雌激素受体-α36、假想蛋白LOC147710和网膜素-1调控骨代谢的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分绝经后妇女雌激素受体-α36介导17β-雌二醇的骨保护作用
     目的雌激素受体-alpha36(ER-α36)是一种膜受体,不同于ER-α66、ER-α46和ER-β主要介导雌激素的核效应,ER-α36只能介导雌激素的膜效应,如促分裂原活化蛋白激酶/细胞外信号调节激酶(MAPK/ERK)信号通路的激活。本研究旨在探讨ER-α36是否与ER-α66一样,也参与调控骨代谢。
     方法免疫组织化学染色观察骨组织切片中ER-α36的表达。3H-胸腺嘧啶核苷(3H-TdR)掺入法检测细胞增殖。ELISA检测细胞凋亡。磷酸对硝基苯酚法测定碱性磷酸酶(ALP)活性。放射免疫分析法(RIA)测定骨钙素(OCN)含量。茜素红S染色评估成骨细胞基质的矿化程度。Western blot检测ER-α36、ER-α66、ERK1/2和p-ERK1/2蛋白表达水平。H2DCFDA荧光探针检测活性氧簇(ROS)水平。ER-α36 shRNA和真核表达载体调控成骨细胞和破骨细胞ER-α36表达,并采用ERK和ROS抑制剂观察E2调控成骨细胞与破骨细胞增殖、分化或凋亡的ER-α36受体及受体后信号途径。荧光实时定量PCR(QRT-PCR)检测骨组织OCN和抗酒石酸酸性磷酸酶(TRAP)基因表达量。将154例椎间盘突出、椎管狭窄或脊椎前移进行开窗术的患者分为绝经前组(60例)和绝经后组(94例,其中包括骨质疏松组30例,低骨量组31例,正常骨量组33例),用双能量X线吸收法(DXA)测定患者骨密度(BMD),取血后用ELISA检测血清骨形成标志物OCN和骨吸收标志物Ⅰ型胶原氨基末端肽(NTX)水平,收集脊椎松质骨标本并用QRT-PCR检测ER-α36、ER-α66、ER-α46和ER-p的表达水平。行动物试验,观察ER-α36选择性调节剂IC162对去卵巢大鼠骨代谢的影响
     结果(1)细胞培养试验结果:ER-α36介导绝经后低水平(10pM)E2诱导成骨细胞ERK短暂激活,从而促进成骨细胞增殖并抑制其分化和凋亡,而ER-α36介导10pM E2诱导破骨细胞ERK持续激活(依赖于ROS),进而促进破骨细胞凋亡;但10pM E2对ER-a36阴性成骨细胞/破骨细胞的增殖、分化和凋亡无作用。(2)骨组织培养试验结果:在高表达ER-α36的骨组织,10pM E2显著抑制骨形成细胞因子OCN和骨吸收细胞因子TRAP的表达;而在低表达ER-α36的骨组织,10pM E2对OCN和TRAP的表达无影响。(3)方差分析显示:绝经前组骨ER-α36表达水平显著低于绝经后各组;绝经后正常骨量组ER-α36表达水平较低骨量组和骨质疏松组高,低骨量组ER-α36表达水平较骨质疏松组高;绝经后各组骨ER-α66、ER-α46和ER-β表达水平均低于绝经前组,绝经后各组间ER-α66、ER-α46和ER-β表达水平差异无显著性。(4)相关分析显示:绝经后妇女骨ER-α36表达水平与BMD呈正相关,与血清OCN和NTX水平呈负相关;绝经前妇女骨ER-α36表达水平与BMD、OCN和NTX水平无相关性;绝经前和绝经后妇女骨ER-α66、ER-α46和ER-β表达水平与BMD、OCN和NTX水平均无相关性。(5)动物试验结果:IC162干预去卵巢大鼠可增加BMD,但对体重和子宫重量无影响。
     结论ER-α36在绝经后妇女骨代谢过程中发挥关键调控作用,高表达ER-α36的成骨细胞/破骨细胞对E2高度敏感,ER-α36介导绝经后低水平E2的骨保护作用。ER-a36的选择性调节剂IC162在去卵巢大鼠发挥骨保护作用,但对子宫无影响。
     第二部分假想蛋白LOC147710突变与常染色体隐性骨质硬化症的发病相关
     目的骨质硬化症是由于破骨细胞生成障碍或功能缺陷导致的一组以全身骨密度增高为主要特征的骨代谢疾病群,具有高度遗传异质性。迄今为止,已发现有11种基因的功能丢失性突变与人类骨质硬化症有关,其特点是单基因突变引起发病,且无重叠。本课题对一个常染色体隐性遗传的骨质硬化症家系(家系总成员11人,其中5名成员的基因型为纯合子患病基因型)进行了研究,以确定该家族性骨质硬化症的致病基因。
     方法双能X线吸收法(DXA)测定骨密度(BMD)。提取11名家系成员及180名正常对照者外周血DNA,用基因测序排除已知与骨质硬化症相关的11个基因的突变后,进行全基因组扫描、精细基因定位及单倍型分析确定致病基因的候选区,然后对该区基因外显子进行测序以确定该致病基因突变。Northern blot和Western blot检测LOC147710在人体各组织的表达量以及在破骨前体细胞CD14+外周血单核细胞(PBMCs)向破骨细胞分化过程中的表达模式。Western blot检测LOC147710蛋白的亚细胞定位。TRAP染色和甲苯胺蓝染色分别观察破骨细胞的形成和骨吸收活性。构建LOC147710真核表达载体,转染LOC147710-/- PBMCs,观察转染后是否能恢复其向破骨细胞分化的能力。
     结果全基因组扫描、精细基因定位及单倍型分析结果显示,染色体19q13.2-q13.3的D19S197至D19S545之间的8.36cM范围为致病基因候选区,连锁分析得最大LOD值Zmax=2.907(θ=0时)。基因测序发现,在LOC147710基因的2号外显子上存在一个纯合子无义突变(c.295C>T)。该无义突变使得终止密码子提前出现(p.R99X),导致其表达一种缺失93个氨基酸残基的截短蛋白。LOC147710基因表达于人类骨组织和小肠组织,而不表达于其它人类组织,提示该基因产物是一种与骨矿物质吸收和代谢密切相关的高特异性调节因子。本研究显示,LOC147710表达于原代人破骨细胞,而在原代人成骨细胞和破骨前体细胞PBMCs则不表达。在巨噬细胞集落刺激因子(M-CSF)和核因子κdB受体活化因子配体(RANKL)诱导PBMCs向破骨细胞分化的过程中,LOC147710的表达逐渐增强。LOC147710蛋白定位于破骨细胞的胞膜和胞质中,而在胞核中不表达。LOC147710-/- PBMCs向破骨细胞分化的能力极其微弱,而重新导入LOC147710基因后,可使其向破骨细胞分化的能力恢复至正常水平。
     结论LOC147710基因纯合子无义突变(c.295C>T)引起该基因的功能丢失,抑制破骨细胞分化能力,从而导致了一种特殊类型的常染色体隐性骨质硬化症,此型尚未报道
     第三部分网膜素-1在去卵巢小鼠和护骨素基因敲除小鼠发挥骨保护作用
     目的网膜素-1(Omentin-1)是近年来发现的一种主要由网膜脂肪组织分泌的细胞因子,其在血浆中含量丰富,达到ng/ml水平。本研究旨在探讨Omentin-1在体外和体内对骨代谢的影响。
     方法测定碱性磷酸酶(ALP)活性、骨钙素(OCN)和基质矿化以判断成骨细胞的分化程度。ELISA检测成骨细胞核因子κB受体活化因子配体(RANKL)和护骨素(OPG)蛋白分泌水平。在体外成骨细胞/破骨前体细胞共培养体系中,观察重组Omentin-1蛋白对破骨细胞生成与分化的影响。注射Omentin-1腺病毒表达载体到去卵巢(OVX)小鼠和OPG基因敲除(OPG-/-)小鼠体内,观察Omentin-1对这两种动物模型骨密度(BMD)、骨强度和骨代谢转换的影响。
     结果(1)Omentin-1直接抑制成骨细胞的分化,但并不直接抑制破骨细胞分化。在成骨细胞/破骨前体细胞体系中,Omentin-1刺激成骨细胞生成OPG,抑制成骨细胞合成RANKL,从而间接地抑制了破骨细胞的生成。(2)Omentin-1可以部分恢复OVX小鼠的BMD和骨强度,下调OVX小鼠血清骨形成标志物OCN和骨吸收标志物抗酒石酸酸性磷酸酶-5b(TRAP-5b)水平以及血清RANKL/OPG比率(3)Omentin-1可以部分恢复OPG-/-小鼠的BMD,下调OPG-/-小鼠血清RANKL、OCN和TRAP-5b水平。
     结论Omentin-1通过调控RANKL和OPG的表达抑制骨转换,从而减少因雌激素缺乏或OPG基因缺失所导致的骨丢失,因而,Omentin-1具有抗骨吸收作用。
Part one Estrogen Receptor-α36 Mediates a Bone-Sparing Effect of 17β-Estrodiol in Postmenopausal Women
     Object Estrogen receptor-alpha36 (ER-α36) is a membrane-based protein. Unlike ER-α66、ER-α46 and ER-βwhich mediate nuclear effects of estrogens, ER-α36 only mediates membrane effects of estrodiol, such as activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. This study was aimed to investigate whether ER-α36 is involved in the regulation of bone metabolism as done by ER-α66.
