体外成熟对小鼠卵母细胞、胚胎及出生后子代的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外成熟对小鼠卵母细胞、胚胎及出生后子代生长发育行为学的影响
     目的:本研究拟通过建立小鼠卵母细胞体外成熟(in vitro maturation, IVM)技术平台,揭示IVM对小鼠卵母细胞,胚胎及出生后子代生长发育及行为学的影响,阐明IVM的短期及中长期效应。
     材料和方法:
     1.采用卵母细胞体外成熟技术结合胞浆内单精子注射技术(intracytoplasmic sperm injection, ICSI)建立小鼠IVM技术平台。比较IVM卵母细胞与体内成熟(in vivo maturation, VVM)卵母细胞受精率,卵裂率,胚胎发育率。
     2.检测IVM对出生后子一代生长发育及相关行为学影响
     1)比较IVM和VVM组移植后妊娠率,妊娠周期,子代出生率,子代存活率及雌雄比的差异。
     2)生长曲线及器官发育检测:以IVM子代为研究对象,以VVM子代为对照组,同时设立自然妊娠组为阴性对照,自出生第1天起至第10周性成熟期测量不同性别各组小鼠体重变化;于10d,3w,10w取小鼠各器官,测量各组器官重量所占体重百分比。
     3)发育期生殖能力检测:利用SCA (Sperm Class Analyzer)动物精子分析统检测10w雄鼠精子活力;雌鼠自6w起连续3周做阴道图片,观测动情周期;性成熟期各组雌雄小鼠两两1:1自然交配,比较其生育能力。
     4)学习认知能力检测:水迷宫实验比较各组小鼠潜伏期及穿台次数。
     2.检测IVM对出生后子二代生长发育及相关行为学影响
     1)性成熟期各组子一代雌雄小鼠两两1:1自然交配,比较各组妊娠率,子二代存活率及雌雄比的差异。
     2)生长曲线及器官发育,发育期生殖能力检测,学习认知能力检测同子一代。
     结果:
     1.通过优化IVM条件,成功建立小鼠IVM技术平台。
     2.IVM组卵母细胞受精率、卵裂率及胚胎发育率均较VVM组显著性降低。
     3.IVM对出生后子一代生长发育及相关行为学影响
     1)IVM子一代出生率及存活率均较VVM组显著性降低。
     2)IVM组子一代体重较自然妊娠组显著性升高,其脑组织器官比重较自然妊娠组显著性降低,但与VVM组比较无显著性差异。
     3)IVM组子一代产仔数量显著性高于自然妊娠组,但与VVM组比较没有显著性差异。各组精子活力相关指数、动情周期无显著性差异。
     4)水迷宫实验示各组潜伏期及穿台次数无显著性差异。
     3.IVM对出生后子二代生长发育及相关行为学影响
     1)IVM组子二代存活率较其余各组显著性降低。
     2)IVM组子二代体重及器官比重与其余各组比较均无显著性差异。
     3)子二代各组精子活力相关指数、动情周期无显著性差异。
     4)水迷宫实验示各组潜伏期及穿台次数无显著性差异。
     结论:
     1.IVM影响卵母细胞受精、卵裂及胚胎发育。
     2.IVM子一代出生率及存活率降低,体重增大,器官比重降低,表明IVM可影响子一代生长发育。
     3.IVM影响子一代生育能力及子二代存活率,提示IVM存在婚配风险性。
     4.IVM的影响涵盖卵母细胞、胚胎直至出生后子一代甚至子二代,是多方面多层次的,具体效应还有待进一步考证。
     第二部分IVM对子代脑组织全基因组表达谱的影响
     目的:通过研究IVM对子代脑组织全基因组表达谱的影响,阐明其对基因表达影响的差异程度及涉及的主要方面,并分析差异基因在生长发育过程中的动态变化及子二代效应,揭示IVM对子代神经系统及脑发育的影响机制。
     材料和方法:
     1.应用Affymetrix公司的Affymetrix mouse 430小鼠基因组表达芯片,对IVM子代新生雄性小鼠及VVM子代新生雄性小鼠各三只进行检测,利用芯片显著性分析(significance analysis of microarray, SAM),比较两组标本基因表达差异。
     2.通过分层聚类,GO (gene ontology)分类和信号通路(Pathway)分析等方法对差异基因进行分析。
     3.选择对芯片分析表达显著性差异的重要基因,经实时荧光定量RT-PCR验证
     4.以验证证实表达显著性差异的基因为目标基因,以IVM、WM和自然妊娠出生(子一代)的10d龄(新生期),3w龄(生长期)和10w龄(性成熟期)小鼠脑组织为对象,RT-PCR分析表达差异基因在不同性别小鼠的不同生长发育时期的变化。
     5.选取IVM子一代10w龄仍差异显著的基因,利用RT-PCR检测其在子二代小鼠脑组织的表达变化。
     结果:
     1.基因芯片结果显示共196个差异基因,其中IVM组较VVM组基因表达上调158个,下调38个,对差异基因进行无监督分层聚类,可完全区分IVM组和VVM组子代。
     2.GO分析显示差异基因包括神经系统发育和神经分化相关基因。
     3. Pathway分析发现10条主要的差异信号通路,差异最显著的是神经活动配体-受体相互作用(neuroactive ligand-receptor interaction)通路。
     4.荧光定量RT-PCR检测神经活动配体-受体相互作用通路中8个基因及与脑发育相关的5个基因表达水平,与芯片结果一致。
     5.IVM小鼠不同生长发育时期脑组织基因表达动态变化研究显示:上述13个基因在新生小鼠表达上调;3w龄时部分基因表达归于正常;到10w龄,除雄鼠Neurod1和Pax6表达上调,雌鼠Agtr2基因表达上调,Pax6基因表达下调外,其余基因表达均趋于正常。
     6. RT-PCR分析IVM子二代小鼠脑组织基因表达,结果显示,Agtr2在IVM组子二代雄性小鼠仍表现为表达上升,而Neurod1和Pax6在IVM组子二代表达趋于正常。
     结论:
     1.IVM可影响子代脑组织基因表达,涉及神经系统发育和神经分化相关基因。
     2.IVM子代脑组织中大部分差异表达基因会随生长发育逐步纠正,至性成熟期仍有部分未得到纠正而继续异常表达。
     3.部分基因差异表达延续到子二代,并出现性别差异,提示IVM子代可能会有神经行为学改变风险。这些改变可能与某些神经系统疾病相关,仍需大量研究评估IVM远期安全性及潜在发病风险。
     第三部分IVM对子代脑组织印记基因差异表达及调节的影响
     目的:研究IVM对子代脑组织印记基因表达的影响及调控机制,评估IVM对子代印记基因甲基化调控改变的风险。
     材料和方法:
     1.本研究以IVM子代为研究对象,以VVM子代为对照,同时设自然妊娠子代为阴性对照,结合基因芯片,筛选可能存在差异的印记基因进行荧光定量RT-PCR检测。
     2.荧光定量RT-PCR检测印记基因表达关键调节酶(Dnmt1, Dnmt3a, Dnmt3b, Dnmt31)的表达变化。
     3.通过亚硫酸氢盐测序PCR (bisulfite-sequencing PCR, BSP)检测差异印记基因CpG岛的甲基化状态。
     结果:
     1.芯片共包含了70个印记基因,放宽条件,降低Fold值至1.4,筛选到8个印记基因,分别是H19, Igf2, Kcnq1ot1, Mest, Peg3, Ube3a, Snrpn和Peg12.
