El Tor型霍乱弧菌中甘露醇和山梨醇代谢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍乱弧菌(Vibrio cholerae)是引起霍乱的病原菌。从1871年至今已经发生过至少七次世界性大流行,其中第七次由O1群El Tor型霍乱弧菌引起,并且现今还处在此次大流行中。我国在霍乱防控中,建立了针对O1群El Tor型霍乱弧菌分型的噬菌体-生物分型方案,将El Tor型霍乱弧菌区分为流行株和非流行株,并进一步分成不同型别。目前研究发现流行株均为产毒株,非流行株几乎全为非产毒株。这一方案对在霍乱防控过程中区别对待这两类菌株、从而采取不同的预防控制措施有重要的意义,至今仍为霍乱弧菌分型的重要方法之一。该分型方案反映了El Tor霍乱弧菌产毒株和非产毒株的遗传学差异,通过对分型方案的机制研究,能够反映出产毒株(流行株)和非产毒株(非流行株)的基因组学差异。
     山梨醇发酵实验是噬菌体-生物分型方案中一个重要的生化反应,根据山梨醇发酵液pH下降的快慢(表现为发酵液颜色变黄的先后时间)可将El Tor型霍乱弧菌分为快发酵株和慢发酵株,其中流行株均属于慢发酵株,非流行株均属于快发酵株。我们先前通过蛋白质组学和基因转录分析,发现快慢发酵株中存在甘露醇磷酸烯醇式丙酮酸转移酶系统(PTS)操纵子转录水平及其产物的差异,而且在产毒株和非产毒株间甘露醇发酵试验具有与山梨醇发酵试验相似的特征。在本研究中,我们对甘露醇PTS转录及其调控开展了进一步研究。为了解甘露醇诱导El Tor型菌株快发酵株(非产毒株)和慢发酵株(产毒株)的表达差异,我们利用霍乱弧菌全基因组表达谱芯片分析了快慢发酵菌株在甘露醇发酵液中的转录差异基因,发现负责甘露醇的转运的PTS系统成分在快发酵株93097中的转录水平要高于其在慢发酵株N16961的,这可能是快慢菌株代谢甘露醇产酸速度差异的原因之一;另外也发现快发酵株中对甘露醇的利用更多表现为产酸,而在慢发酵株中则表现为更强的能量代谢。
     我们进一步对快慢菌株中转运甘露醇的PTS系统进行了分析。我们先前的实验已经证实了mtlA、mtlR和mtlD属于甘露醇特异操纵子的成分,mtlA和mtlD在快发酵株中转录水平高于慢发酵株的。在本研究中,我们利用报告基因系统分析了mtl启动子区,发现mtl操纵子上游VCA1044对mtl启动子活性具有很重要的作用,且快发酵株中mtl操纵子的启动子活性要高于慢发酵株,另外在快慢发酵菌株中上调mtlA的转录水平,甘露醇的利用能力均增强了,这些结果说明甘露醇PTS操纵子的转录能力与甘露醇的快慢发酵利用相关,提示是造成快慢发酵株甘露醇发酵速度差异的机制之一。
     细菌中cAMP-CRP复合物在多个调节通路中发挥作用,包括对糖醇利用的调控。启动子活性收到转录调控因子的调控作用,作为细菌中重要的调控因子,对碳水化合物的代谢具有非常重要的调控作用。因此我们对El Tor型霍乱弧菌中cAMP-CRP复合物对甘露醇PTS操纵子的调节作用进行了研究。利用CRP合成基因crp和cAMP合成基因cya的缺失突变株,证实该复合物对mtl操纵子具有非常重要的正向调控作用。我们发现在快慢发酵株中crp基因的转录水平没有明显差异,但快发酵株中cya的转录水平要高于慢发酵株,且cya表达上调后,也会造成快慢发酵株甘露醇发酵液颜色变黄的时间均提前,提示cAMP-CRP复合物的差异对mtl操纵子的转录水平调控有差别,在快发酵株中,cAMP-CRP复合物活性更高,使mtl操纵子转录水平更高。预测到mtl启动子区有CRP结合的保守位点“TGTGA……TCACA”,通过凝胶迁移实验,证实CRP-cAMP复合物能够与该启动子区结合。
     以上实验是通过甘露醇发酵进行分析的。我们前期发现El Tor型霍乱弧菌中山梨醇发酵实验与甘露醇发酵实验具有相似的结果,但霍乱弧菌中没有其他细菌中所具有的山梨醇特异的PTS基因簇。山梨醇在很多细菌中属于PTS转运糖醇,我们构建了PTS系统中非特异成分ptsⅠ的缺失突变株,结果显示ptsⅠ缺失后的菌株失去了发酵山梨醇的能力,证实山梨醇在霍乱弧菌中是通过PTS系统转运的。我们发现甘露醇mtl操纵子的基因缺失同样导致山梨醇利用的阻断,而且山梨醇能够诱导甘露醇特异mtl操纵子的高转录表达,因此这些结果说明霍乱弧菌中山梨醇的PTS转运是通过甘露醇特异PTS的。
     本研究明确了cAMP-CRP复合物在霍乱弧菌中对甘露醇的代谢调节作用,将甘露醇和山梨醇快慢发酵株的调控机制研究进一步延伸,同时明确了霍乱弧菌中山梨醇与甘露醇共同通过一个PTS转运,并且山梨醇是甘露醇PTS的诱导物,显示了霍乱弧菌与其他细菌不同的特征。这些研究更深入了对El Tor霍乱弧菌产毒株和非产毒株在山梨醇和甘露醇发酵速率与利用上的差异机制的理解。在本研究中,也显示山梨醇和甘露醇在霍乱弧菌产毒株和非产毒株中代谢途径的差异,这种差异的原因和作用结果,包括在两种菌株的不同遗传背景下各自对代谢的调节、生长的需求、以及是否导致环境生存能力的差异,另外包括细胞内cAMP水平的差异会带来哪些生长代谢影响等,还需要进一步的研究。
Cholera is caused by V. cholerae and it is generally accepted that at least seven distinct pandemics have occured since 1871. In 1961 the seventh and present pandemic began, caused by the O1 E1 Tor biotype. In China, the Phage-biotyping Scheme has been developed to distinguish the O1 E1 Tor biptype strains as "epidemic strains" and "non-epidemic strains", Further studies revealed that all "epidemic strains" were toxigenic and almost "non-epidemic strains" were nontoxigenic. The scheme of Phage-biotype has been used for many years in China and until now, it is also a useful tool for the identification of V. cholerae toxigenic and nontoxigenic strains. Sorbitol fermentation test, one of important tests in the Phage-biotyping scheme, shows different fermentation rate between "epidemic strains" and "non-epidemic strains", therefore are designated slow-fermenting strain and fast-fermenting strain respectively.
     Firstly, the result obtained from the expression profiles of genes of N16961 and 93097 in 0.2% mannitol fermentation medium revealed that the expression level of the components of the PTS in 93097 was higher than that in N16961, which may cause the different fermentation rate in the two classes of strains. In addition, the result showed that more mannitol was metabolized to produce acid in fast-ferrmenting strain, but more energy was produced by TCA in slow-fermenting strain.
     We make further analysis of the mannitol-specific PTS in fast-fermenting and slow-fermenting strains. Our previous study has confirmed that mtlA、mtlR and mtlD were the components of mtl operon. The transcription level of mtlA and mtlD in 93097 was higher than that in N16961. In our study, we analyzed the mtl peomoter, and we found that the gene VCA1044 located in the upper part of mtl operon was very important to the activity of mtl promoter. And the activity of mtl promoter from fast-fermenting strain was higher than that in slow-fermenting strain. What's more, the more mannitol was utilized in toxigenic and nontoxigenic strains in which the expression level of mtlA was upregulated. These results could confirm that transcript level of mtl operon was related to the ability of mannitol in fast-fermenting and slow-fermenting strains, which may cause different fermentation rate.