     Methods The expression of ER-α36 protein in bone sections was assessed by immunohistochemistry. Cell proliferation and apoptosis were analyzed by 3H-thymidine incorporation and ELISA, respectively. Alkaline phosphatase (ALP) activity was assayed by measurement of p-nitrophenol. Osteocalcin (OCN) was measured by radioimmunoassay (RIA). Matrix mineralization was examined with alizarin red S staining. Expression levels of ER-α36, ER-α66, ERK1/2 and p-ERK1/2 protein were detected by Western blot. Reactive oxygen species (ROS) level was measured by 2',7'-dichlorodihydrofluorescein diacetate (H2-DCFDA) probe. To investigate the involvement of ER-α36 and post-receptor ERK and ROS signaling pathways in the regulation of proliferation, differentiation or apoptosis of osteoblasts and osteoclasts by E2, ER-α36 shRNA and eukaryon expression vector were used for regulating ER-α36 expression, and, inhibitors for ERK and ROS were also used. Expression levels of OCN and tartrate-resistant acid phosphatase (TRAP) mRNA were analyzed by quantitative real-time PCR (QRT-PCR). Furthermore, we selected 154 female operative cases (premenopausal:60; postmenopausal:33 normal,31 osteopenic, and 30 osteoporotic) who underwent surgery for intervertebral disk hernia, spinal stenosis or spondylolisthesis were selected in this study. BMD was measured using a dual-energy X-ray absorptiometry (DXA). Blood samples were collected for detection of serum levels of bone formation marker OCN and bone resorption marker cross-linked N-telopeptides of typeⅠcollagen (NTX). We also performed QRT-PCR for detection of the mRNA levels of ER-α36, ER-α66, ER-a46 and ER-βin collected vertebral cancellous bone explants in these patients. Furthermore, animal experiments were performed to observe the effects of the IC162, a selective ER-α36 modulator, on the bone metabolism in ovariectomized mice.
     Results (1) Cell culture experiments results:ER-α36 mediated mitogenic, antiapoptotic, and antiosteogenic effects of postmenopausal low level (10 pM) E2 in osteoblasts through transient activation of the ERK, whereas ER-α36 mediated proapoptotic effect of 10 pM E2 in osteoclasts through prolonged activation of the ERK with the involvement of ROS; 10 pM E2 had no effect on the proliferation, apoptosis or differentiation of ER-α36 negative osteoblasts and osteoclasts. (2) Bone tissue culture experiments results:10 pM E2 significantly inhibited the mRNA expression of osteoblast marker OCN and osteoclast marker TRAP in bone tissues that express high levels of endogenous ER-α36, while had no significant effect on the mRNA levels of OCN and TRAP in bone tissues that express extremely low levels of endogenous ER-α36. (3) The ANOVA showed that the mRNA levels of ER-α36 in the premenopausal group were significantly lower than in the three postmenopausal groups; the mRNA levels of ER-α36 in the normal postmenopausal group were significantly higher than in the other two postmenopausal groups (osteoporotic or osteopenic); the mRNA levels of ER-α36 in the osteopenic group were significantly higher than in the osteoporotic group; there was a decrease of ER-α46, ER-α66 and ER-βlevels in all postmenopausal groups compared with the premenopausal group; there was no significant difference in mRNA levels of ER-α46, ER-α66 and ER-βexpression among all postmenopausal groups. (4) The correlation analysis showed that in postmenopausal women, a significant positive correlation was observed between the levels of ER-α36 mRNA in bone and BMD, while a significantly negative relationship was observed between the levels of ER-α36 mRNA in bone and serum OCN and NTX; no significant correlations were observed between the levels of ER-α36 mRNA in bone and BMD and serum OCN and NTX in premenopausal women; no significant correlations were found between the levels of ER-α46, ER-Ⅵ66 and ER-βmRNA in bone with BMD and serum OCN and NTX in both pre- and post-menopausal women. (5) Animal experiment results:In ovariectomized mice, IC162 increased BMD but had no effect on the body weight and uterus weight.