     2.对IVM, VVM和自然妊娠三组子代进行上述8个基因的实时荧光定量PCR验证,结果显示,IVM子代中,H19表达下调,Kcnq1ot1表达上调,其余6个基因表达水平三组间无显著性差异。
     3. Dnmt1表达水平IVM组较VVM及自然妊娠组显著性升高;Dnmt3a表达水平IVM及VVM组均较自然妊娠组显著性升高,而Dnmt3b及Dnmt31表达水平三组间无显著性差异。
     4.采用BSP法分析H19基因启动子区CpG岛的12个CpG位点,结果发现,H19三组均呈中等程度甲基化,三组间甲基化状况基本相似,IVM组甲基化程度较其他两组高,但无显著性差异,部分母源性表达位点出现甲基化现象,而在其他两组均未发现;BSP法分析了Kcnq1ot1基因启动子区CpG岛的20个CpG位点,结果发现,三组均呈中等程度甲基化,三组间甲基化状况基本相似,IVM组甲基化程度较其他两组低,但无显著性差异。
     结论:
     1.IVM可影响子代脑组织印记基因H19及Kcnq1ot1表达水平。
     2.IVM子代H19差异甲基化区CpG岛甲基化水平未见明显差异,但有部分母源性甲基化,可能与Dnmt1及Dnmt3a表达异常有一定关系,其相互作用从而影响基因表达。
     3.IVM子代Kcnq1ot1差异甲基化区CpG岛甲基化水平未见明显差异,可能有其他调节方式影响该印记基因的表达。
     4.IVM子代脑组织中的印记基因表达差异,表明IVM过程可能通过不同方式干扰印记的建立与维持,提示IVM子代可能存在一定的表遗传风险。在IVM乃至ART子代中印记破坏是否对胚胎发育和出生后患病高风险的确切影响尚需进一步研究。
PartⅠEffects of in vitro maturation on mouse oocytes, embryos and the development and neuroethology of offspring
     Objective:To reveal the effects and degree of IVM on oocytes, embryos and the development and neuroethology of offspring by establishing model of IVM, and to illuminate the short-term and long-term effects of IVM.
     Materials and methods:
     1. To establish model of IVM, the VVM (oocytes in vivo maturation) group was used as the control group; the effects of IVM on oocytes and embryos development were detected by comparing the fertilization, cleavage, and embryo development of preimplantation.
     2. Effects of IVM on the first filial generation
     1) The rates of pregnancy, birth, survival, and the sex ratio of postnatal mice were detected between IVM and VVM group.
     2) The effects of IVM on development were detected by checking the growth weight from newborn to the sex matured stages, and the specific gravity of the organs in 10d,3w and 1Ow. All the researches were done in the male and in the female mice.
     3) The reproductive capability was detected by checking the sperm vigor of 10w male mice using the SCA(Sperm Class Analyzer) system, checking the estrous cycle of female mice from 6w to 9w stages, and checking their procreation ability by mating each other during 6-8w.
     4) The spatial learning and memory capability was detected by using the water maze, and the incubation period and the times across the platform were recorded in 8w stages.
     3. Effects of IVM on the second filial generation
     1) The rates of birth, survival, and the sex ratio were detected in the second filial generation after mating each other, and the natural pregnant mice were used as the negative control.
     2) The effects of of IVM on growth, reproductive capability and spatial learning and memory capability were detected as the first filial generation.
     Result(s):
     1. The model of IVM was established successfully.
     2. The rates of fertilization, cleavage and development capability were significantly lower in IVM group than in VVM group.
     3. Effects of IVM on the first filial generation.
     1) The rates of birth and suvival of offspring were significantly lower in IVM group than in VVM group.
     2) Weights from 1d to 1Ow stages were significantly higher in IVM group than in the natural group; however, no differences were shown between IVM and VVM group. The specific gravity of brain in 1Od and 3w stages from IVM and VVM group were shown significantly lower than the natural group, no differences were shown between IVM and VVM group. No differences from other organs were detected.
     3) The quantities of the procreation were shown higher in IVM groups than in the natural groups, while no differences were shown between IVM groups and VVM groups. No differences were detected in the sperm activity and estrous cycle between IVM and the other groups
     4) No differences were detected in the learning and memory ability including incubation period and the times of crossing by the water maze testing between IVM and the other groups.
     4. Effects of IVM on the second filial generation
     1) The survival rates of the second filial generation from IVM group were shown significantly lower than the other groups, which mean the existance of the risk of the mate among IVM groups.
     2) No differences were detected in weights, specific gravity of organs, sperm activity and estrous cycle, incubation period and the times of crossing among the second filial generation.
     Conclusion(s):
     1. IVM could affect the fertilization, cleavage, and development of preimplantation and post-implantation, which indicated the existence of the potential risk of IVM on the development.