     As the important regulator in bacteria, cAMP-CRP complex play a key role in metabolism of carbohydrate. So we analyzed the role of cAMP-CRP complex in regulation of manitole-specific PTS. The results of the gene crp and cya deletion mutants fermenting mannitol confirmed that cAMP-CRP complex could regulate positively the metabolism of mannitol. The transcription level of cya in fast-fermenting strain was higher that that in slow-fermrnting strain. What's more, the color in mannitol fermentation medium of fast-fermnting and slow-fermenting strains changed to yellow more earlier after the expression level of cya was upregulated. These results suggested that the regulation of cAMP-CPP complex was different in the two classes of strains. Higher activity of cAMP-CRP complex caused higher transcription level of mtl operon in fast-fermentation strain. We predicted the conservative site in mtl promoter, that was "TGTGA.....TCACA", the result of EMSA confirmend that cAMP-CRP complex could bind to the region.
     Our previous study indicated that the results of mannitol fermentation were similar to those of sorbitol fermentation of V. cholerae E1 Tor. But there was no sorbitol-specific PTS in V. cholerae, which was different from those other bacteria. Sorbitol was PTS sugar in many other bacteria. The ptsI deletion mutant was constructed and the result of sorbitol fermenting indicated that the mutant could not metabolize sorbitol, which confirmed that sorbitol was also transported by PTS in V. cholerae. What's more, sorbitol could induce the high expression level of mtl operon. Therefore theses results indicated that sorbitol was transported by mannitol-specific PTS in V. cholerae.
     The study make further analysis of mechanism of mannitol and sorbitol metabolism in V. cholerae, and make clear both that cAMP-CRP complex play a key role in regulation of mannitol and sorbitol metabolism, and sorbitol is transported by manniol-specific PTS as the inducer of mannitol-specific PTS. The characteristic was different from other bacteria. And the study help understand the mechanism of difference of mannitol and sorbitol fermentation rate and metabolism between fast-fermentig and slow-fermenating strains. We also found the different metabolism pathway of mannitol and sorbitol in the two classes of strains. Whether these differences are related to the need of growth and regulation of metabolism? In addition, whether growth of V. cholerae is affected by the level of cAMP? Further study is necessary.
引文
[1]Barua.,D.1992.History of cholera.Plenum,New York,NY.
    [2]Sack,D.A.,R.B.Sack,G.B.Nair,and A.K.Siddique.2004.Cholera.Lancet 363:223-233.
    [3]Herringtom,D.A.,R.H.Hall,G.Losonsky,J.J.Mekalanos,R.K.Taylor,and M.M.Levine.1988.Toxin,toxin-coregulated pili,and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans.J.Exp.Med.168:1487-1492.
    [4]Morris,J.G.1990.Non-O group 1 Vibrio cholerae:a look at the epidemiology of an occasional pathogen.Epidemiol.Rev.12:179-191.
    [5]Bo Pang.Meiying Yan and Biao Kan et ac.Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 reverled by array-based comparative genomic hybridization.J.Bacteriol.2007.189:4837-4849.
    [6]高守一.1988.埃尔托型霍乱弧菌流行株和非流行株两类菌株的研究及应用.中华流行病学,1998;9(特刊3号):10-26
    [7]张树波,曹容华,武士珍,等.1990.鉴别埃尔托霍乱弧菌强毒株和弱毒株的简易、快速方法—山梨醇发酵试验的建立.Chin J Epidemiol.11(Supple 7):282-285.
    [8]Tangney,M.,J.K.Brehm,N.RMinton,and W.J.Mitchell.1998.A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052.Environ.Microbiol.64:1612-1619.
    [9]David A.Body,Tracy Thevenot and Markus Gumbmann,et al.2000.Identification of the operon for the sorbitol(glucitol) phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans.Infection and Immunity.68(2):925-930.
    [10]Yamada,M.,and M..Saier,Jr.1987.Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli.Nucleotide sequence of the gut operon.J.Biol.Chem.262:5455-5436.
    [11]Aldridge,P.,M.Metzger,and K.Geider.1997.Genetics of sorbitol metabolism in Eiwinia amylovora and its influence on bacterial virulence.Mol.Gen.Genet. 256:611-619.
    [12] Cristina Alcantara, Luz Adriana Sarmiento-Rubiano and Vicente Monedero, et al. 2008. Regulation of Lactobacillus caesi sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Applied and environmental microbiology. 74:5731-5740.
