产核黄素工程菌B. subtilis PY的代谢工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕核黄素生物合成反应,研究了异源核黄素操纵子的扩增对工程菌核黄素合成的影响。在此基础上,对产核黄素枯草芽孢杆菌进行了代谢工程改造:通过在宿主菌株中分别扩增zwf基因,缺失ptsG基因,表达异源vgb基因等手段,构建了一系列产核黄素枯草芽孢杆菌基因工程菌。本文得到的主要结果如下:
     利用生物信息学原理从已经完成全基因测序的三种微生物(B. cereus ATCC 10987, B. cereus ATCC 14579和Geobacillus stearother mophilu)中寻找核黄素操纵子序列,对其进行核黄素操纵子基因的注释。通过核黄素缺陷型菌株的营养互补实验,证实了三种异源核黄素操纵子能够在枯草芽孢杆菌中表达。
     通过在B. subtilis RH13中表达三种不同的P43-rib(异源操纵子),发现蜡样芽孢杆菌(B. cereus ATCC 14579)核黄素操纵子对枯草芽孢杆菌核黄素产量的影响最大。将含有P43-rib_(B.cereus ATCC 14579)的片段整合到B.subtilis RH33染色体上得到的工程菌B. subtilis PY,在含8 %葡萄糖的发酵培养基中核黄素产量达到4.3 g/l,与出发菌相比提高了近27 %。
     在此基础上,研究了在工程菌B. subtilis PY中过量表达zwf基因(编码6-磷酸葡萄糖脱氢酶)对菌体核黄素合成的影响。实验结果表明:zwf基因的过量表达增加了PP途径的通量,提高了核黄素合成前体物5-磷酸核酮糖(Ru5P)的胞内浓度,在含8 %葡萄糖的发酵培养基中核黄素产量达到5.4 g/l与出发菌相比提高了约25 %。
     其次,考察了缺失工程菌B. subtilis PY的ptsG基因对其生理和核黄素产量的影响。实验结果表明:该基因的缺失降低了菌株对葡萄糖的吸收速率,EMP和TCA耦联性加强,在一定程度上减少了发酵副产物的大量积累,最大限度地将反应底物转化为菌体和目标产物。在含8 %葡萄糖的发酵培养基中最高菌体浓度增加22%,核黄素产量提高达到5.1 g/l,与出发菌相比提高了19 %,但与此同时发酵周期由48 h延长至72 h。对工程菌及其出发菌通量分布的计算结果表明:ptsG基因缺失的工程菌减少了EMP途径的通量,增强了TCA途径的通量,弱化了溢流代谢,底物转化率由出发菌的0.01 mol核黄素/mol葡萄糖提高到0.016 mol核黄素/mol葡萄糖。
     最后,本文研究了在B. subtilis PY中表达vgb基因对工程菌生理和核黄素产量的影响。实验结果表明:vgb基因的表达提高宿主菌氧化磷酸化效率,ATP/ADP由出发菌的1.3增加到工程菌的3.2。含vgb基因的工程菌在5 l发酵罐中流加发酵48 h,发酵结果显示菌体浓度增加28 %,核黄素产量达到13.3 g/l,比出发菌核黄素产量提高了约20 %。工程菌及其出发菌通量分布的计算结果表明:vgb基因的表达使工程菌PP途径通量增加,有效调节EMP途径和TCA循环途径的耦合性,在一定程度上消弱了溢流代谢。
Based on the riboflavin (VB_2) biosynthetic reactions, B. subtilis PY strain was constructed to study the effect of heterologous rib operon on riboflavin biosynthesis. Then metabolic engineering of B. subtilis PY for riboflavin production were studied by over-expression of zwf gene, expression of heterologous vgb (Vitreoscilla hemoglobin) gene and deletion of ptsG gene in B. subtilis PY, respectively. The main results presented in this work are as follows:
     Fragments containing the whole rib operons of B. cereus ATCC 10987, B. cereus ATCC 14579 and Geobacillus stearother mophilu were detected and annotated respectively from GenBank. Three heterologous rib operons were operative in B. subtilis that was identified by riboflavin auxotroph complementary experiments.