     2. The changes of weight, specific gravities of organs and the procreation capibility illustrated the multifold effects of IVM on the offspring. The degree of the effects should be further investigated.
     3. IVM could affect the survival rate of the second filial generation, which revealed the risk of the marriage and the procreation for the offspring.
     4. The effects of IVM covered many sides around oocytes, embryos and offspring (first and second filial generation), and the exact mechanism should be under investigation.
     PartⅡExpression profile of global genome in postnatal mouse brain conceived through in vitro maturation
     Objective:To investigate the effects of IVM on the expression profile of the whole genome, and to reveal the dynamic changes of the differential genes during development and the effects of inheritance.
     Materials and methods:
     1. The gene chip array (mouse genome 430 2.0) was used for the analysis of the gene expression in the brains of newborn mice between IVM and VVM group (3 male mice per group). The differentially expressed genes were chosen by significance analysis of microarray (SAM)
     2. The differentially expressed genes were analyzed by hierarchical cluster, gene ontology classification and pathway analysis.
     3. Real-time RT-PCR was used to verify the results of the gene chip.
     4. IVM,VVM and the natural pregnant mice were used to detect the dynamic changes of these differentially expressed genes during the development from newborn to adult in male and female mice.
     5. The altered genes in the first filial generation were detected about their conditions in 10w of the second filial generation by real-time RT-PCR.
     Results:
     1. Gene chip microarray analysis showed that there were 231 differentially expressed probes between the brain tissues of IVM and VVM group, representing 196 differentially expressed genes with 158 up-regulations and 38 down-regulations. The IVM group and VVM group could be distinguished by analysis of hierarchical cluster.
     2. GO analysis showed that differentially expressed genes were involved in many functions such as neural development, neural differentiation and the regulation of neural factor.
     3. For the pathway analysis, in general, differential gene expression followed specific molecular pathways, and the most significantly altered one was the pathway named neuroactive ligand-receptor interaction
     4. Eight genes in neuroactive ligand-receptor interaction pathway and five important genes involved in the development of brain and nerves were found to be up-regulated in IVM group, and were confirmed by real-time RT-PCR.
     5. Some of the differential expressions of those genes disappeared during the development. Until lOw stage, most of the thirtheen differential gene recovered except that Neurodl and Pax6 were up-regulated in male mice, while Agtr2 were up-regulated and Pax6 were down-regulated in female mice.
     6. Expressions of Agtr2 were kept up-regulated in IVM male mice of the second filial generation, and no differences were shown among all the groups on the expressions of Neurodl and Pax6.
     Conclusions:
     1. Evidence presented here using a mouse model suggested that IVM could affect the brain gene expressions of the newborn mice, especially the neuroactive ligand-receptor interaction pathway.
     2. During the development, some of the genes recovered to normal expression while the others expressed abnormally.
     3. Some of the differentially expressed genes could last to the second filial generation, and show the sex difference. The relationship between the risk of nervousness disorders and the effects of IVM on offspring should be further evaluated.
     PartⅢEffects of IVM on the expression and the regulation of the imprinted genes
     Objective:To investigate the effects of IVM on the expression and regulation of the imprinted genes of the offspring.
     Materials and methods:
     1. The imprinted genes were chosen according to the gene chip, and were verified by the real-time RT-PCR.
     2. The expressions of the key regulating enzymes (Dnmtl, Dnmt3a, Dnmt3b, Dnmt31) were detected by real-time RT-PCR
     3. The DNA methylation status of CpG islands of the imprinted genes were detected by Bisufite Sequence PCR.
     Results:
     1. Eight imprinting genes were chosen according to the gene chip, including H19, Igf2, Kcnq1ot1, Mest, Peg3, Ube3a, Snrpn and Peg12.
     2. H19 were detected down-regulated and Kcnqlotl were detected up-regulated by real-time RT-PCR in IVM offspring.
     3. The expressions of Dnmtl were shown the higher in IVM group than the other groups, and the expressions of Dnmt3a were shown higher in IVM and VVM group than the Natural group. No differences were detected in the expressions of the other genes among the three groups.
     4. All the CpGs of H19 were moderately methylated, and the levels of methylation in IVM group were shown higher than the other groups, however, no statistical differences were shown. Some sites of maternal expression were methylated in IVM group, but were not detected in the other groups. All the CpGs of Kcnq1ot1 were moderately methylated. The methylations of Kcnqlotl were lower in IVM group; however, no stastical differences were shown.
     Conclusion:
     1. IVM could affect the expressions of H19 and Kcnq 1ot1 of the offspring.
     2. No differences in the status of the whole methylation were detected; however, the abnormalities of some important methylation sites might be involved in the differential expression of H19, which might be related to the abnormal expressions of Dnmtl and Dnmt3a, and lead to the abnormal expression of H19.
     3. No differences in the status of the whole methylation were detected in Kcnqlotl, and other regulating ways might be involved in the abnormal expression.
     4. The exact effects of IVM on the establishment, maintenance and regulation of the imprinting genes of the offspring should be under investigation.
引文
1. Cha KY, Chian RC. Maturation in vitro of immature human oocytes for clinical use. Human reproduction update 1998;4:103-20.
    2. Li Y, Feng HL, Cao YJ, Zheng GJ, Yang Y, Mullen S et al. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertility and sterility 2006;85:827-32.
    3. Chian RC, Lim JH, Tan SL. State of the art in in-vitro oocyte maturation. Current opinion in obstetrics & gynecology 2004; 16:211-9.
    4. Le Du A, Kadoch IJ, Bourcigaux N, Doumerc S, Bourrier MC, Chevalier N et al. In vitro oocyte maturation for the treatment of infertility associated with polycystic ovarian syndrome:the French experience. Human reproduction (Oxford, England) 2005;20:420-4.
    5. Revel A, Safran A, Benshushan A, Shushan A, Laufer N, Simon A. In vitro maturation and fertilization of oocytes from an intact ovary of a surgically treated patient with endometrial carcinoma: case report. Human reproduction (Oxford, England) 2004;19:1608-11.
    6. Soderstrom-Anttila V, Makinen S, Tuuri T, Suikkari AM. Favourable pregnancy results with insemination of in vitro matured oocytes from unstimulated patients. Human reproduction (Oxford, England) 2005;20:1534-40.