     Conclusions ER-α36, but not ER-α66, ER-a46 or ER-β, is a critical regulator of bone metabolism in postmenopausal women—osteoblasts and osteoclasts expressing high levels of ER-α36 are hypersensitive to E2, ER-α36 mediates a bone-sparing effect of the low level of E2 in postmenopausal women. IC162, a selective ER-α36 modulator, exerts bone-sparing effect in ovariectomized mice.
     Part two
     Identification of a hypothetical protein LOC147710 mutation associated with autosomal recessive osteopetrosis
     Object Osteopetrosis is a highly heterogeneous group of inherited skeleton disorder characterized by a generalized increase in bone mineral density due to a failure of osteoclast differentiation or function. To date, loss-of-function mutations in 11 genes have been identified as being associated with human osteopetrosis. All of the heritage osteopetrosis patients were caused by single gene mutation. In this study, the homozygous genotype of 5 members of a Chinese family (including 11 members) affected by an autosomal recessive osteopetrosis was investigated with the aim of identifying novel gene mutations associated with osteopetrosis in this family.
     Methods BMD was measured using a dual-energy X-ray absorptiometry (DXA). Total genomic DNA was isolated from peripheral blood of all 11 family members and 180 normal controls. Genome-wide scan and fine mapping study and haplotype analysis were performed to identify the critical region. Exons of genes located in the critical interval were sequenced to identify gene mutation. Northern blot and Western blot were performed to reveal the the expression pattern of LOC147710 in human tissues and in the osteoclast precursor CD14+ peripheral blood mononuclear cells (PBMCs) which undergoing osteoclastic differentiation. Western blot was also used for detection of the subcellular localization of LOC147710 protein. TRAP staining and Toluidine blue staining were used for observing osteoclast formation and activity, respectively. LOC147710 eukaryon expression vector was constructed and transfected to LOC147710-/- PBMCs for investigating whether the osteoclastic differentiation defect of LOC147710-/- PBMCs could be restored by re-introduction of LOC147710.
     Results A single critical region of homozygosity on chromosome 19q13.2-ql3.3 between D19S197 and D19S545 spanning 8.36 cM with maximum LOD score of 2.907 atθ=0 was identified. Sequencing of the genes in this region revealed a homozygous nonsense mutation (c.295C>T) in exon 2 of the LOC147710 gene. This mutation introduced a premature stop codon, resulting in p.R99X in the translated protein. LOC147710 mRNA is primarily detected in human bone and small intestine, but not in other tissues. In vitro, LOC147710 mRNA was expressed in human primary osteoclasts, but not in huamn osteoblasts and PBMCs. LOC147710 mRNA and protein expression in PBMCs increased progressively during the osteoclastic differentiation process induced by macrophage colony-stimulating factor (M-CSF) and receptor activator for nuclear factorκB ligand (RANKL). LOC147710-/- PBMCs from the osteopetrosis subject exhibited poor ability to differentiate into osteoclasts upon exposure to M-CSF and RANKL. Furthermore, reintroduction of LOC147710 restored the ability of LOC147710-/ PBMCs to differentiate into functional osteoclasts in the presence of M-CSF and RANKL.
     Conclusions This study showed that a loss-of-function homozygous mutation in LOC147710 gene caused a novel type of autosomal recessive osteopetrosis via down-regulating osteoclast differentiation.
     Part three
     Omentin-1 exerts bone-sparing effect in ovariectomized mice and osteoprotegerin gene knockout mice
     Object Omentin-1 is a recently identified visceral adipose tissue-derived cytokine and is highly abundant in plasma. This study was undertaken to investigate the effect of omentin-1 on bone metabolism.
     Methods Osteoblast differentiation was assessed by measuring ALP activity, osteocalcin production and matrix mineralization. ELISA was used to detect receptor activator for nuclear factorκB ligand (RANKL) and osteoprotegerin (OPG) protein expression in osteoblasts. The effect of recombinant omentin-1 on osteoclasts formation was examined in the co-culture systems of osteoblasts and osteoclast precursors. The effects of omentin-1 on bone mass, bone strength and bone turnover were examined in the ovariectomized (OVX) mice or OPG gene knockout (OPG-/-) mice by injection of omentin-1 adenovirus.
     Results (1) In vitro, omentin-1 directely inhibited osteoblast differentiation, but had no direct effect on osteoclast differentiation; however, it indirectly reduced osteoclast formation in the co-culture systems of osteoblasts and osteoclast precursors through stimulating OPG and inhibiting RANKL production in osteoblasts. (2) In vivo, omentin-1 partially restored bone mineral density (BMD) and bone strength in OVX mice, accompanied by decreased levels of plasma osteocalcin (OCN) and tartrate-resistant acid phosphatase-5b (TRAP-5b) and a lower serum RANKL/OPG ratio. (3) Omentin-1 partially restored BMD in OPG-mice, accompanied by decreased levels of serum RANKL, OCN and TRAP-5b.
     Conclusions The present study suggests that omentin-1 ameliorates bone loss induced by estrogen-deficiency or OPG gene knockout via regulating RANKL and OPG expression.