     Three fragments of P43-rib, which were expressed in B. subtilis RH13, were respectively constructed by replacing native prompters of the three heteroglous rib operons with constitutively expressed strong promoter P43. It indicated that expression of P43-rib_(B.cereus ATCC 14579B) enhances riboflavin production most efficiently. Subsequently, P43-rib_(B.cereus ATCC 14579B) was integrated into the chromosome of B. subtilis RH33, yielding transformant B. subtilis PY. 4.3 g/l of riboflavin was achieved in batch culture of B. subtilis PY with 8 % glucose as carbon source, which was 27 % enhancement compared to the host strain.
     The effect of zwf gene (encoding glucose 6-phosphate dehydrogenase) amplification on riboflavin production of strain B. subtilis PY was studied in this thesis. Metbolites analysis indicated that the flux of PP pathway increased. With the increasing of the intracellular concentration of precursor ribulose 5-phosphate (Ru5P), the riboflavin production of B. subtilis achieved 5.4 g/l in batch fermentation medium containing 8 % glucose, which was 25 % enhancement compared to the host strain.
     ptsG gene of B. subtilis PY, which encoding EII in glucose phosphotransferase system,was inactivated. Compared to the host strain, ptsG-disrupted stain accumulated less acid, and directed more carbon source to biomass and riboflavin biosynthetic pathway, while the glucose uptake rate was declined. 22% more biomass and 19 % higher riboflavin were achieved, compared to the host strain in batch culture with 8 % glucose. However, the fermentation cycle was prolonged from 48 h to 72 h. A metabolic flux distribution analysis indicated that both the fluxes in EMP pathway and also in the fluxes of overflow metabolism decreased in ptsG-disrupted strain while the riboflavin yield was increased from 0.01 mol riboflavin/mol glucose to 0.016 mol riboflavin/mol glucose.
     Vitreoscilla hemoglobin (VHb) gene was integrated into the chromosome of B. subtilis PY, and its influence on physiological characters and riboflavin production has been investigated. The presence of VHb not only enhanced efficiency of oxidative phosphorylation, but increased the ratio of ATP/ADP from 1.3 to 3.2, which as a result improved the biomass and riboflavin production. Compared with the control strain under fed-batch fermentation in 5 l fermentor, 28 % higher cell growth density and about 20 % improvement of the yield of riboflavin were obtained. A metabolic flux distribution analysis indicated that VHb had significantly enhanced the fluxes through PPP and pathways for biomass biosynthesis. The overflow metabolism was also decreased.
引文
[1]中华人民共和国药典(二部),1995.
    [2]罗贤懋,崔剑峰,核黄素与癌症的预防,肿瘤防治研究,2003,33(7):543-544,548.
    [3]马亚平,常怡勇,维生素褚新用途研究进展(1),医药产品,2005,6:24-27.
    [4]王林静,核黄素与健康,广东药学院学报,2002,16(3):223-226.
    [5]杜留云,裘娟萍,核黄素在动物中的作用,江西饲料,2002,2:17-19.
    [6] Stahmann KP, Revuelta JL, Seulberger H. Three biotechnical processes usingAshbya gossypii, Candida famata or Bacillus subtilis compete with chemicalriboflavin production. Appl Microbiol Biotechnol, 2000, 53(5):509-516.
    [7] Demain AL. Riboflavin oversynthesis. Annu Rev Microbiol.1972, 26:369-388.
    [8] Lee KH, Park YH, Han JK, et al. Microorganism for producing riboflavin andmethod for producing riboflavin using the same. WO 2004/050863 A1.
    [9] Mironov AS, Korolkova NV, Errais LL, et al. Method for producing riboflavin.WO2004/046347 A1.
    [10] Hara T, Ueda S. Regulating of polyglutamate in Bacillus subtilis (natto):transformation of a high PGA productivity. Agric Biol Chem, 1982, 46(9):2275-2281.
    [11] Kunst F, Ogasawara N, Moszer I, et al.The complete genome sequence of thegram-positive bacterium Bacillus subtilis. Nature, 1997, 390(6657):249-256.
    [12] Nishikawa H, Momose H, Shiio I. Regulation of Purine nucleotide synthesis inBacillus subtilis. J Biochem, 1976, 62(1): 92-98.
