6p21.3区域鼻咽癌相关基因及其单核苷酸多态性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌的种族性、地域和家族聚集特征提示其发病具有遗传易感性。目前为止,尚未发现与NPC明确相关的基因。有研究表明:6p21.3HLAI类和Ⅲ类基因序列之间可能存在NPC易感基因。然而,NPCLOH与CGH调查均未发现该区域有明显的大片段缺失与扩增,推测可能存在单个核苷酸的变异(SNPs)。
     本研究通过生物信息学分析6p21.3TNFα至微卫星标记D6S1624之间的基因,选定可能与NPC发生相关的基因中含有cSNP的序列。利用DHPLC检测PCR序列变异,并测序验证。关联分析法比较鼻咽癌和对照组SNPs杂合频率差异,以期筛选NPC相关基因。
     PCR扩增分布于7个侯选基因中的10个片段,包括NPC组织、NPC外周血及对照外周血标本共2521份。DHPLC检出511个杂合子,其中4号片段(PPP1R10基因)鼻咽癌与对照组的杂合率分别为28.3%和10.1%,x~2=9.55、P=0.002,鼻咽癌组的相对风险是对照组的3.5倍(OR=3.5,P<0.01;95%CI=1.53~7.99)。
     测序证实该片段杂合子为PPP1R10基因15110位的一个新SNPs位点,为内含子中的A-G转换,理应不影响蛋白序列和结构。根据基因连锁原理,推测在其附近可能存在NPC遗传易感基因,以它为标记将有望克隆出该易感基因。
     选择代表性的纯合与杂合子测序,发现了6个新的SNPs候选位点,其中4个位于内含子内,1个位于5'非翻译区,一个在外显子中,需要加大样本量确定它们的人群基因型频率分布。另外,证实5个已知SNP
    
     黄华 巾沫e学D匕中色e 第一军医大学
    位点及其基因型。
     分析NPC组织与配对血结果,约48%NPC组织标本出现SNP位
    点的点突变,提示NPC组织有基因组不稳定性。
     本研究应用 DHPLC筛选印.3 MHC区域内 SNPS标记,部分结果
    为克隆NPC易感基因打下了基础,同时为中华民族SNPs研究提供了有
    用的数据。
Nasopharyngeal Carcinoma (NPC) is an endemic malignant tumor with an obvious ethnic aggregation and familial clustering. It has been speculated that some hereditary predispositions may be involved in NPC development. However, the effort to identify the specific NPC related genes have not been successful so far.
    There have been reports suggesting NPC susceptibility genes to be located in the region between class-I and III of MHC, nearing the D6S1624 microsatellite marker. Because neither large DNA fragment deletion nor amplification was detected, it was held that single nucleotide variation in that region, such as Single Nucleotide Polymorphisms (SNPs), could be associated with the susceptibility to NPC.
    In this study, the interesting genes being likely related to NPC and containing known cSNPs were picked out from those settling in the region between TNF a and D6S1624 by bio-informatics analysis. The DNA variations were detected through performance of DHPLC assay on PCR products of targeted fragments of interesting genes, and verified by sequencing. The statistical difference of the heterozygotic frequencies at a given locus between NPC matched and non-NPC peripheral blood samples was determined by association analysis.
    10 PCR primers were designed according to the sequences of 10 fragments of DNA within interesting 7 genes respectively. Total 2521 PCR products from the genomic DNA of NPC tissues, NPC and non-NPC control peripheral blood samples were subjected to DHPLC assay and 511 heterozygotes were detected. Among the heterozygotes, the heterozygoties of sequence No. 4 (belonged to gene PPP1R10) in NPC and non-NPC blood
    