    7. Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertility and sterility 1991;55:109-13.
    8. Gilchrist RB, Thompson JG. Oocyte maturation:emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 2007;67:6-15.
    9. Roberts R, Iatropoulou A, Ciantar D, Stark J, Becker DL, Franks S et al. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biology of reproduction 2005;72:107-18.
    10. Fulka J, Jr., First NL, Moor RM. Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Molecular human reproduction 1998;4:41-9.
    11. Bao S, Obata Y, Carroll J, Domeki I, Kono T. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biology of reproduction 2000;62:616-21.
    12. Hassold T, Hunt P. To err (meiotically) is human:the genesis of human aneuploidy. Nature reviews 2001;2:280-91.
    13. Trimarchi JR, Keefe DL. Assessing the quality of oocytes derived from in vitro maturation:are we looking under the lamppost? Fertility and sterility 2006;85:839-40; discussion 41.
    14. Robert C, Gagne D, Bousquet D, Barnes FL, Sirard MA. Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence. Biology of reproduction 2001;64:1812-20.
    15. Gandolfi TA, Gandolfi F. The maternal legacy to the embryo:cytoplasmic components and their effects on early development. Theriogenology 2001;55:1255-76.
    16. Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology 2006;65:126-36.
    17. Nyholt de Prada JK, Kellam LD, Patel BG, Latham KE, Vandevoort CA. Growth hormone and gene expression of in vitro-matured rhesus macaque oocytes. Molecular reproduction and development;77:353-62.
    18. Borghol N, Lornage J, Blachere T, Sophie Garret A, Lefevre A. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics 2006;87:417-26.
    19. Mohammadi Roushandeh A, Habibi Roudkenar M. The influence of meiotic spindle configuration by cysteamine during in vitro maturation of mouse oocytes. Iranian biomedical journal 2009;13:73-8.
    20. Ferreira EM, Vireque AA, Adona PR, Ferriani RA, Navarro PA. Prematuration of bovine oocytes with butyrolactone I reversibly arrests meiosis without increasing meiotic abnormalities after in vitro maturation. European journal of obstetrics, gynecology, and reproductive biology 2009;145:76-80.
    21. Requena A, Bronet F, Guillen A, Agudo D, Bou C, Garcia-Velasco JA. The impact of in-vitro maturation of oocytes on aneuploidy rate. Reproductive biomedicine online 2009;18:777-83.
    22. Moon JH, Jee BC, Ku SY, Suh CS, Kim SH, Choi YM et al. Spindle positions and their distributions in in vivo and in vitro matured mouse oocytes. Human reproduction (Oxford, England) 2005;20:2207-10.
    23. Sun QY, Wu GM, Lai L, Park KW, Cabot R, Cheong HT et al. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction (Cambridge, England) 2001;122:155-63.
    24. Sun QY, Nagai T. Molecular mechanisms underlying pig oocyte maturation and fertilization. The Journal of reproduction and development 2003;49:347-59.
    25. Lee YS, Latham KE, Vandevoort CA. Effects of in vitro maturation on gene expression in rhesus monkey oocytes. Physiological genomics 2008;35:145-58.
    26. Wu YG, Liu Y, Zhou P, Lan GC, Han D, Miao DQ et al. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining:a study using the mouse model. Cell research 2007; 17:722-31.
    27. Cha KY, Han SY, Chung HM, Choi DH, Lim JM, Lee WS et al. Pregnancies and deliveries after in vitro maturation culture followed by in vitro fertilization and embryo transfer without stimulation in women with polycystic ovary syndrome. Fertility and sterility 2000;73:978-83.
    28. Chian RC, Buckett WM, Tulandi T, Tan SL. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Human reproduction (Oxford, England) 2000; 15:165-70.
    29. Wang JX, Norman RJ, Wilcox AJ. Incidence of spontaneous abortion among pregnancies produced by assisted reproductive technology. Human reproduction (Oxford, England) 2004; 19:272-7.
    30. Tincani A, Lojacono A, Taglietti M, Motta M, Biasini C, Decca L et al. Pregnancy and neonatal outcome in primary antiphospholipid syndrome. Lupus 2002; 11:649.
    31. Eppig JJ, O'Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA. Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Human reproduction (Oxford, England) 2009;24:922-8.
    32. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer:a meta-analysis. Fertility and sterility 2004;82:1514-20.
    33. Maher ER. Imprinting and assisted reproductive technology. Human molecular genetics 2005; 14 Spec No 1:R133-8.
    34. Shu-Chi M, Jiann-Loung H, Yu-Hung L, Tseng-Chen S, Ming IL, Tsu-Fuh Y. Growth and development of children conceived by in-vitro maturation of human oocytes. Early human development 2006;82:677-82.
    35. Junk SM, Dharmarajan A, Yovich JL. FSH priming improves oocyte maturation, but priming with FSH or hCG has no effect on subsequent embryonic development in an in vitro maturation program. Theriogenology 2003;59:1741-9.
    36. Nishi Y, Takeshita T, Sato K, Araki T. Change of the mitochondrial distribution in mouse ooplasm during in vitro maturation. Journal of Nippon Medical School=Nihon Ika Daigaku zasshi 2003;70:408-15.
    37. Middelburg KJ, Heineman MJ, Bos AF, Hadders-Algra M. Neuromotor, cognitive, language and behavioural outcome in children born following IVF or ICSI-a systematic review. Human reproduction update 2008;14:219-31.
    38. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization:a meta-analysis. Obstetrics and gynecology 2004;103:551-63.
    39. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception:a systematic review of controlled studies. BMJ (Clinical research ed 2004;328:261.
    40. Kruip TA, Bevers MM, Kemp B. Environment of oocyte and embryo determines health of IVP offspring. Theriogenology 2000;53:611-8.
    41. Bertolini M, Mason JB, Beam SW, Carneiro GF, Sween ML, Kominek DJ et al. Morphology and morphometry of in vivo-and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002;58:973-94.
    42. Qian Y, Shi WQ, Ding JT, Sha JH, Fan BQ. Predictive value of the area of expanded cumulus mass on development of porcine oocytes matured and fertilized in vitro. The Journal of reproduction and development 2003;49:167-74.