    [13] Jiang, W., L.F.Wu, J.Tomich, M.H.Saier, Jr., and W.GNiehaus. 1990. Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Mol. Microbiol. 4:2003-2006.
    [14] Sytse A. Henstra, Menno Tuinhof and Ria H.Duurkens, et al. 1999. The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system. The journal of biological chemistry. 274:4754-4763.
    [15] Susanne Behrens, Wilfrid J. Mitchell and Hubert Bahl. 2001. Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator. Microbiology. 147:75-86.
    [16] Allen L. Honeyman and Roy CurtissIII. 1992. Isolation, characterization, and nucleotide sequence of the streptococcus mutatis mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphenolpyruvate phosphotransferase system.Infection and immunity. 60:3369-3375.
    [17] Postma, P.W., and J.W.Lengeler. 1985. Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49:232-269.
    [18] Saier, M.H., Jr & Reizer, J. 1992. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. Bacteriol. 174; 1433-1438.
    [19] Allen L. Honeyman and Roy Curtiss III. The mannitolspecific enzyme II (mtlA) gene and the mtlR gene of the PTS of Streptococcus mutans. Microbiology. 146:1565-1572.
    [20] Fischer, R., Eisermann, R., Reiche, B.& Hengstenberg, W. 1989. Cloning, sequencing and overexpression of the mannitol-specific enzyme-III-encoding gene of Staphlococcus carnosus.Gene.82:249-257.
    [21]Kolb,A.,S.Busby,h.Buc,S.Garges,and S.Adhya.1993.Transcriptional regulation by cAMP and its receptor protein.Annu.Rev.Biochem.62;749-795.
    [22]Martinea-Antonio,A.& Collado-Vides,J.(2003) Identifying global regulators in transcriptional regulatory networks in bacteria.Curr.Opin.Microbiol.6,482-489.
    [23]Kolb,A.,Busby,S.,Buc,H.,Garges,S.,and Adhya,S.(1993) Transcriptional regulation by cAMP and its receptor protein.Annu.Rev.Biochem.62,749-795.
    [24]Zubay,G.,Schwartz,D.,and Beckwith,J.(1970) The mechanism of activation of catabolite-sensitive gene:a positive control system.Proc.Natl.Acad.Sci.U.S.A.66,104-110.
    [25]Kolb,A.,Busby,S.,Buc,h.,Garges,S.& Adhya,S.(1993) Transcription regulation by cAMP and its receptor protein.Annu.Rev.Biochem.62,749-795.
    [26]Kolb,A.,Busby,S.,Buc,H.,Garges,S.& Adhya,S.(1993) Transcriptional regulation by cyclic AMP and its receptor protein.Annu.Rev.Biochem.62,749-795.
    [27]Busby,S.& Ebright,R.(1997) Transcrption activation at class Ⅱ CAP-dependent promoters.Mol.Microbiol.23,853-859.
    [28]Zhang,D.,Constantinidou,C.,Hobman,J.& Minchin,S.(2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.Nucleic Acids Res.32,5874-5893.
    [29]Tan,K.,Moreno-Hagelsieb,G.,Collado-Vides,J.& Stormo,G.(2001) A comparative genomics approach to prediction of new members of regulons.Genome Res.11,566-584.
    [30]Carolyn,C.H.and Susan,M.E.(2000) Interdependence of activation at rhaSR by cyclic AMP receptor protein,the RNA polymerase alpha subunit C-terminal domain,and RhaR.J.Bacteriology.182,6774-6782.
    [31]Tae-Wook,N.,Young-Ha,P.and Yeong-Jae,S.(2005) Glucose repression of the Escherichia coli sdhCDAB operon,revisited:regulation y the CRP-cAMP complex.Nucleic Acids Research.33,6712-6722.
    [32]Nicolas Desroche,Chatlotte Beltramo and Jean Guzzo.2004.Determination of an internal control to apply reverse transcription quantative PCR to study stress response in the lactic acid bacterium Oenococcus oeni.Journal of Microbiology Methods.60:325-333.
    [33]N.Philippe,JEAlcaraz,E.Coursange.et al.2004.Improvement of pCVD442,a suicide plasmid for gene allele exchange in bacteria.Plasmid.51:246-255.
    [34]王海燕.霍乱弧菌两类菌株甘露醇PTS操纵子基因功能研究及甘露醇发酵快慢机制探讨.2007.硕士学位论文.
    [35]郑霄.霍乱弧菌两类菌株甘露醇PTS功能研究及其与山梨醇发酵的相关性.2005.硕士学位论文.
    [36]葛新、白小红和李云.2001.分光光度计测定蛹草D-甘露醇的含量.山西医科大学学报.32:317-318.
    [37]Hitoshi Ishizuka,Akemi Hanamura and Toshifumi Inada et al.1994.Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli:role of autoregulation of the crp gene.The EMBO Journal.13:3077-3082.
    [38]Lee,E.L.,Glasgow,J.,Leu,S.F.,Belduz,A.O.,and Harman,J.G.(1994) Mutagenesis of the cyclic AMP reeptor protein of Escherichia coli:targeting positions 83,127 and 128 the cyclic nucleotide binding pocket.Nucleic Acids Res.22,2894-2901.
    [39]Akeo Shinkai,Satoshi Kira andNoriko Nakagawa,et al.2007.Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.Journal of bacteriology.189:3891-3901.
    [40]Sang-Jin Suh,Laura J.Runyen-Janecky and Tricia C.Malenik,et al.2002.Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomobas aeruginosa.Microbiology.148:1561-1569.