    
    samples were 28.3% and 10.1% respectively with x2= 9.55,P=0.002, and OR = 3.5, P<0.01; 95%CI =1.53 ~ 7.99, meaning the risk of NPC in NPC patients is 3.5 times of that in control group.
    The sequencing of the heterozygotes discovered a new SNP locus, an A=>G transition, at 15110 of gene PPP1R10. With locating in the sequence of an intron, the SNP locus should have no effect on the protein sequence, hence on thereof structure. According to the principle of genetic linkage, it may be deduced that a NPC susceptibility gene should near this SNP locus. Taking the locus as a marker, perhaps, the effort to clone the hypothetical NPC susceptibility gene will be successful.
    Sequencing representatives of heterozygotes and homozygotes revealed 6 new SNP loci. Among them, 4 were located in intron region, while 1 in 5' untranslated region and 1 in an exon. However, the identification of their genotypes in the population studied needs more samples to be sequenced. The performance of sequencing also verified known SNP loci occurred in the analyzed fragments as reported by other studies.
    Through comparing DHPLC and sequencing results of NPC biopsy samples with matched blood ones, point mutations at SNP loci were found in nearly 48% NPC samples. It is suggested that genomic instability is occurred in NPC cells.
    In summary, the present work, as a part of the campaign to clone NPC related genes, has screened SNPs marker of the genes within 6p21.3 MHC region. In addition to identification of 6 new SNP loci with one of them associated with NPC, the result of this work may be used as a basis to clone NPC susceptibility gene in the future, and also provide some useful data to the SNP database of Chinese population.
引文
1.盖莱哈特、柯林斯、金斯伯格 著,孙开来等译。医学遗传学原理 科学出版社,北京2001:P239
    2. Miyoshi E, Uozumi N, Noda K, et al. Expression of alphal-6 fucosyltransferase in rat tissues and human cancer cell lines. Int J Cancer, 1997, 72(6): 1117-1121.
    3.曾益新主编.肿瘤学。人民卫生出版社,北京1999年:P27
    4. Hildeshim A, et al. Etiology of nasophayngeal carcinoma: a review. Epidemiol. Rev. 1993;15(3): 446-485
    5.姚开泰.鼻咽癌研究的回顾与展望。湖南医科大学学报。1995:20(2):99—102
    6.姚开泰。从死因回顾调查资料看湖南省鼻咽癌流行病学的一些特点并探索其发病机理。湖南医学院学报。1982:7(1):10—16
    7.绍建永等。鼻咽癌分子遗传学研究进展 评述。癌症。2002,21(1):1—10
    8. Luo J, et al. Detection of c-myc gene expression in nasopharyngeal carcinoma by nonradioactive in situ hybridization and in immunohistochemistry. Chin Med J(Engl). 1997;110:229-232
    9. Shen LF, et al. Analysis of bcl-2 expression in normal, inflamed, dysplastic nasopharyngeal epithelia, and nasopharyngeal carcinoma: association with p53 expression. Hum Pathol. 1997;28:556-562
    10. Potter MJ, Field KE, Leung SF, et al. The detection of the c-myc and ras oncogenes in nasopharyngeal carcinoma by immunohistochemistry. Acta Otolaryngol. 114:105-109
    11. Sun Y, Yao KT, et al. An infrequent point mution of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci USA. 1992;89:6516-6520
    12.谢奕,姚开泰,胡维新。鼻咽癌、宫颈癌和肺癌中的p53基因突变和表达的对比关系。中华病理学杂志。1997;26(4):229—232
    13. Sun Y, Dong Z, Nakamura K, et al. Dosage-dependent dominance over wild-type p53 of a mutant p53 isolated from nasopharyngeal carcinoma. FASEB J1993;7(10): 944-50
    