    1. Chian RC, Lim JH, Tan SL. State of the art in in-vitro oocyte maturation. Current opinion in obstetrics & gynecology 2004;16:211-9.
    2. Chian RC, Buckett WM, Tulandi T, Tan SL. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Human reproduction (Oxford, England) 2000;15:165-70.
    3. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer:a meta-analysis. Fertility and sterility 2004;82:1514-20.
    4. Maher ER. Imprinting and assisted reproductive technology. Human molecular genetics 2005; 14 Spec No 1:R133-8.
    5. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects--a systematic review. Human reproduction (Oxford, England) 2005;20:328-38.
    6. Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF:Danish National IVF cohort study. Human reproduction (Oxford, England) 2005;20:950-4.
    7. Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation:a population-based study. Lancet 2002;359:461-5.
    8. Hvidtjorn D, Grove J, Schendel DE, Vaeth M, Ernst E, Nielsen LF et al. Cerebral palsy among children born after in vitro fertilization:the role of preterm delivery--a population-based, cohort study. Pediatrics 2006;118:475-82.
    9. Ericson A, Nygren KG, Olausson PO, Kallen B. Hospital care utilization of infants born after IVF. Human reproduction (Oxford, England) 2002;17:929-32.
    10. Morin NC, Wirth FH, Johnson DH, Frank LM, Presburg HJ, Van de Water VL et al. Congenital malformations and psychosocial development in children conceived by in vitro fertilization. The Journal of pediatrics 1989;115:222-7.
    11. Bowen JR, Gibson FL, Leslie GI, Saunders DM. Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet 1998;351:1529-34.
    12. Gibson FL, Ungerer JA, Leslie GI, Saunders DM, Tennant CC. Development, behaviour and temperament:a prospective study of infants conceived through in-vitro fertilization. Human reproduction (Oxford, England) 1998;13:1727-32.
    13. Middelburg KJ, Heineman MJ, Bos AF, Hadders-Algra M. Neuromotor, cognitive, language and behavioural outcome in children born following IVF or ICSI-a systematic review. Human reproduction update 2008;14:219-31.
    14. Knoester M, Helmerhorst FM, Vandenbroucke JP, van der Westerlaken LA, Walther FJ, Veen S. Cognitive development of singletons born after intracytoplasmic sperm injection compared with in vitro fertilization and natural conception. Fertility and sterility 2008;90:289-96.
    15. Katalinic A, Rosch C, Ludwig M. Pregnancy course and outcome after intracytoplasmic sperm injection:a controlled, prospective cohort study. Fertility and sterility 2004;81:1604-16.
    16. Shu-Chi M, Jiann-Loung H, Yu-Hung L, Tseng-Chen S, Ming IL, Tsu-Fuh Y. Growth and development of children conceived by in-vitro maturation of human oocytes. Early human development 2006;82:677-82.
    17. Mitsukawa K, Lu X, Bartfai T. Bidirectional regulation of stress responses by galanin in mice: involvement of galanin receptor subtype 1. Neuroscience 2009; 160:837-46.
    18. Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A et al. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia:linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am J Med Genet B Neuropsychiatr Genet 2003;116B:17-22.
    19.'Hadders-Algra M. The neuromotor examination of the preschool child and its prognostic significance. Mental retardation and developmental disabilities research reviews 2005; 11:180-8.
    20. Schubert EW, McNeil TF. Prospective study of neurological abnormalities in offspring of women with psychosis:birth to adulthood. The American journal of psychiatry 2004;161:1030-7.
    21. Walker EF, Savoie T, Davis D. Neuromotor precursors of schizophrenia. Schizophrenia bulletin 1994;20:441-51.
    22. Erlenmeyer-Kimling L. Neurobehavioral deficits in offspring of schizophrenic parents:liability indicators and predictors of illness. American journal of medical genetics 2000;97:65-71.
    23. Hans SL, Marcus J, Nuechterlein KH, Asarnow RF, Styr B, Auerbach JG. Neurobehavioral deficits at adolescence in children at risk for schizophrenia:The Jerusalem Infant Development Study. Archives of general psychiatry 1999;56:741-8.
    24. Gilmore JH. Understanding what causes schizophrenia:a developmental perspective. The American journal of psychiatry;167:8-10.
    25. Frigerio A, Ceppi E, Rusconi M, Giorda R, Raggi ME, Fearon P. The role played by the interaction between genetic factors and attachment in the stress response in infancy. Journal of child psychology and psychiatry, and allied disciplines 2009;50:1513-22.
    26. Surendran S, Rady PL, Michals-Matalon K, Quast MJ, Rassin DK, Campbell GA et al. Expression of glutamate transporter, GABRA6, serine proteinase inhibitor 2 and low levels of glutamate and GABA in the brain of knock-out mouse for Canavan disease. Brain research bulletin 2003;61:427-35.
    27. Petrie J, Sapp DW, Tyndale RF, Park MK, Fanselow M, Olsen RW. Altered gabaa receptor subunit and splice variant expression in rats treated with chronic intermittent ethanol. Alcoholism, clinical and experimental research 2001;25:819-28.
    28. Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends in endocrinology and metabolism:TEM 2008;19:300-7.
    29. Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA. Startle syndromes. Lancet neurology 2006;5:513-24.
    30. Buckwalter MS, Cook SA, Davisson MT, White WF, Camper SA. A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glral) results in progressive neurological symptoms and juvenile death. Human molecular genetics 1994;3:2025-30.
    31. Molon A, Di Giovanni S, Hathout Y, Natale J, Hoffman EP. Functional recovery of glycine receptors in spastic murine model of startle disease. Neurobiology of disease 2006;21:291-304.
    32. Ellens DJ, Hong E, Giblin K, Singleton MJ, Bashyal C, Englot DJ et al. Development of spike-wave seizures in C3H/HeJ mice. Epilepsy research 2009;85:53-9.
    33. Guo S, Shi Y, Zhao X, Duan S, Zhou J, Meng J et al. No genetic association between polymorphisms in the AMPA receptor subunit GluR4 gene (GRIA4) and schizophrenia in the Chinese population. Neuroscience letters 2004;369:168-72.