    [41]Lengeler,J.W.1975.Nature and properties of hexitol transport systems in Escherchia coli.J.Bacteriol.124:39-47.
    [42]Dziejman,M.,E.Balon,D.Boyd,C.M.Fraser,J.F.Heidelberg,and J.J.Mekalanos.2002.Comparative genomic analysis of Vibrio cholerae:genes that correlate with cholera endemic and pandemic disease.Proc.Natl.Acad.Sci.USA 99:1556-1561.
    [43]张树波,曹容华,武士珍,等.1990.鉴别埃尔托霍乱弧菌强毒株和弱毒株的简易、快速方法—山梨醇发酵试验的建立.中华流行病学杂志.11(Supple 7):282-285.
    [44]郑霄、王淑京、王瑞白等.2005.霍乱弧菌两类菌株甘露醇发酵特征分析.中华流行病学杂志.6:121-125.
    [45]L J Rasmussen,P L Moller and T Atlung.1991.Carbon metabolism regulates expression of the pfl(pyruvate formate-lyase)gene in Escherichia coli.J Bacteriol.173(20):6390-6397.
    [46]王瑞白.2005.山梨醇发酵试验区分霍乱弧菌两类菌株(流行株与非流行株)的机理的研究.博士学位论文.
    [47]Carsiotis,M.D.L.,Weinstein,H.Karch,I.A.Holder,and A.D.O'Brien.1984.Flagella of Salmonella typhimurium are a virulence fctor in infected C57BL/6Jmice.Infect.Immun.46:814-818.
    [48]Kennedy,M.J.,E.L.Rosey,and R.J.Yancy,Jr.1997.Charaterization of flaA~- and flab~-mutants of Serpulina hyodysenteriae:both flagellin sununits,FlaA and FlaB,are necessary for full motility and intestinal colonization.FEMS Microbiol.Lett.153:119-128.
    [49]David C.Morris,Fen Peng,and Jeffrey R.Barker,et al.2008.Lipidation of an FlrC-dependent protein is required for enhanced intestinal colonization by Vibrio cholerae.190:231-239.
    [50]Gardel,C.L.,and J.J.Mekalanos.1996.Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression.Infet.Immun.64:2246-2255.
    [51]Lee,S.H.,S.M.Butler,and A.Camilli.2001.Selecion for in vivo regulators of bacterial virulence.Proc.Natl.Acad.Sci.USA.98:6889-6894.
    [52]Buttler,S.M.,and A.Camilli.2004.Both chemtaxis and net motility greatly influence the infectivity of Vibrio cholerae.Proc.Natl.Acad.Sci.USA 101:5018-5023.
    [53]Susan M.Butler and Andrew Camilli.2005.Going against the grain:chemotaxis and infection in Vibrio cholerae.Nature reviews microbiology.www.nature.com/reviews/mico.
    [54]Merrell D S,Hava D L,Camilli A.Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae.Mol Microbiol,2002,43(6):1471-1491.
    [55]王海燕、闫梅英、赵英伟等.2007.霍乱弧菌甘露醇PTS操纵子中mtlR为转录抑制基因.微生物学报.47:522-525.
    [56]Shouji Watanabe,Miyuki Hamano and Hiroshi Kakesshita,et al.Mannitol-1-phosphate dehydrogenase(Mt1D) is required for mannitol and glucitol assimilation in Bacillus subtilis:possible cooperation of mtl and gut operons.Journal of bacteriology.185:4816-4824.
    [57]Postma,P.W.,J.W.Lengeler,and G.R.Jacobson.1993.Phosphoenopyruvate:carbohydrate phosphotransferase of bacteria.Microbiol.Rev.57:543-594.
    [58]Reiner M.Figge,Tom M.Ramseier and Milton H.Saier,Jr.1994.The mannitol repressor(MtlR) of Escherichia coli.Journal of Bacteriology.176:840-847.
    [59]Otte S.,Lengeler JW.2001.The mtl genes and the mannitol-1-phosphate dehydrogenase from Klebsiella pneumoniae.FEMS Microbiol LETT.194(2):221-227.
    [60]Allen L.Honeyman,Roy Curtiss Ⅲ.2000.The mannitol-specific enzyme Ⅱ(mtlA)gene and the mtlR gene of the PTS of Strptococcus mutans.Microbiology.146:1565-1572.
    [61]Susanne Behrens,Wilfrid J.Mitchell and Hubert Bahl.2001.Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferae system and a putative PTS-modulated regulator.147:75-86.
    [62]Sytse A.Henstra,Menno Tuinhof and Ria H.Duurkens,et al.1999.The Bacillus stearothermophilus mannitol regulator,MtlR,of the phosphotransferase system.The journal of Biological chemistry.274:4745-4763.
    [63]Milton H,Saie JR,Tomm R.The catabolite repressor/ activator protein of enteric bacteria.J.Bacteriol,1996,178:3411-3417.
    [64]H.Saier,Jr.1993.In vitro binding of the pleiotropic transcriptional regulatory protein FruR to the fru,pps,pts,icd and ace operons of Eseherichia coli and Salmonella typhimurium.J.Mol.Biol.
    [65]H.Saier,Jr.1993.In vitro binding of the pleiotropic transcriptional regulatory protein FruR to the fru,pps,pts,icd and ace operons of Escherichia coli and Salmonella typhimurium.J.Mol.Biol.
    [66]Weili Liang,Alberto Pascual-Montano,Anisia J.Silva,et al.The cyclic AMP receptor protein modulates quorum sensing,motility and multiple genes that affect intestinal colonization in Vibrio cholerae.Microbiology.153:2964-2975.
    [67]Emmer,M.,B.deCrombrugghe,I.Pastan,and R.Perlman.1970.Cyclic AMP receptor protein of E.coli:its role in the synthesis of inducible enzymes.Proc.Ntal.Acad.Sci.USA 66:480-487.