    
    14. Yang HJ, Cho YJ, Kim HS, et al. As sociation of p53 and BCL-2 expression with Epstein-Barr virus infection in the cancers of head and neck. Head Neck 2001 Aug;23(8):629-36
    15. Sun Y, Hildesheim A, Li H, et al. No point mutation but a codon 31ser-->arg polymorphism of the WAF-1/CIP -1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol Biomarkers Prev 1995 Apr-May;4(3):261-7
    16. Sun Y, Hildesheim A, Lanier AP, Cao Y, Yao KT, et al. No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinoma. Oncogene. 1995;10:785-788
    17. Sun Y, Hildesheim A,...KT Yao, et al. The von Hippel-Lindau(VHL)disease tumor-suppressor gene is not mutated in nasopharyngeal carcinoma. Int J Cancer. 1995;60:437-438
    18. Sun Y, Hegamyer G, Colburn NH. Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations. Oncogene 1993;8(3):791-795
    19. Shao JY, Wang HY, Huang XM, et al. Genome-wide alleotype analysis of sporadic primary nasopharyngeal carcinoma from Southern China. Iht J Oncol, 2000,17:1267-1275
    20. Lo KW, Teo PM, Hui AB, et al. High resolution alleotype of microdissected primary nasopharyngeal carcinoma.[J] Cancer Res. 2000;60:3348-3353
    21. Chan ASC, TO KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from Southern Chinese. Cancer Res. 2000;60:5365-5370
    22. Song NS, Zeng Y, Raab-Traub. Alteration on chromosome 3 in endemic and nonendemic nasopharyngeal carcinoma. Int J Cancer. 2000;86:244-250
    23. Huang DP, Lo KW, Van Hasselt CA, et al. A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res 1994;54:4003-4006
    24. Wang GL, Lo KW, Tsang KS, et al. Inhibiting of tumorigenic potential by restoration of p16 in nasopharyngeal carcinoma. Br J Cancer. 1999;81:1122-1126
    
    
    25.阳剑波,唐湘娜,邓龙文,等。鼻咽癌染色体9p21-22区域精细缺失图谱的构建。中华肿瘤杂志。1999;21(6):419—421
    26. Cheng Y, Stanbridge EJ, Kong H, et al. A functional investigation of tumor suppressor gene activities in a nasopharyngeal carcinoma cell line HONE1 using a monochromosome transfer approach. Gene-Chromosome-Cancer. 2000:28:(1)82-89
    27. Hui ABY, Lo KW, Leung SF, et al. Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridization. Int J Cancer. 1999;82:498-503
    28.李忠花:鼻咽癌全基因组扫描和一个鼻咽癌表达上调新基因的克隆及其功能的初步研究。中南大学湘雅医学院博士论文,2001 5,P68-69
    29. Fang Y, Guan XY, Guo Y, et al. Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization. Genes, Chromosomes and Cancer;2001.30:254-260
    30. Chen YJ, Ko JY, Chen PJ, et al. Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization. Genes, Chromosomes and Cancer;2001.30:254-260
    31. Kongruttanachok N, Sukdikul S, Setavarin S, et al. Cytochrome P450 2E1 polymorphism and nasopharyngeal carcinoma development in Thailand: a correlative study. BMC Cancer 2001;1(1):4
    32.余鹰,朱诗国,向娟娟等。BRD7单核苷酸多态性及鼻咽癌易感性分析。生物化学与生物物理进展。2001;28(4):568—572
    33. Simons MJ, Wee GB, Day NE, et al. Immuno-genetic aspects of nasopharyngeal carcinoma. Ⅰ. Differences in HLA-antigen profiles between patients and control group Int J Cancer. 1974.13:122-134
    34. Chan SH, Day NE, Kunaratnam N, et al. HLA and nasopharyngeal carcinoma—A further study. Int J Cancer. 1983; 32:171-176
    35. Lu SJ, Day NE, Degos L, et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature. 1990;346:470-471
    