引文
[1]Rosano C, Stec-Martyna E, Lappano R, Maggiolini M. Structure-based approach for the discovery of novel selective estrogen receptor modulators. Curr Med Chem,2011,18:1188~1194
    [2]Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta:impact on human health. Mol Aspects Med,2006, 27:299~402
    [3]Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-β isoforms:a key to understanding ER-β signaling. Proc Natl Acad Sci U S A,2006, 103:13162~13167
    [4]Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest,2006, 116:561~570
    [5]Almeida M, Han L, O'brien CA, Kousteni S, Manolagas SC. Classical genotropic versus kinase-initiated regulation of gene transcription by the estrogen receptor alpha. Endocrinology,2006,147:1986~1996
    [6]Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O'Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science,2002,298:843~846
    [7]Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell,2001,104:719~730
    [8]Kousteni S, Han L, Chen JR, Almeida M, Plotkin LI, Bellido T, Manolagas SC. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest,2003,111:1651~1664
    [9]Manolagas SC. Birth and death of bone cells:basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev, 2000,21:115~137
    [10]Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog Horm Res,2002,57:385~409
    [11]Manolagas SC, Kousteni S, Chen JR, Schuller M, Plotkin L, Bellido T. Kinase-mediated transcription, activators of nongenotropic estrogen-like signaling (ANGELS), and osteoporosis:a different perspective on the HRT dilemma. Kidney Int Suppl,2004, S41~S49
    [12]Chen JR, Plotkin LI, Aguirre JI, Han L, Jilka RL, Kousteni S, Bellido T, Manolagas SC. Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J Biol Chem,2005,280:4632~4638
    [13]Weihua Z, Andersson S, Cheng Q Simpson ER, Warner M, Gustafsson JA. Update on estrogen signaling. FEBS Lett,2003,546:17~24
    [14]Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA. Mechanisms of estrogen action. Physiol Rev,2001,81:1535~1565
    [15]Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem. Biophys Res Commun,2005, 336:1023~1027
    [16]Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36:transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A,2006,103:9063~9068
    [17]Lee LM, Cao J, Deng H, Chen P, Gatalica Z, Wang ZY. ER-alpha36, a novel variant of ER-alpha, is expressed in ER-positive and -negative human breast carcinomas. Anticancer Res,2008,28:479~483
    [18]Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Wang Z, Xie Y. Expression of ER-{alpha}36, a novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol, 2009,27:3423~3429
    [19]Vranic S, Gatalica Z, Deng H, Frkovic-Grazio S, Lee LM, Gurjeva O, Wang ZY. ER-a36, a novel isoform of ER-a66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast. J Clin Pathol,2011,64:54~57
    [20]Deng H, Huang X, Fan J, Wang L, Xia Q, Yang X, Wang Z, Liu L. A variant of estrogen receptor-alpha, ER-alpha36 is expressed in human gastric cancer and is highly correlated with lymph node metastasis. Oncol Rep,2010,24:171~176
    [21]Lin SL, Yan LY, Liang XW, Wang ZB, Wang ZY, Qiao J, Schatten H, Sun QY. A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1 A cells. Reprod Biol Endocrinol, 2009,7:102
    [22]Tong JS, Zhang QH, Wang ZB, Li S, Yang CR, Fu XQ, Hou Y, Wang ZY, Sheng J, Sun QY. ER-α36, a novel variant of ER-α, mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCδ/ERK pathway. PLoS One,2010,5:e15408
    [23]Lin SL, Yan LY, Zhang XT, Yuan J, Li M, Qiao J, Wang ZY, Sun QY. ER-alpha36, a variant of ER-alpha, Promotes Tamoxifen Agonist Action in Endometrial Cancer Cells via the MAPK/ERK and PI3K/Akt Pathways. PLoS One,2010,5:e9013
    [24]Jiang H, Teng R, Wang Q, Zhang X, Wang H, Wang Z, Cao J, Teng L Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal cancers and their matched normal colorectal tissues. J Steroid Biochem Mol Biol, 2008,112:20~24
    [25]Xu BZ, Lin SL, Li M, Zhu JQ, Li S, Ouyang YC, Chen DY, Sun QY. Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation. Histochem. Cell Biol,2009, 131:347~354
    [26]Kang L, Zhang X, Xie Y, Tu Y, Wang D, Liu Z, Wang ZY. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol,2010,24:709~721
    [27]Zhang XT, Kang LG, Ding L, Vranic S, Gatalica Z, Wang ZY. A positive feedback loop of ER-α36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene,2011,30:770~780
    [28]Turner JV, Agatonovic-Kustrin S, Glass BD. Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci,2007,96:1879~1885
    [29]李娌,王学美.淫羊藿苷药理作用研究进展.中国中药杂志.2008,33:2727~2732
    [30]Liao EY, Wu XP, Luo XH, Zhang H, Dai RC, Huang G, Wang WB. Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in Chinese women. J Bone Miner Metab,2003,21:184~192
    [31]Liao EY, Wu XP, Luo XH, Zhang H, Dai RC, Huang G, Wang WB. Establishment of BMD reference plots and determination of peak BMD at multiple skeletal regions in mainland Chinese women and the diagnosis of osteoporosis. Osteoporos Int,2004,15:71~79
    [32]Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Liao EY, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest,2009,119:3666~3677
    [33]Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res,1994,9:1137~1141
    [34]Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol,1990,143:420~430
    [35]Chikazu D, Hakeda Y, Ogata N, Nemoto K, Itabashi A, Takato T, Kumegawa M, Nakamura K, Kawaguchi H. Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem,2000,275:31444~31450
    [36]Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res,2006,21:1648~1656
    [37]Xie H, Tang SY, Cui RR, Huang J, Ren XH, Yuan LQ, Lu Y, Yang M, Zhou HD, Wu XP, Luo XH, Liao EY. Apelin and its receptor are expressed in human osteoblasts. Regul Pept,2006,134:118~125
    [38]Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss:an inflammatory tale. J Clin Invest,2006,116:1186~1194
    [39]Raisz LG. Pathogenesis of osteoporosis:concepts, conflicts, and prospects. J Clin Invest,2005,115:3318~3325
    [40]Nadal A, Ropero AB, Laribi O, Maillet M, Fuentes E, Soria B. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. Proc Natl Acad Sci U S A,2000,97:11603~11608
    [41]Watson CS, Bulayeva NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids,2007,72:124~134
    [42]Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Env. Health Perspect,2005,113:431~439
    [43]Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol,2008,40:2707~2719
    [44]Cagnol S, Chambard JC. ERK and cell death:Mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J,2010,277:2~21
    [45]Halleen JM, Raisanen SR, Alatalo SL, Vaananen HK. Potential function for the ROS-generating activity of TRACP. J Bone Miner Res,2003,18:1908~1911
    [46]Almeida M, Martin-Millan M, Ambrogini E, Bradsher R, Han L, Chen XD, Roberson PK, Weinstein RS, O'Brien CA, Jilka RL, Manolagas SC. Estrogens Attenuate Oxidative Stress and the Differentiation and Apoptosis of Osteoblasts by DNA Binding-Independent Actions of the ERalpha. J Bone Miner Res,2010, 25:769~781
    [47]Beck MM, Hansen KK. Role of estrogen in avian osteoporosis. Poult Sci,2004, 83:200~206
    [48]Zou Y, Ding L, Coleman M, Wang Z. Estrogen receptor-alpha (ER-alpha) suppresses expression of its variant ER-alpha 36. FEBS Lett,2009, 583:1368~1374
    [49]Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature,1965,206:489~490
    [50]Rapuri PB, Gallagher JC, Haynatzki G. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J Clin Endocrinol Metab,2004,89:4954~4962
    [51]Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med,1998, 339:733~738
    [52]Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women:the OFELY study. J Bone Miner Res,2000,15:1526~1536
    [53]Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest,1996,97:14~21
    [54]Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ. Low levels of estradiol are associated with vertebral fractures in older men, but not women:the Rancho Bernardo Study. J Clin Endocrinol Metab, 2000,85:219~223
    [55]Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women:the EPIDOS study. J Bone Miner Res,2000,15:1835~1841.