    34. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 1997;388:769-73.
    35. Sutton MA, Schmidt EF, Choi KH, Schad CA, Whisler K, Simmons D et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 2003;421:70-5.
    36. Ito M. The molecular organization of cerebellar long-term depression. Nature reviews 2002;3:896-902.
    37. Meng H, Lee VM. Differential expression of sphingosine-1-phosphate receptors 1-5 in the developing nervous system. Dev Dyn 2009;238:487-500.
    38. Kuteeva E, Hokfelt T, Wardi T, Ogren SO. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci 2008;65:1854-63.
    39. Kong S, Lorenzana A, Deng Q, McNeill TH, Schauwecker PE. Variation in Galrl expression determines susceptibility to exocitotoxin-induced cell death in mice. Genes, brain, and behavior 2008;7:587-98.
    40. Zorrilla EP, Brennan M, Sabino V, Lu X, Bartfai T. Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiology & behavior 2007;91:479-85.
    41. Andrieux J, Richebourg S, Duban-Bedu B, Petit F, Lepretre F, Sukno S et al. Characterization by array-CGH of an interstitial de novo tandem 6p21.2p22.1 duplication in a boy with epilepsy and developmental delay. European journal of medical genetics 2008;51:373-81.
    42. Izzi C, Barbon A, Toliat MR, Heils A, Becker C, Nurnberg P et al. Candidate gene analysis of the human metabotropic glutamate receptor type 4 (GRM4) in patients with juvenile myoclonic epilepsy. Am J Med Genet B Neuropsychiatr Genet 2003;123B:59-63.
    43. Longtine MS, Bi E. Regulation of septin organization and function in yeast. Trends in cell biology 2003;13:403-9.
    44. Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R et al. Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 2007;53:519-33.
    45. Alatzoglou KS, Dattani MT. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early human development 2009;85:705-12.
    46. Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet journal of rare diseases 2007;2:47.
    47. Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M. Lhxl and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development (Cambridge, England) 2007;134:357-66.
    48. Shawlot W, Behringer RR. Requirement for Liml in head-organizer function. Nature 1995;374:425-30.
    49. Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W et al. LIM-homeodomain proteins Lhxl and Lhx5, and their cofactor Ldbl, control Purkinje cell differentiation in the developing cerebellum. Proceedings of the National Academy of Sciences of the United States of America 2007;104:13182-6.
    50. Sun X, Saitsu H, Shiota K, Ishibashi M. Expression dynamics of the LIM-homeobox genes, Lhxl and Lhx9, in the diencephalon during chick development. The International journal of developmental biology 2008;52:33-41.
    51. Boutin C, Hardt O, de Chevigny A, Core N, Goebbels S, Seidenfaden R et al. NeuroDl induces terminal neuronal differentiation in olfactory neurogenesis. Proceedings of the National Academy of Sciences of the United States of America;107:1201-6.
    52. Roybon L, Hjalt T, Stott S, Guillemot F, Li JY, Brundin P. Neurogenin2 directs granule neuroblast production and amplification while NeuroDl specifies neuronal fate during hippocampal neurogenesis. PloS one 2009;4:e4779.
    53. Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes & development 1995;9:1009-19.
    54. Habener JF, Kemp DM, Thomas MK. Minireview:transcriptional regulation in pancreatic development. Endocrinology 2005; 146:1025-34.
    55. Yatoh S, Akashi T, Chan PP, Kaneto H, Sharma A, Bonner-Weir S et al. NeuroD and reaggregation induce beta-cell specific gene expression in cultured hepatocytes. Diabetes/metabolism research and reviews 2007;23:239-49.
    56. Itkin-Ansari P, Marcora E, Geron I, Tyrberg B, Demeterco C, Hao E et al. NeuroDl in the endocrine pancreas:localization and dual function as an activator and repressor. Dev Dyn 2005;233:946-53.
    57. Hustinx R, Paulus P, Daenen F, Detroz B, Honore P, Jacquet N et al. [Clinical value of positron emission tomography in the detection and staging of recurrent colorectal cancer]. Gastroenterologie clinique et biologique 1999;23:323-9.
    58. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991;354:522-5.
    59. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997;387:406-9.
    60. Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development (Cambridge, England) 1991;113:1435-49.
    61. Engelkamp D, Rashbass P, Seawright A, van Heyningen V. Role of Pax6 in development of the cerebellar system. Development (Cambridge, England) 1999;126:3585-96.
    62. Schmahl W, Knoedlseder M, Favor J, Davidson D. Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta neuropathologica 1993;86:126-35.
    63. Stoykova A, Fritsch R, Walther C, Gruss P. Forebrain patterning defects in Small eye mutant mice. Development (Cambridge, England) 1996;122:3453-65.
    64. Dellovade TL, Pfaff DW, Schwanzel-Fukuda M. Olfactory bulb development is altered in small-eye (Sey) mice. The Journal of comparative neurology 1998;402:402-18.
    65. Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nature genetics 1994;6:168-73.
    66. Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 1991;67:1059-74.
    67. Malandrini A, Mari F, Palmeri S, Gambelli S, Berti G, Bruttini M et al. PAX6 mutation in a family with aniridia, congenital ptosis, and mental retardation. Clinical genetics 2001;60:151-4.
    68. Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. The Journal of biological chemistry 1999;274:14112-21.
    69. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414:799-806.
    70. Ylisaukko-oja T, Rehnstrom K, Vanhala R, Tengstrom C, Lahdetie J, Jarvela I.Identification of two AGTR2 mutations in male patients with non-syndromic mental retardation. Human genetics 2004;114:211-3.
    71. Calo LA, Schiavo S, Davis PA, Pagnin E, Mormino P, D'Angelo A et al. Angiotensin II signaling via type 2 receptors in a human model of vascular hyporeactivity:implications for hypertension. Journal of hypertension;28:111-8.
    72. Chung O, Stoll M, Unger T. Physiologic and pharmacologic implications of ATI versus AT2 receptors. Blood pressure 1996;2:47-52.
    73. Koike G, Horiuchi M, Yamada T, Szpirer C, Jacob HJ, Dzau VJ. Human type 2 angiotensin II receptor gene:cloned, mapped to the X chromosome, and its mRNA is expressed in the human lung. Biochemical and biophysical research communications 1994;203:1842-50.