    [68]Zubay,G.,D.Schwartz,and J.Beckwith.1970.Mechanism of activation of catabolite-sensitive genes:a positive control system.Proc.Ntal.Acad.Sci.USA 66:104-110.
    [69]J.S.Krakow,I.Pastan.1973.Cyclic adenosine monophosphate receptor:loss of cAMP-dependent DNA activity after proteolysis in thepresence of cyclic adenosine monophosphate.Proc.Ntal.Acad.Sci.USA 70:2529-2533.
    [70]J.M.Passner,T.A.Steitz.1997.The structure of a CAP-DNA complex having two cAMP moleculaes bound to each monomer.PNAS.94:2843-2847.
    [71]J.M.Passner,S.C.Schultz,T.A.Steitz.2000.Modeling the cAMP-induced alosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution.J.Mol.Biol.304:847-859.
    [72]Heyduk.T.,and J.C.Lee.1989.Escherichia coli cAMP receptor protein:evidence for three protein conformational states with different promoter bindging affinities.Biochemistry.28:6914-6924.
    [73]J.Mekhopadhyay,R.Sur,P.Parrack.1999.Functional roles of two cyclic AMP-dependent formes of cyclic AMP receptor protein from Escherichia coli. FEBS Lett. 453:215-218.
    [74] Rima Chattopadhyay, Pradeep Parrack. 2006. Cyclic AMPdependent functional forms of cyclic AMP receptor protein from Vibrio cholerae. Archives of Biochemistry and Biophysics. 447:80-86.
    [75] L. Notley-McRobb, A. Death, T. Ferenci. 1997. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology. 143:1909-1918.
    [76] T.W.Nam, Y.H.Park, H.J.Jeong, S.Ryu. Y.J.Seok. 2005. Glucose repression of the Escherichia coli sdhCDAB operon, revisited:regulation by the CRP-cAMP complex. Nucleic Acids Res.33:6712-6722.
    [77] Ebright, R.H., Y.W.Ebright, and A.Gunasekera. 1989. Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E.coli lac DNA site. Nucleic Acids Res. 17:10295-10305.
    [78] Botsford, J.L., and J.GHarman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56:100-122.
    [79] Igarashi, K., and A.Ishihama. 1991. Bipartite functional map of the E. coli RNA polymerase alpha subunit:involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell.65:1015-1022.
    [80] Niu, W., Y.Kim, G.Tau,T.Heyduk, and R.H.Ebright. 1996. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell. 87:1123-1134.
    [81] Barber, A.M., and V.B.Zhurkin. 1990. CAP binding sites reveal pyrimidinepurine pattern characteristic of DNA binding. J.Biomol. Struct.Dyn. 8:213-232.
    [82] Barber, A.M., V.B.Zhurkin, and S.Adhya. 1993. CRP-binding sites: evidence for two structural classes with 6-bp and 8-bp spacers. Gene. 130:1-8.
    [83] Gallegos, M.T., Schleif, R., Bairoch, A, et al. 1997. AraC/XylS family of transcriptional regulators. Microbiol. Mol.Biol.Rev. 61:393-410.
    [84] Valentin-Hansen, P., Sgaard-Andersem, L. and Pedersen, H. 1996. A flexible partnership: the CytR anti-activitror and the cAMP-CRP activitor protein, comrades in transcritional control. Mol. Micobiol. 20:461-466.
    [85] asmussen, P., Hoist, B. and Valentin-Hansen, P. 1996. Dual-function regulators: the cyclic AMP receptor protein and CytR can act either to repress or to activate transcription depending on the context. Proc. Natl. Acad. Sci. USA 93:10151-10155.
    [86] Kallipolitis, B., Norregaard-Madsen, M. and Valentin-Hansen, P. 1997. Protein-protein communication: structural model of the repression complex formed by CytR and global regulator CRP. Cell. 89:1101-1109.
    [87] Joseph T. WADE, Tamara A. Belyaeva, Eva I.Hyde, et al. 2001. A simple mechanism for co-dependence on two activator at an Escherichia coli promoter. The EMBO Journal. 20:7160-7167.
    [83] Sarah L. Sutrina, Lisa Alletne, Keisher Hoyte and Margot Blenman. 2002. Effect of replacing the general energy-coupling proteins of the PEP: sugar phosphotransferase system of Salmonella typhimurium with their fructose -inducible counterparts on utilization of the PTS sugar glucitol. Microbiology. 148:3857-2864.
    [88] Rosa Viana, Vicente Monedero, Christian Vadeboncoeur, et al. Enzyme I and HPr from Lactobacillus casei: their role on sugar transport, carbon catalopite repression and inducer exclusion. 36:570-584.
    [89] Stanley A. Friedman and John B. Hays. 1976. Initial characyerization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferase of Staphylococcus aureus. Journal of Bacteriaology. 130:991-999.
    1. Merika,M. and Thanos, D. (2001) Enhanceosomes, Curr. Opin. Genet. Dev., 11, 295-208.
    