    [56]Riggs BL, Khosla S, Atkinson EJ, Dunstan CR, Melton LJ 3rd. Evidence that type I osteoporosis results from enhanced responsiveness of bone to estrogen deficiency. Osteoporos Int,2003,14:728~733
    [57]Chapurlat RD, Bauer DC, Cummings SR. Association between endogenous hormones and sex hormone-binding globulin and bone turnover in older women: study of osteoporotic fractures. Bone,2001,29:381~387
    [58]Ganz PA, Land SR.Risks, benefits, and effects on quality of life of selective estrogen-receptor modulator therapy in postmenopausal women at increased risk of breast cancer. Menopause,2008,15:797~803
    [1]Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, Henriksen K. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet,2009,124:561~577
    [2]de Vernejoul MC. Sclerosing bone disorders. Best Pract Res Clin Rheumatol, 2008,22:71~83
    [3]Michou L, Brown JP. Genetics of bone diseases:Paget's disease, fibrous dysplasia, osteopetrosis, and osteogenesis imperfecta. Joint Bone Spine,2010 Sep 18. [Epub ahead of print]
    [4]de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders:presentation and new molecular mechanisms. Ann N Y Acad Sci,2010,1192:269~277
    [5]Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone,2008,42:19~29
    [6]Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis,2009,4:5
    [7]Mughal MZ. Miscellaneous Bone Disorders. Endocr Dev,2009,16:191~217
    [8]Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis:the rich and the poor. Calcif Tissue Int,2009, 84:1~12
    [9]Xie H, Sun M, Liao XB, Yuan LQ, Sheng ZF, Meng JC, Wang D, Yu ZY, Zhang LY, Zhou HD, Luo XH, Li H, Wu XP, Wei QY, Tang SY, Wang ZY, Liao EY Estrogen receptor a36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women. J Bone Miner Res,2011,26:156~168
    [10]Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res,2006,21:1648~1656
    [11]Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest,2009, 119:3666~3677
    [12]Yuan P, Yue Z, Sun L, Huang W, Hu B, Yang Z, Hu Y, Xiao H, Shi H, Zhou Q, Wang Y Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients.J Bone Miner Metab,2011,29:251~256.
    [13]Bliznetz EA, Tverskaya SM, Zinchenko RA, Abrukova AV, Savaskina EN, Nikulin MV, Kirillov AG, Ginter EK, Polyakov AV. Genetic analysis of autosomal recessive osteopetrosis in Chuvashiya:the unique splice site mutation in TCIRG1 gene spread by the founder effect. Eur J Hum Genet,2009,17:664~672
    [14]Pangrazio A, Caldana ME, Sobacchi C, Panaroni C, Susani L, Mihci E, Cavaliere ML, Giliani S, Villa A, Frattini A. Characterization of a novel Alu-Alu recombination-mediated genomic deletion in the TCIRG1 gene in five osteopetrotic patients. J Bone Miner Res,2009,24:162~167
    [15]Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani F. TCIRG1-dependent recessive osteopetrosis:mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat,2004,24:225~235
    [16]Furthner D, Biebl A, Weinzettel R, Schmitt K, Lahr G, Ebetsberger Q Rittinger O, Schulz AS. Osteopetrosis due to homozygous chloride channel ClCN7 mutation mimicking metabolic disease with haematological and neurological impairment. Klin Padiatr,2010,222:180~183
    [17]Besbas N, Draaken M, Ludwig M, Deren O, Orhan D, Bilginer Y, Ozaltin F. A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis. Eur J Pediatr,2009,168:1449~1454
    [18]Maranda B, Chabot Q Decarie JC, Pata M, Azeddine B, Moreau A, Vacher J. Clinical and cellular manifestations of OSTM1-related infantile osteopetrosis. J Bone Miner Res,2008,23:296~300
    [19]Castellano Chiodo D, DiRocco M, Gandolfo C, Morana G, Buzzi D, Rossi A. Neuroimaging findings in malignant infantile osteopetrosis due to OSTM1 mutations. Neuropediatrics,2007,38:154~156
    [20]Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, Rucci F, Lucchini F, Ravanini M, Facchetti F, Abinun M, Vezzoni P, Villa A, Frattini A. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res,2006, 21:1098~1105
    [21]Quarello P, Forni M, Barberis L, Defilippi C, Campagnoli MF, Silvestro L, Frattini A, Chalhoub N, Vacher J, Ramenghi U. Severe malignant osteopetrosis caused by a GL gene mutation. J Bone Miner Res,2004,19:1194~1199
    [22]Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C. Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat,2004,23:471~476
    [23]Frattini A, Vezzoni P, Villa A, Sobacchi C. The Dissection of Human Autosomal Recessive Osteopetrosis Identifies an Osteoclast-Poor Form due to RANKL Deficiency. Cell Cycle,2007,6:3027~3033
    [24]Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del Fattore A, Messina C, Errigo G, Coxon FP, Scott DI, Teti A, Rogers MJ, Vezzoni P, Villa A, Helfrich MH. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet,2007,39:960~962
    [25]Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A(RANK) mutations. Am J Hum Genet,2008,83:64~76
    [26]Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garcia-Palacios V, Oakley JI, Orchard PJ. In vitro differentiation of CD14 cells from osteopetrotic subjects:contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res,2004,19:1329~1338
    [27]Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostml as a beta-subunit to support bone resorption and lysosomal function. Nature,2006, 440:220~3.
