant nonsyndromic hearing loss (DFNA44) maps to chromosome 3q28-29. Hum Genet.2003; 112(1):24-8.
    [59]Modamio-Hoybjor S, Mencia A, Goodyear R, et al. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am J Hum Genet.2007; 80(6):1076-89.
    [60]D'Adamo P, Donaudy F, D'Eustacchio A, et al. A new locus (DFNA47) for autosomal dominant non-syndromic inherited hearing loss maps to 9p21-22 in a large Italian family. Eur J Hum Genet.2003; 11(2):121-4.
    [61]D'Adamo P, Pinna M, Capobianco S, et al. A novel autosomal dominant non-syndromic deafness locus (DFNA48) maps to 12q13-q14 in a large Italian family. Hum Genet.2003; 112(3):319-20.
    [62]Donaudy F, Ferrara A, Esposito L, et al. Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss. Am J Hum Genet.2003; 72(6):1571-7.
    [63]Moreno-Pelayo MA, Modamio-H(?)ybj(?)r S, Mencia A, et al. DFNA49, a novel locus for autosomal dominant non-syndromic hearing loss, maps proximal to DFNA7/DFNM1 region on chromosome 1q21-q23. J Med Genet.2003; 40(11):832-6.
    [64]Modamio-H(?)ybj(?)r S, Moreno-Pelayo MA. Mencia A, et al.A novel locus for autosomal dominant nonsyndromic hearing loss. DFNA50, maps to chromosome 7q32 between the DFNB17 and DFNB13 deafness loci. J Med Genet.2004; 41(2):e14.
    [65]Mencia A, Modamio-H(?)ybj(?)r S, Redshaw N, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet.2009; 41(5):609-13.
    [66]Walsh T, Pierce SB, Lenz DR, et al. Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet.2010; 87(1):101-9.
    [67]Yan D, Ke X, Blanton SH, et al. A novel locus for autosomal dominant non-syndromic deafness, DFNA53, maps to chromosome 14q11.2-q12. J Med Genet.2006; 43(2):170-4.
    [68]Giirtler N, Kim Y, Mhatre A, et al.DFNA54, a third locus for low-frequency hearing loss. J Mol Med.2004; 82(11):775-80.
    [69]Bonsch D, Schmidt CM, Scheer P. et al.A new locus for an autosomal dominant, non-syndromic hearing impairment (DFNA57) located on chromosome 19p13.2 and overlapping with DFNB15. HNO.2008; 56(2):177-82.
    [70]Lezirovitz K, Braga MC, Thiele-Aguiar RS, et al.A novel autosomal dominant deafness locus (DFNA58) maps to 2p12-p21. Clin Genet.2009; 75(5):490-3.
    [71]Chatterjee A, Jalvi R, Pandey N, et al.A novel locus DFNA59 for autosomal dominant nonsyndromic hearing loss maps at chromosome 11p14.2-q12.3. Hum Genet.2009; 124(6):669-75.
    [72]Su CC, Yang JJ, Shieh JC, et al.Identification of novel mutations in the KCNQ4 gene of patients with nonsyndromic deafness from Taiwan. Audiol Neurootol.2007;12(1):20-6.
    [73]Van Hauwe P, Coucke PJ, Ensink RJ, et al. Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am J Med Genet.2000; 93(3):184-7.
    [74]Talebizadeh Z, Kelley PM, Askew JW, et al. Novel mutation in the KCNQ4 gene in a large kindred with dominant progressive hearing loss. Hum Mutat. 1999; 14(6):493-501.
    [75]Mencia A, Gonzalez-Nieto D, Modamio-H(?)ybj(?)r S, et al. A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum Genet.2008;123(1):41-53.
    [76]Van Laer L, Carlsson PI, Ottschytsch N, et al. The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat.2006; 27(8):786-95.
    [77]Kamada F, Kure S, Kudo T, et al.A novel KCNQ4 one-base deletion in a large pedigree with hearing loss:implication for the genotype-phenotype correlation. J Hum Genet.2006; 51(5):455-60.
    [78]Kelsell DP, Wilgoss AL, Richard G, et al.Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur J Hum Genet.2000; 8(6):469-72.
    [79]Yang JJ, Huang SH, Chou KH, et al.Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol.2007;12(3):198-208.
    [80]Alexandrino F, Oliveira CA, Reis FC, et al. Screening for mutations in the GJB3 gene in Brazilian patients with nonsyndromic deafness. JAppl Genet. 2004;45(2):249-54.
    [81]Uyguner O, Emiroglu M, Uzumcu A. et al. Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clin Genet.2003;64(1):65-9.
    [82]Liu XZ, Yuan Y, Yan D, et al.Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum Genet. 2009; 125(1):53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700