    2. Busby,S. and Ebright,R. (1994) Promoter structure, promoter recognition and transcription activation in prokaryotes. Cell, 79,743-746.
    
    3. Martinea-Antonio, A.& Collado-Vides, J. (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6, 482-489.
    
    4. Kolb, A., Busby, S., Buc, H., Garges, S., and Adhya, S. (1993) Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem.62,749-795.
    
    5. Busby, S. and Ebight, R.H. (1999) Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293, 199-213.
    
    6. Brown, C. T., and Callan, C.G., Jr. (2004) Evolutionary comparions suggest many novel cAMP response protein binding sites in Escherichia coli. Pro. Ntal. Acad. Sci. U.S.A. 101,2404-2409.
    
    7. Zubay, G, Schwartz, D., and Beckwith, J. (1970) The mechanism of activation of catabolite-sensitive gene: a positive control system. Proc. Natl. Acad. Sci. U.S.A. 66,104-110.
    
    8. Emmer, M., deCrombrugghe, B., Pastan, I., and Perlman, R.(1970) Cyclic AMP receptor protein of E. coli: its role in the sunthesis of inducible enzymes. Proc.Natl, Acad. Sci. U.S.A. 66, 480-487.
    
    9. Kolb, A., Busby, S., Buc, h., Garges, S. & Adhya, S.(1993) Transcription regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749-795.
    
    10. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. (1993) Transcriptional regulation by cyclic AMP and its receptor protein. Annu. Rev. Biochem. 62, 749-795.
    
    11. Busby, S. & Ebright, R. (1997) Transcrption activation at class II CAP-dependent promoters. Mol. Microbiol. 23, 853-859.
    
    12. Gosset, G, Zhang. Z., Nayyar, S., Cuevas, W.& Saier, M., Jr. (2004) Transcriptome abalysis of crp-dependent catabolite control of gene expression on Escherichia coli. J. Bacteriol. 186,3516-3524.
    
    13. Zhang, D., Constantinidou, C, Hobman, J. & Minchin, S. (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 32, 5874-5893.
    
    14. Robison, K., McGurine, A. & Church, GM. (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J. Mol. Biol. 284, 241-254.
    
    15. Tan, K., Moreno-Hagelsieb, G, Collado-Vides, J. & Stormo, G. (2001) A comparative genomics approach to prediction of new members of regulons. Genome Res. 11, 566-584.
    
    16. David, C.G, Dougles, H., and Stephen, J.W. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. (2005) PNAS. 102, 17693-17698.
    
    17. Dongling Zheng, Chryatala, C, and Stephen, D.M. (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Research. 32, 5874-5893.
    
    18.Zubay, G, Schwartz, D. & Beckwith, J. (1970). Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc. Natl Acad. Sci. USA, 66, 104-111.
    
    19. Emmer, M., de Crombrugghe,B., Pastan, I. & Perlman, R. (1970). Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc. Natl Acad. Sci. USA, 66, 480-487.
    
    20. McKay, D. & Steitz, T. (1981).Structure of catabolite gene activator protein at 2.9 Angstroms resolution suggests binding to left-handed B-DNA. Nature, 290, 744-749.
    
    21. Kolb, A., Igarashi, K., Ishihama, A., Lavigne, M., Buckle, M. & Buc, H.(1993). E. coli RNA polymerase, deleted in the C-terminal part of its α-subunit, interacts differently with the cAMP-CRP complex at the lacP1 and at the galP1 promoter. Nucl. Acids Res. 21,319-326.
    22. Ebright, R. (1993). Transcription activation at class I CAP-dependent promoters. Mol. Microbiol 8, 797-802.
    