    [28]Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr,2009,19:61~72
    [29]Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys,2008,473:139~146
    [30]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev,2008,29:155~192
    [31]Henriksen K, Gram J, Hφegh-Andersen P, Jemtland R, Ueland T, Dziegiel MH, Schaller S, Bollerslev J, Karsdal MA. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. Am J Pathol,2005,167:1341~1348
    [32]Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet, 2003,72:763~771
    [33]Van Hul E, Gram J, Bollerslev J, Van Wesenbeeck L, Mathysen D, Andersen PE, Vanhoenacker F, Van Hul W. Localization of the gene causing autosomal dominant osteopetrosis type Ⅰ to chromosome 11q12-13. J Bone Miner Res,2002, 17:1111~1117
    [34]Whyte MP, Kempa LQ McAlister WH, Zhang F, Mumm S, Wenkert D. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schonberg disease (Chloride Channel 7 Deficiency Osteopetrosis) among the sclerosing bone disorders. J Bone Miner Res,2010,25:2515~2526
    [35]Kornak U, Ostertag A, Branger S, Benichou O, de Vernejoul MC. Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type Ⅱ. J Clin Endocrinol Metab, 2006,91:995~1000
    [36]Waguespack SG, Hui SL, Dimeglio LA, Econs MJ. Autosomal dominant osteopetrosis:clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab,2007,92:771~778
    [37]Zhang ZL, He JW, Zhang H, Hu WW, Fu WZ, Gu JM, Yu JB, Gao Q Hu YQ, Li M, Liu YJ. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type Ⅱ). J Bone Miner Metab,2009, 27:444~451
    [38]Schulz P, Werner J, Stauber T, Henriksen K, Fendler K. The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO Ⅱ osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS One,2010,5:e12585
    [39]Campos-Xavier AB, Saraiva JM, Ribeiro LM, Munnich A, Cormier-Daire V. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet,2003,112:186~189
    [40]Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest,2007,117:919~930
    [41]Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B, Cappariello A, Rucci N, Spera G, Helfrich MH, Van Hul W, Migliaccio S, Teti A. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res,2008,23:380~391
    [42]Shivaprasad C, Paliwal P, Khadgawat R, Sharma A. Identification of a novel mutation in an Indian patient with CAⅡ deficiency syndrome. J Postgrad Med, 2010,56:290~292
    [43]Nagai R, Kooh SW, Balfe JW, Fenton T, Halperin ML. Renal tubular acidosis and osteopetrosis with carbonic anhydrase Ⅱ deficiency:pathogenesis of impaired acidification. Pediatr Nephrol,1997,11:633~636
    [44]Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, Ozen S, Mocan H, Shah GN, Sly WS, Karet FE. A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet,2003,40:115~121
    [45]Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res,2003,18:1740~1747
    [46]Schulz A, Kornak U. CLCN7-Related Osteopetrosis. Seattle (WA):University of Washington, Seattle,1993~2007 [updated 2010 Oct 14]
    [47]Pangrazio A, Pusch M, Caldana E, Frattini A, Lanino E, Tamhankar PM, Phadke S, Lopez AQ Orchard P, Mihci E, Abinun M, Wright M, Vettenranta K, Bariae I, Melis D, Tezcan I, Baumann C, Locatelli F, Zecca M, Horwitz E, Mansour LS, Van Roij M, Vezzoni P, Villa A, Sobacchi C. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis:report of 20 novel mutations. Hum Mutat, 2010,31:E1071~E1080
    [48]Toral-L6pez J, Gonzalez-Huerta LM, Sosa B, Orozco S, Gonzalez HP, Cuevas-Covarrubias SA. Familial pycnodysostosis:identification of a novel mutation in the CTSK gene (cathepsin K). J Investig Med,2011,59:277~280
    [49]Khan B, Ahmed Z, Ahmad W. A novel missense mutation in cathepsin K (CTSK) gene in a consanguineous Pakistani family with pycnodysostosis. J Investig Med, 2010,58:720~724
    [50]Li HY, Ma HW, Wang HQ, Ma WH. Molecular analysis of a novel cathepsin K gene mutation in a Chinese child with pycnodysostosis. J Int Med Res,2009, 37:264~269
    [51]Schilling AF, Mulhausen C, Lehmann W, Santer R, Schinke T, Rueger JM, Amling M. High bone mineral density in pycnodysostotic patients with a novel mutation in the propeptide of cathepsin K. Osteoporos Int,2007,18:659~669
    [52]Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr,2010, 169:1403~1407
    [53]Yarali N, Fisgin T, Duru F, Kara A. Osteopetrosis and Glanzmann's thrombasthenia in a child. Ann Hematol,2003,82:254~256
    [54]Novack DV, Faccio R. Osteoclast motility:putting the brakes on bone resorption. Ageing Res Rev,2011,10:54~61
    [55]Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev,2005, 208:50~65
    [56]Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life,2005, 57:389~395
    [57]Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med,2005,83:170~179
    [58]Nakashima T, Takayanagi H. Osteoclasts and the immune system. J Bone Miner Metab,2009,27:519~529
    [59]Shinohara M, Takayanagi H. Novel osteoclast signaling mechanisms. Curr Osteoporos Rep,2007,5:67~72
    [60]Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M, Ivashkiv LB. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol,2009,183:2444~2455
    [61]Colonna M, Turnbull I, Klesney-Tait J. The enigmatic function of TREM-2 in osteoclastogenesis. Adv Exp Med Biol,2007,602:97~105
    [1]Poulos SP, Hausman DB, Hausman GJ. The development and endocrine functions of adipose tissue. Mol Cell Endocrinol,2010,323:20~34
    [2]Stewart KJ, Deregis RJ, Turner KL, Bacher AC, Sung J, Hees PS, Tayback M, Ouyang P. Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med,2002,252:381~388
    [3]Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P. Determinants of bone mineral density in older men and women:body composition as mediator. J Bone Miner Res,2001,16:2142~2151
    [4]Khosla S, Atkinson EJ, Riggs BL, Melton LJ. Relationship between body composition and bone mass in women. J Bone Miner Res,1996,11:857~863
    [5]Sheng Z, Xu K, Ou Y, Dai R, Luo X, Liu S, Su X, Wu X, Xie H, Yuan L, Liao E. Relationship of body composition and prevalence of osteoporosis in central south Chinese postmenopausal women. Clin Endocrinol (Oxf),2011,74:319~324
    [6]Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res,2004,19:343~351
    [7]Felson DT, Zhang YQ, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women—the Framingham study. J Bone Miner Res,1993,8:567~573
    [8]Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res,2004,19:546~551
    [9]Zhang H, Xie H, Zhao Q, Liao EY, Xie GQ, Wu XP, Luo XH. Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in postmenopausal Chinese women. J Endocrinol Invest,2010,33:707~711