    74. Vervoort VS, Beachem MA, Edwards PS, Ladd S, Miller KE, de Mollerat X et al. AGTR2 mutations in X-linked mental retardation. Science (New York, NY 2002;296:2401-3.
    75. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. Behavioural and cardiovascular effects of disrupting the angiotensin Ⅱ type-2 receptor in mice. Nature 1995;377:744-7.
    76. Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin Ⅱ AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Molecular and cellular endocrinology 1996;122:59-67.
    77. Horiuchi M, Mogi M, Iwai M. The angiotensin Ⅱ type 2 receptor in the brain. J Renin Angiotensin Aldosterone Syst;ll:1-6.
    78. Porrello ER, D'Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG et al. Angiotensin Ⅱ type 2 receptor antagonizes angiotensin Ⅱ type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 2009;53:1032-40.
    79. Moltzer E, Verkuil AV, van Veghel R, Danser AH, van Esch JH. Effects of angiotensin metabolites in the coronary vascular bed of the spontaneously hypertensive rat:loss of angiotensin Ⅱ type 2 receptor-mediated vasodilation. Hypertension;55:516-22.
    80. Eppig JJ, O'Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA. Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Human reproduction (Oxford, England) 2009;24:922-8.
    1. Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nature genetics 2003;33 Suppl:245-54.
    2. Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Human reproduction update 2004;10:3-18.
    3. Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D et al. Dnmtl overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Molecular and cellular biology 2002;22:2124-35.
    4. Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Molecular and cellular biology 2004;24:8862-71.
    5. Aapola U, Maenpaa K, Kaipia A, Peterson P. Epigenetic modifications affect Dnmt3L expression. The Biochemical journal 2004;380:705-13.
    6. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Developmental biology 2002;241:172-82.
    7. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic acids research 2005;33:5868-77.
    8. Walter J, Paulsen M. Imprinting and disease. Seminars in cell & developmental biology 2003;14:101-10.
    9. Huang C, Sloan EA, Boerkoel CF. Chromatin remodeling and human disease. Current opinion in genetics & development 2003;13:246-52.
    10. Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature genetics 2000;24:368-71.
    11. Osterod M, Larsen E, Le Page F, Hengstler JG, Van Der Horst GT, Boiteux S et al. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 2002;21:8232-9.
    12. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene 2004;23:4225-31.
    13. Wan M, Zhao K, Lee SS, Francke U. MECP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome. Human molecular genetics 2001;10:1085-92.
    14. Cunningham MD, Kassis JA, Pfeifer K. Chromatin modifiers, cognitive disorders, and imprinted genes. Developmental cell;18:169-70.
    15. Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays 2006;28:453-9.
    16. Mackay DJ, Hahnemann JM, Boonen SE, Poerksen S, Bunyan DJ, White HE et al. Epimutation of the TNDM locus and the Beckwith-Wiedemann syndrome centromeric locus in individuals with transient neonatal diabetes mellitus. Human genetics 2006;119:179-84.
    17. van Vliet J, Oates NA, Whitelaw E. Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 2007;64:1531-8.
    18. Feinberg AP. DNA methylation, genomic imprinting and cancer. Current topics in microbiology and immunology 2000;249:87-99.
    19. Maher ER. Imprinting and assisted reproductive technology. Human molecular genetics 2005;14 Spec No 1:R133-8.
    20. Lawrence LT, Moley KH. Epigenetics and assisted reproductive technologies:human imprinting syndromes. Seminars in reproductive medicine 2008;26:143-52.
    21. Youngson NA, Whitelaw E. Transgenerational epigenetic effects. Annual review of genomics and human genetics 2008;9:233-57.
    22. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Human molecular genetics 2008; 17:1-14.
    23. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Human molecular genetics; 19:36-51.
    24. Kerjean A, Couvert P, Heams T, Chalas C, Poirier K, Chelly J et al. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet 2003;11:493-6.
    25. Borghol N, Lornage J, Blachere T, Sophie Garret A, Lefevre A. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics 2006;87:417-26.
    26. Couzin J. Breakthrough of the year. Small RNAs make big splash. Science (New York, NY 2002;298:2296-7.
    27. Cerrato F, Sparago A, Verde G, De Crescenzo A, Citro V, Cubellis MV et al. Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms' tumour. Human molecular genetics 2008;17:1427-35.
    28. Niemitz EL, DeBaun MR, Fallon J, Murakami K, Kugoh H, Oshimura M et al. Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome. American journal of human genetics 2004;75:844-9.
    29. Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proceedings of the National Academy of Sciences of the United States of America 1999;96:5203-8.
    30. Wilkins JF. Genomic imprinting and methylation:epigenetic canalization and conflict. Trends Genet 2005;21:356-65.
    1 Li T, Vu TH, Ulaner GA, et al.IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch [J]. Mol Hum Reprod,2005,11(9):631-640.
    2 Reinblatt SL, Buckett W. In vitro maturation for patients with polycystic ovary syndrome. Semin Reprod Med.2008 Jan; 26(1):121-6. Review
    3 Cavilla JL, Kennedy CR, Byskov AG, Hartshorne GM.Human immature oocytes grow during culture for IVM. Hum Reprod.2008 Jan;23(1):37-45.
    4 Chian RC, Buckett WM, Abdul Jalil AK, et al. Natural-cycle in vitro fertilization combined with in vitro maturation of immature oocytes is a potential approach in infertility treatment[J]. Fertil Steril, 2004,82(6):1675-1678.
    5 Moon JH, Jee BC, Ku SY, et al. Spindle positions and their distributions in vivo and in vitro matured mouse oocytes [J]. Hum Reprod,2005,20(8):2207-2210.
    6 Xu L, Wang Y, Zhou P, Cao YX, Huang TH, Chian RC.Cytogenetic analysis of in vivo and in vitro matured oocytes derived from naturally cycling and stimulated mice.Syst Biol Reprod Med. 2008 May-Jun; 54(3):155-62.