    23. Schltz, S.C., Shields, G.C., and Steitz, T.A. (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 253,1001-1007.
    
    24. James, G. H. 2001. Allosteric regulation of the cAMP receptor protein. Biocemica et Biophysica Acta. 1547, 1-17.
    
    25. Passner, J.M., Schultz, S.C., and Steiz, T.A. (2000) Modeling the cAMP-induced allosteric transition using the crystal structrue of the CAP-cAMP at 2.1 A resolution. J. Biol. 304, 847-859.
    
    26. Lee, E.L., Glasgow, J., Leu, S.F., Belduz, A.O., and Harman, J.G. (1994) Mutagenesis of the cyclic AMP reeptor protein of Escherichia coli: targeting positions 83,127 and 128 the cyclic nucleotide binding pocket. Nucleic Acids Res. 22, 2894-2901.
    
    27. Shi, Y., Wang. S., Kruegar, S., and Schwarz, F.P. (1999) Effect of mutations at the monomer-monomer interface of cAMP receptor protein on specific DNA binding. J.Biol.Chem. 274,6946-6956.
    
    28. Chu, S.Y., Tordova, M. Gilliland, G.L., Gorshkova, L, Shi, Y., Wang, S., and Schwarz, F.P. (2001) The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding. J.Biol.chem. 276, 11230-11236.
    
    29. Dai, J., Lin, S.H., Kemmis, C, Chin, A.J., and Lee, J.C. (2004) Interplay between aite-specific mutations and cyclic nucleotides in modulating DNA recognition by Escherichia coli cAMP recepotor protein. Biochemistry. 43, 8901-8910.
    
    30. Kim, J., Adhya, S., and Garges, S. (1992) Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc. Natl. Acad. Sci. U.S.A. 89, 9700-9704.
    
    31. Garges, S., and Adhya, S. (1985) Sites of allosteric shift in the strcture of the cyclic AMP receptor protein. Cell. 41, 745-751.
    
    32. Harman, J.G, McKenney, K., and Peterkofsky, A. (1986) Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein. J. Biol. Chem. 261, 16332-16339.
    
    33. Harman, J.G. (2001) Allosteric regulation of the cAMP receptor protein. Biochem, Biophys.Acta.1541,1-17.
    
    34. Lanzilotta, W.N., Schuller, D.J., Thorsteinsson, M.V., Kerby, R.L., Roberts, G.P., and Poulos, T.L. (2000) Structure of the CO-sensing protein from Rhodospirillium rubrim: Insight into the mechanism of allosteric control in the CAP family transcription factors. Nat. Struct. Biol. 7, 876-880.
    
    35. Ushida, C. & Aiba, H. (1990). Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucl. Acids Res. 18,6325-6330.
    
    36. Zheng, D., Constantinidou, C, Hobuman, J.L., and Mincin, S.D. (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res., 32, 5874-5893.
    
    37. Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. (1990). Stringent spacing requirements for transcription activation by CRP. Cell, 62, 733-740.
    
    38. Scott, S., Busby, S. & Beacham, I. (1995). Transcriptional coactivation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem. Mo/. Microbiol. 18, 521-532.
    
    39. Lobell, R. & Schleif, R. (1991). AraC DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J. Mol. Biol. 218, 45-54.
    
    40. Richet, E., Vidal-Ingigliardi, D. & Raidaud, O. (1991). A new mechanism for coactivation of transcription initiation repositioning of an activator triggered by the binding of a second of a second activator. Cell, 66, 1185-1195.
    
    41. Merkel, T., Dahl, J., Ebright, R. & Kadner, R. (1995). Transcription activation at the Escherichia coli uhpT promoter by the catabolite gene activator protein. J. Bacteriol. 177,1712-1718.
    
    42. Berg, C.G. & Von Hippel, P.H. (1988) Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to binding sites. J. Mol. Biol. 200, 709-723.
    
    43. Schultz, S.C., Shields, G.C. and Steiz, T.A. (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science, 253, 1001-1007.
    
    44. Chen, S., Gunasekera, A., Zhang, X., Kunkel, T.A., E brigh, R.H. and Berman, H.M. (2001) Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: alteration of DNA binding specificity through alteration of DNA kinking. J. Mol. Biol. 314, 75-82.
    
    45. Chen, S., Vojtechovsky, J., Parkinson, GN., Ebright, R.H. and Berman,H.M. (2001) Indirect readout of DNA sequence at the primary site in the CAP-DNA complex: DNA binding specificity based on energetics of DNA kinking. J.Mol. Biol. 314, 63-74.
    
    46. Ebright, R., Ebright, Y.W. & Gunasekera, A. (1989) Consensus DNA site for the Escherichia coli catabolite gene activator protein(CAP): CAP exhibits a 450-fold higher affinity for the concensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res. 17, 10295-10305.
    
    47. Pyles, E.A. & Lee, J.C. (1998) Escherichia coli cAMP receptor protein-DNA complexes. 2. Structural asymmetry of DNA binding. Biochem. 37, 5201-5210.
    
    48. Chamberlin, M. (1976). RNA polymerase -an overview. In RNA polymerase, pp. 17-67, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    
    49. Busby, S. & Ebright, R. (1994). Promoter structure, promoter recognition, and transcription, and transcription activation in prokaryotes. Cell, 79, 743-746.
    
    50. Ebright, R. & Busby, S. (1995). Escherichia coli RNA polymerase alpha subunit: structure and function. Curr. Opin. Genet. Dev. 5, 197-200.
    
    51. Hochschild, A. & Dove, S. (1998). Protein-protein contacts that activate and repress prokaryotic transcription. Cell, 92, 597-600.
    