    [10]King GA, Deemer SE, Thompson DL. Relationship between leptin, adiponectin, bone mineral density, and measures of adiposity among pre-menopausal Hispanic and Caucasian women. Endocr Res,2010,35:106~117
    [11]Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta,2005,1732:96~102
    [12]Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW. Identification of omentin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action. Am J Physiol Endocrinol Metab,2006,290:E1253~E1261
    [13]de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, Fried SK, Gong DW, Shuldiner AR, Pollin TI, McLenithan JC. Omentin plasma levels and gene expression are decreased in obesity. Diabetes,2007,56:1655~1661
    [14]Yan P, Liu D, Long M, Ren Y, Pang J, Li R. Changes of Serum Omentin Levels and Relationship between Omentin and Adiponectin Concentrations in Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes,2011,119:257~63
    [15]Moreno-Navarrete JM, Ortega F, Castro A, Sabater M, Ricart W, Fernandez-Real JM. Circulating Omentin as a Novel Biomarker of Endothelial Dysfunction. Obesity (Silver Spring),2011 Feb 3. [Epub ahead of print]
    [16]Auguet T, Quintero Y, Riesco D, Morancho B, Terra X, Crescenti A, Broch M, Aguilar C, Olona M, Porras JA, Hernandez M, Sabench F, Del Castillo D, Richart C. New adipokines vaspin and omentin. Circulating levels and gene expression in adipose tissue from morbidly obese women. BMC Med Genet. 2011,12:60
    [17]Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H, Randeva HS. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome:ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes,2008,57:801~808
    [18]Tan BK, Pua S, Syed F, Lewandowski KC, O'Hare JP, Randeva HS. Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet Med,2008, 25:1254~1255
    [19]Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract,2010,88:29~33
    [20]Yan P, Li L, Yang M, Liu D, Liu H, Boden G, Yang G. Effects of the long-acting human glucagon-like peptide-1 analog liraglutide on plasma omentin-1 levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract,2011 Mar 30. [Epub ahead of print]
    [21]Saremi A, Asghari M, Ghorbani A. Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men. J Sports Sci,2010,28:993~998
    [22]Tan BK, Adya R, Farhatullah S, Chen J, Lehnert H, Randeva HS. Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes,2010,59:3023~3031
    [23]Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun,2010,393:668~672
    [24]Duan XY, Xie PL, Ma YL, Tang SY. Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids.2010 Nov 17. [Epub ahead of print]
    [25]Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun,2011,408:339~343
    [26]Xie H, Sun M, Liao XB, Yuan LQ, Sheng ZF, Meng JC, Wang D, Yu ZY, Zhang LY, Zhou HD, Luo XH, Li H, Wu XP, Wei QY, Tang SY, Wang ZY, Liao EY. Estrogen receptor a36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women. J Bone Miner Res,2011,26:156~168
    [27]Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res,2006,21:1648~1656
    [28]Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Liao EY, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest,2009,119:3666~3677
    [29]Liu J, Xu K, Wen G, Guo H, Li S, Wu X, Dai R, Sheng Z, Liao E. Comparison of the effects of genistein and zoledronic acid on the bone loss in OPG-deficient mice. Bone,2008,42:950~959
    [30]Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr,2009,19:61~72
    [31]Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys,2008,473:139~146
    [32]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev,2008,29:155~192
    [33]Moreno-Navarrete JM, Catalan V, Ortega F, Gomez-Ambrosi J, Ricart W, Fruhbeck G, Fernandez-Real JM. Circulating omentin concentration increases after weight loss. Nutr Metab (Lond),2010,7:27
    [34]Yano K, Tsuda E, Washida N, Kobayashi F, Goto M, Harada A, Ikeda K, Higashio K, Yamada Y. Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor:Increased serum concentrations in postmenopausal women with osteoporosis. J Bone Miner Res, 1999,14:518~527
    [35]Bae YJ, Kim MH. Calcium and Magnesium Supplementation Improves Serum OPG/RANKL in Calcium-Deficient Ovariectomized Rats. Calcif Tissue Int, 2010,87:365~372
    [36]D'Amelio P, Isaia G, Isaia GC. The osteoprotegerin/RANK/RANKL system:a bone key to vascular disease. J Endocrinol Invest,2009,32:6~9
    [37]Liu J, Xu K, Wen G, Guo H, Li S, Wu X, Dai R, Sheng Z, Liao E. Comparison of the effects of genistein and zoledronic acid on the bone loss in OPG-deficient mice. Bone,2008,42:950~959
    [38]Yan MZ, Xu Y, Gong YX, Liu JM, Lu SY, Huang L, Wang ZG, Zhao YJ, Pang XF. Raloxifene inhibits bone loss and improves bone strength through an Opg-independent mechanism. Endocrine,2010,37:55~61
    [1]Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem. Biophys Res Commun,2005, 336:1023~1027
    [2]Marino M., Ascenzi P. Membrane association of estrogen receptor a and (3 influences 17β-estradiol-mediated cancer cell proliferation. Steroids,2007, 73:853~858
    [3]Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36:transduction of estrogen- and antiestrogen- dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A,2006,103:9063~9068
    [4]Lee LM, Cao J, Deng H, Chen P, Gatalica Z, Wang ZY. ER-alpha36, a novel variant of ER-alpha, is expressed in ER-positive and -negative human breast carcinomas. Anticancer Res,2008,28:479~483
    [5]Lin SL, Yan LY, Liang XW, Wang ZB, Wang ZY, Qiao J, Schatten H, Sun QY. A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hecl A cells. Reprod Biol Endocrinol, 2009,7:102
    [6]Jiang H, Teng R, Wang Q, Zhang X, Wang H, Wang Z, Cao J, Teng L. Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal cancers and their matched normal colorectal tissues. J Steroid Biochem Mol Biol, 2008,112:20~24
    [7]Xu BZ, Lin SL, Li M, Zhu JQ, Li S, Ouyang YC, Chen DY, Sun QY. Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation. Histochem Cell Biol,2009, 131:347~354
    [8]Kang L, Zhang X, Xie Y, Tu Y, Wang D, Liu Z, Wang ZY. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol,2010,24:709~721
    [9]Shi YE, Chen Y, Dackour R, Potters L, Wang S, Ding Q, Wang Z, Liu YE. Synuclein gamma stimulates membrane-initiated estrogen signaling by chaperoning estrogen receptor (ER)-alpha36, a variant of ER-alpha. Am J Pathol, 2010,177:964~973
    [10]Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci U S A,2001,98:9587~9592
    [11]Zou Y, Ding L, Coleman M, Wang Z. Estrogen receptor-alpha(ER-a) suppresss expression of its variant ER-α36. FEBS Lett,2009,583:1368~1374.