    
    36. Oot. E.E. et al. Association between microsatellites within the human MHC and nasopharyngeal carcinoma. Int. J. Cancer, 1997;74:229-232
    37. DG Wang, JB Fan, CJ Siao, et al. Large-Scale Identification, Mapping and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome Science, 1998,280:1077-1082.
    38. http://hgvbase. cgb. ki. se
    39. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res 1998 8(8):769-76
    40.施锦绣,杨爽,姜正文等,变性高效液相色谱与直接测序法在单核苷酸多态性检测中的应用比较。中华医学遗传学杂志。2001年18(3):198—201
    41. Prince JA, Feuk L, Howell WM, et al. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. Genome Res 2001 Jan;11(1):152-62
    42.阮庆国,陆春叶.基因突变分析技术综述.国外医学遗传学分册,1998,21(5):225—231
    43. Venter CJ, Adams MD, Sutton GG, et al. Shot gun sequencing of the human genome. Science, 1998,280:1540-1542
    44. http://hgvbase. cgb. ki. se/snpinfo. htm
    45. Oefner PJ, Underhill PA. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am J Hum Genet, 1995,57: 266.
    46. Taliani MR, Roberts SC, Dukek BA, et al. Sensitivity and specificity of denaturing high-pressure liquid chromatography for unknown protein C gene mutations. Genet Test 2001 Spring;5(1):39-44
    47. Cho RJ, Mindrinos M, Richards DR, et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 1999 Oct;23(2):203-7
    48. Colosimo A, Guida V, De Luca A, et al. Reliability of DHPLC in mutational screening of beta-globin (HBB) alleles. Hum Mutat 2002 Mar;19(3):287-95
    49. Bentley A, MacLennan B, Calvo J, et al. Targeted recovery of mutations in Drosophila. Genetics 2000 Nov;156(3):1169-73
    
    
    50. Doris PA, Oefner PJ, Chilton BS, et al. Quantitative analysis of gene expression by ion-pair high-performance liquid chromatography. J Chromatogr A 1998 May 8;806(1):47-60
    51. Dickman M, Hornby DP. Isolation of single-stranded DNA using denaturing DNA chromatography. Anal Biochem 2000 Aug. 15; 284(1):164-167
    52. Underhill PA, Jin L, Zemans R, et et al. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc Natl Acad Sci U S A 1996 Jan 9;93(1): 196-200
    53. Gross E, Arnold N, Goette J, et al. A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet, 1999,105: 72-78.
    54. Choy YS, Dabora SL, Hall F, etal. Superiority of denaturing highperformance liquid chromatography over single-strandedconform ation and conformation-sensitve gel electrophoresis formutation detection in TSC2. Ann Hum Genet, 1999, 63:383-391
    55. O'Donovan MC, Oefne rPJ, Roberts SC, et al. Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics, 1998,52:44-49.
    56. Jones AC, Austin J, Hansen N, et al. Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. Clin Chem 1999 Aug;45(8 Pt 1):1133-40
    57. Wagner T, Stoppa-Lyonnet D, Fleischmann E, et al. Denaturing high-performance liquid chromatography detects reliably BRCA1 and BRCA2 mutations. Genomics 1999 Dec 15;62(3):369-76
    58. Ellis LA, Taylor CF, Taylor GR. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning. Hum Mutat 2000;15(6):556-64
    59. Taliani MR, Roberts SC, Dukek BA, et al. Sensitivity and specificity of denaturing high-pressure liquid chromatography for unknown protein C gene mutations. Genet Test 2001 Spring;5(1):39-44
    60. Skopek TR, Glaah WE, Monroe JJ, et al. Analysis of sequence alterations in a defined DNA region: comparison of temperature-modulated heteroduplex analysis and denaturing gradient gel electrophoresis. Mutat Res 1999 Nov 29;430(1) :13-21
    
    
    61. Collins FS. Positional cloning moves from perditional to traditional. Nat Genet 1995 Apr;9(4):347-50
    62. Tesfai Emahazion, Lars Feuk, Magnus Jobs, et al. SNP association studies in Alzheimer' s disease highlight problems forcomplex disease analysis. TRENDS in Genetics Vol. 17 No. 7 July 2001:407-413
    63. Gatz M, Pedersen NL, Berg S, et al. Heritability for Alzheimer' s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 1997 Mar;52(2):M117-25
    64. Schork NJ.Genetics of complex disease: approaches, problems, and solutions. Am J Respir Crit Care Med 1997 Oct; 156(4 Pt 2):S103-9
    65. http://hgvbase. cgb. ki. se
    66. Przeworski M, Hudson RR, Di Rienzo A. Adjusting the focus on human variation. Trends Genet 2000 Jul; 16(7):296-302
    67. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999 Jun;22(2): 139-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700