    52. Liu, K. & Hanna, M. M. (1995). NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes. Proc. Natl. Acad. Sci. USA, 92, 5012-5016.
    53. Blatter, E., Rose, W., Tang, H., Gourse, R. & Ebright, R. (1994). Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell, 1, 889-896.
    
    54. Negishi, T., Fujita, N. & Ishihama, A. (1995). Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. J. Mol.Biol. 248, 723-728.
    
    55. Jeon, Y.H., Yamazaki, T., Otomo, T., Ishihama, A. & Kyogoku, Y. (1997). Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. J. Mol. Biol. 267, 953-962.
    
    56. Severinov, K., Kashlev, M., Severinova, E., Bass, I., McWilliams,A. (1994). A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. J. Biol. Chem. 269, 14254-14259.
    
    57. Miller, A.D. W., Ebright, R. & Rothma-Denes, L. (1997). RNA polymerase beta' subunit: a target for DNA binding-ndependent activation. Science, 275, 1655-1657.
    
    58. Zhang, G. & Darst, s. (1998). Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain. Science, 281,262-266.
    
    59. Malhotra, A., Severinova, E. & Darst, S. (1996), Crystal structure of a σ~(70) subunit fragment from E. coli RNA polymerase, Cell, 87,127-136.
    
    60. Scott, S., Busby, S. and Beacham, I. (1995) Transcription co-activation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem. Mol. Microbiol. 18, 521-531.
    
    61. Goosen, N. and van de Putte, P. (1995) The regulation of transcription initiation by integration host factor. Mol. Microbiol. 16, 1-7.
    
    62. Richet, E. Vidal-Ingigliardi, V. and Raibaud, O. (1991) A new mechanism for coactivation of transcription: repositioning of an activator triggered by the binding of a second activator. Cell. 66, 1185-1195.
    
    63. Browing, D., Cole, J. and Busby, S. (2000) Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, HIF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol. Microbiol. 37,1258-1269.
    
    64. Joseph, T.W., Tamara, A.B. and Stephen, J.W. (2001) A simple mechanism for co-dependence on two activators at an Escherichia coli promoter. The EMBO Journal. 20,7160-7176.
    
    65. Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya. (1993) Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749-795.
    
    66. Evelyne, R. (2000) Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter dependent on MalT and CRP. The EMBO Journal. 19, 5222-5232.
    
    67. Carolyn, C.H. and Susan, M.E. (2000) Interdependence of activation at rhaSR by cyclic AMP receptor protein, the RNA polymerase alpha subunit C-terminal domain, and RhaR. J. Bacteriology. 182, 6774-6782.
    
    68. Tae-Wook, N., Young-Ha, P. and Yeong-Jae, S. (2005) Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation y the CRP-cAMP complex. Nucleic Acids Research. 33, 6712-6722.
    
    69. Zhongge, Zhang. Guillermo, Gosset. and Saier, Jr. (2005) Functional interactions between the carbon andiron utilization regulators, Crp and Fur, in Escherichia coli. J. Bacteriology. 187,980-990.
    
    70. Ishuzuka, H.A. Hanamura, T. Inada. and H. Aiba. (1994) Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoreulation of the crp gene. EMBO J. 13, 3077-3082.
    
    71. Guillermo, G, Zhongge, Z. and Milton H. Saier, Jr. (2004) Transcription analysis of crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriology. 186,3516-3524.
    
    72. Kai, Z., Mingzhu, L. and Richard, R.B. (2007) Adaptation in bacterial flagellar and motility systems from regulon members to 'foraging'-like behavior in E. coli. Nucleic Acids Research. 13,4441-4452.
    73. Soutouring, O., Kolb, A., and Bertin, P. (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC operon. J. Bacteriology. 181, 7500-7508.
    
    74. Bainton, N.J., B.W.Bycroft, S.R. Chhabra, P. Stead, L. Gledhill, P.J. Hill, C.E. Rees, M.K. Winson, GS. Stewart, et al. (1992) A general role for the lux autoinducer in bacterial cell signaling: control of antibody biosynthesis in Erwnia. Gene. 116, 87-91.
    
    75. Derzelle, S., E. Duchaud, F. Kunst, A. Danchin, and P. Bertin. (2002) Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens: Apple. Environ. Microbiol. 68, 3780-3789.
    
    76. Liang, W., Yoshifumi, H. and William, E.B. (2005) Cyclic AMP and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J. Bacteriology. 187, 2066-2076.
    
    77. Ligi, P., Pankaj, M. and Rowena, G.M. (2007) Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp and ArgR. BMC Microbiology. 7, 1-17.
    
    78. Karin, L.M., Borgitte, H.K. and Poul, V.H. (2000) Identification of the subunit of cAMP receptor(CRP) that functionally interacts with CytR in CRP-CytR-mediated transcriptional repression. J. Bacteriology. 275, 11951-11956.
    
    79. Tzu-Pi Huang and Amy C. Lee Wong. (2007) A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Applied and environmental microbiology. 73, 5034-5040.
    
    80. Karen S. and Ronald, K.T. (1996) Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc. Natl, Acad. Sci. U.S.A. 94, 265-270.
    
    81. Balsalobre, C, J.Johansson, B.F. Uhlin, A. Juarez, and F.J.Munoa. (1999) Alterations in protein expression caused by the hha mutation in Escherichia coli: influence of growth medium osmolarity.J.Bacteriol.181,3018-3024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700