    7. Borghol N, Lornage J, Blachere T, Sophie Garret A, Lefevre A. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics.2006 Mar;87(3):417-26
    8 Matsushita S, Tani T, Kato Y, et al. Effect of low-temperature bovine ovary storage the maturation rate and developmental potential of follicular oocytes after in vitro fertilization, parthenogenetic activation, or somatic cell nucleus transfer [J]. Anim Repro Sci,2004,84(34):293-301.
    9 Huang JY, Tulandi T, Holzer H, Lau NM, Macdonald S, Tan SL, Chian RC.Cryopreservation of ovarian tissue and in vitro matured oocytes in a female with mosaic Turner syndrome:Case Report.Hum Reprod.2008 Feb; 23(2):336-9.
    10 Donnez J, Dolmans MM, Demylle D, et al. Live birth after orthotopic transplantation of cryopreserved ovarian tissue [J]. Lancet 2004,364:1405-1410
    11 Francesca Comoglio, Lewis C. Krey et al. Germinal vesicle transfer between fresh and cryopreserved immature mouse oocytes [J].Human Reprod,2002,17(1):178-183.
    12 Fabbri R, Porcu E, Marsella T, et al. Technical aspects of oocyte cryopreservation [J]. Mol Cell Endocrinol,2000,169(1-2):39-42.
    13 Borini A, Bonu MA, Coticchio G, et al. Pregnancies and births after oocyte cryopreservation[J]. Fertil Steril,2004,82:601-605.
    14 Yoon TK, Kim TJ, Park SE. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program [J]. Fertil Steril,2003,79:1323-1326.
    15 Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, Buckett WM, Tulandi T, Tan SL.Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril.2008 Jun 23.
    16 Huang CC, Lee TH, Chen SU, et al. Successful pregnancy following blastocyst cryopreservation using super-cooling ultra-rapid vitrification[J]. Hum Reprod,2005,20(1):122-128.
    17 Shiota K, Yamada S. Assisted reproductive technologies and birth defects [J]. Congenit Anom (Kyoto),2005,45(2):39-43.
    18 Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood [J]. Nature,2004,428(6985):860-864.
    19 Hansen M, Bower C, Milne E, et al. Assisted reproductive technologies and the risk of birth defects-asystematic review [J]. Hum Reprod,2005,20(2):328-338.
    20 Bowdin S, Allen C, Kirby G, Brueton L, Afnan M, Barratt C, Kirkman-Brown J, Harrison R, Maher ER, Reardon W.A survey of assisted reproductive technology births and imprinting disorders.Hum Reprod.2007 Dec; 22(12):3237-40.
    21 Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C.The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.J Med Genet.2006 Dec; 43(12):902-7.
    22 Sutcliffe AG, Peters CJ, Bowdin S,et al. Assisted reproductive therapies and imprinting disorders-a preliminary British survey[J]. Hum Reprod,2006 Apr; 21(4):1009-1011.
    23 Allen C, Reardon W. Assisted reproduction technology and defects of genomic imprinting [J]. BJOG,2005,112(12):1589-1594.
    24 Paoloni-Giacobino A. Implications of reproductive technologies for birth and developmental outcomes:imprinting defects and beyond [J]. Expert Rev Mol Med,2006, Jun 5;8(12):1-14.
    25 Paoloni-Giacobino A.Implications of reproductive technologies for birth and developmental outcomes:imprinting defects and beyond.Expert Rev Mol Med.2006 Jun 5;8(12):1-14. Review.
    1 Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomicimprinting defects fOr reproduction and assisted reproductivetechnology. Human Reproduction Update,2004,10:3-18.
    2 Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Bio,2002,241:172-182.
    3 Gaudet F. Rideout W M 3rd. Meissner A, et a 1. Dnmtl expression in pre-and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cel Biol,2004,24:1640-1648.
    4 Meissner A, Gnirke A, Bell GW, et al. Reduce depresentation bisulfite sequencing for comparative high-resolution DNA methylationan alysis. Nucleic Acids Res,2005,3:5868-5877.
    5 Kim M, Trinh BN, Long TI, et al. Dnmtl deficiency leads to enhanced microsatellite instability in mouse embryonic stem cell. Nucleic Acids Res,2004,32:5742-5749.
    6 Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development, Science,2001, 293:1089-1093.
    7 Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmtl overexpression causes Genomic hypernlethylation, Loss of Imprinting, and Embryonic Lethality. Mol Cell Biol,2002,22:2124-2135.
    8 Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks diferentiation and Induces histone hyperacetylation in Embryonic stem cells. Mol Cell Biol,2004,24: 8862-8871.
    9 Aapola U, Maenpaa K, Kaipia A, et al. Epigenetic modificationsafect Dnmt3L expression. Biochem J,2004,380:705-713.
    10 Wilkins JF. Genomic imprinting and methylation:epigenetic canalization and conflict. Trends Genet,2005,21:356-365.
    11 Golding MC, Westhusin MF. Analysis of DNA (cytosine 5)methyhran sferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene ExprPattems,2003, 3:551-558.
    12 Hennann A. The human Dnmt2 has residual DNA(Cytosine C5)methyltransferase activity. Biol Chem,2003,278:31717-31721.
    13 Arney KL, Erhardt S, Drewell RA, et al. Epigenetic reprogramming of the genome from the germline to the embryo and back again. Int J Dev Biol,2001,45:533-540.
    14 Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. NatGenet,2003,33:245-254.
    15 Jehsch A. Beyond watson and Crick:DNA methylation and molecular enzymology of DNA methytransferases. Chem biochem,2002,3:274-93.
    16 Lorinez MC, Schubeler D, Hutchinson SR. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b independent de novo methylation. Mol Cell Biol,2002,22: 7572-7580.
    17 Wilkins JF. Tissue-Specific Reactivation of Gene expression at an Imprinted Locus. J. Theor. Biol,2006,240:277-287.
    18 Holliday R. DNA methylation and epigenetypes. Biochemistry(Moscow),2005,70:500-504.
    19 Khosla S, Dean W, Brown D. Culture of preimplantation mouse embryos affects fetal development an d the expression of imprinted genes. Biol Repmd,2001,64:918-926.
    20 Sommovilla J, Bilker WB, Abel T and Schultz RM. Embryo culture does not affect the longevity of offspring in mice. Reproduction,2005,130:599-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700