    [12]Xie H, Sun M, Liao XB, Yuan LQ, Sheng ZF, Meng JC, Wang D, Yu ZY, Zhang LY, Zhou HD, Luo XH, Li H, Wu XP, Wei QY, Tang SY, Wang ZY, Liao EY. Estrogen receptor a36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women. J Bone Miner Res,2011,26:156~168
    [13]Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Wang Z, Xie Y. Expression of ER-{alpha}36, a novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol, 2009,27:3423~3429
    [14]Kang L, Wang ZY. Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-alpha36. J Cell Mol Med,2010,14:1485~1493
    [15]Zhang XT, Kang LG, Ding L, Vranic S, Gatalica Z, Wang ZY. A positive feedback loop of ER-a36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene,2011,30:770~780
    [16]Zheng Y, Zhang J, XU Z, Sheng J, Zhang X, Wang H, Teng X, Liu X, Cao J, Teng L. Quantitative profiles of the mRNAs of ER-aand its novel variant ER-a36 in breast cancers and matched normal tissues. Journal of Zhejiang University-SCIENCE B (Biomedicine & Bitechnology),2010,11:144~150
    [17]Love RR. Tamoxifen therapy in primary breast cancer:biology, efficacy,and side effects. J Clin Oncol,1989,7:803~815
    [18]Cole MP, Jones CT, Todd ID. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br J Cancer,1971,25:270~275
    [19]Lin SL, Yan LY, Zhang XT, Yuan J, Li M, Qiao J, Wang ZY, Sun QY. ER-alpha36, a Variant of ER-alpha, Promotes Tamoxifen Agonist Action in Endometrial Cancer Cells via the MAPK/ERK and PI3K/Akt Pathways. PLoS One,2010,5:e9013
    [20]邹伟,韩丹女,张媛,马依妮,崔玉影,王兆一.新型雌激素受体ERα36在张氏肝细胞和人肝癌细胞中的表达比较分.辽宁师范大学学报,2010,33,219~222
    [1]Riches PL, Ralston SH. Recent insights into the biology of bone turnover. J R Coll Physicians Edinb,2010,40:66~69
    [2]Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, Henriksen K. Advances in osteoclat biology resulting from the study of osteopetrotic mutations. Hum Genet,2009,124:561~577
    [3]de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders:presentation and new molecular mechanisms. Ann N Y Acad Sci,2010,1192:269~277
    [4]Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone,2008,42:19~29
    [5]Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis,2009,20:4~5
    [6]Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del Fattore A, Messina C, Errigo G, Coxon FP, Scott DI, Teti A, Rogers MJ, Vezzoni P, Villa A, Helfrich MH. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet,2007,39:960~962
    [7]Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet,2008,83:64~76
    [8]Mughal MZ. Miscellaneous bone disorders. Endocr Dev,2009,16:191~217
    [9]Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis:the rich and the poor. Calcif Tissue Int,2009, 84:1~12
    [10]Manolagas SC:Birth and death of bone cells:basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev, 2000,21:115~137
    [11]Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun,2009,378:1-5
    [12]Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr,2009,19:61~72
    [13]Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys,2008,473:139~146
    [14]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev,2008,29:155~192
    [15]Nakashima T, Takayanagi H. Osteoclasts and the immune system. J Bone Miner Metab,2009,27:519~529
    [16]Shinohara M, Takayanagi H. Novel osteoclast signaling mechanisms. Curr Osteoporos Rep,2007,5:67~72
    [17]Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet,2000, 9:2059~2063
    [18]Kawamura N, Tabata H, Sun-Wada GH,Wada Y. Optic nerve compression and retinal degeneration in Tcirgl mutant mice lacking the vacuolar-type H-ATPase a3 subunit. PloS One,2010,5:e12086
    [19]Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell,2001,104:205~215
    [20]Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostml as a beta-subunit to support bone resorption and lysosomal function. Nature,2006, 440:220~223
    [21]Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C. Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat,2004,23:471~476
    [22]Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest,2007,117:919~930
    [23]Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A,1983,80:2752~2756
    [24]Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases:differences between calvaria and long bone. J Bone Miner Res,2006,21:1399~1408
    [25]Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci, 2006,1068:165~172
    [26]Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M.. Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res,1997,12:1396~1406
    [27]Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A,1998, 95:13453~13458
    [28]Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res,1999,14:1654~1663
    [29]Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomaldisease caused by cathepsin K deficiency. Science,1996, 273:1236~1238
    [30]Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res,1996,6:1050~1055
    [31]Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet,2001, 27:277~285
    [32]Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, Durand P, Doffinger R, Smahi A, Israel A,Courtois G, Brousse N, Blanche S, Munnich A, Fischer A, Casanova JL, Bodemer C. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics,2002,109:e97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700