    [13] Perkins JB, Sloma A, Hermann T, et al. Genetic engineering of Bacillus subtilisfor the commercial production of riboflavin. J Ind Microbiol Biotechnol, 1999,22:8-18.
    [14] De Wulf P, Vandamme EJ. Production of D-ribose by fermentation. Appl.Microbiol Biotechnol, 1997, 48(2):141-148.
    [15] Shiio I. Production of primary metabolites. In: Maruo B, Yoshikawa H, editors.TBacillus subtilisT: molecular biology and industrial application.T Tokyo, Japan:Kodansha Ltd. and Elsevier Science Publishers, 1989, 191-211.
    [16] Matsui H, Sato K, Enei H, et al. Mutant of an Inosine producing strain ofBacillus subtilis to DL-Methionine Sulfoxide Resistance for Guanosineproduction. Appl Environ Microbiol, 1977, 34(4):337-341.
    [17]黄明志,蔡显鹏,陈双喜等,鸟苷发酵过程的定量和优化:抑制NH_4~+离子积累提高了鸟苷产量70%,生物工程学报,2003,19T(2)T:200-205.T
    [18]催堂兵,刘煜平,郭勇等,枯草芽孢杆菌培养生产农用抗真菌素初步研究,广东农业科学,2007,21(2):105-108.
    [19] Nyberg PMA. Production ofα-amylase by Bacillus subtilis containing a clonedα-amylase gene-expression in the laboratory and semi industrial scale. EurCongr Biotechnol, 1984, 3:409-413.
    [20] TLindner C, Stulke J, Hecker M. TRegulation of xylanolytic enzymes in Bacillussubtilis. Microbiology, 1994, 140:753-757.
    [21] Perkins JB, Pero J. Bacillus subtilis and its closet relatives from genes to cells.ASM Press, Washington, D.C. 2002, 271-286.
    [22] Foor F, Brown GM. Purification and properties of guanosine triphosphatecyclohydrolase II. J Biol Chem, 1975, 250(9):3545-3551.
    [23] Richter G, Fischer M, Krieger C, et al. Biosynthesis of riboflavin:characterization of the bifunctional deaminase-reductase of E. coli and BacillusSubtilis. J Bacteriol, 1997, 179(6):2022-2028.
    [24] Shavlovskii GM. Enzyme activity in the second step of flavingensis of reductasein the yeast P. guilliermondii. Mikrobiologiya, 1981, 50(6): 1008- 1011.
    [25] Volk R, Bacher A. Studies on the 4-Carbon precursor in the biosynthesis ofriboflavin. J Biol Chem, 1990, 265(32):19479-19485.
    [26] Nakajima K. Possibility of diacetyl and related compounds at 4-carboncompound necessary for the foemation of riboflavin in A. gossyii. ActaVitaminal Enzymal, 1984, 6(4):271-282.
    [27] Schott K, Ladenstein R, Konig A. The lumazine synthase-riboflavin synthasecomplex of Bacillus subtilis. J Bio Chem, 1990, 265(21):12686-12689.
    [28] Plaut GW. Biosynthesis of water-soluble vitamins. Annu Rev Biochem. 1974,43:899-922.
    [29] Perkins JB, Alan S, Janiee G., et al. Bacterial strains which overproducedriboflavin. US patent, 5925538. 1999-07-20.
    [30] Winkler WC, Nahvi A, Sudarsan N, et al. An mRNA structure that controls geneexpression by binding FMN. Proc Natl Acad Sci, 2002, 99(25):15908-15913.
    [31] Solovieva IM, Kreneva RA, Leak DJ, et al. The ribR gene encodes amonofunctional riboflavin kinase which is involved in regulation of the Bacillussubtilis riboflavin operon. Microbiol. 1999, 145:67-73.
    [32] Mandal M, Boese B, Barrick JE. et al. Riboswitches control fundamentalbiochemical pathways in Bacillus subtilis and other bacteria. Cell, 2003, 113(5):577-586.
    [33] H?mbelin M, Griesser V, Keller T, et al. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes inriboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavinproduction. J Ind Microbiol Biotechnol, 1999, 22:1-7.
    [34] Foor F, Brown GM. Purification and properties of guanosine triphosphatecyclohydrolase II. J Biol chem, 1975, 250:3545-3551.
    [35] Burrows RB. Presence in E. coli of deaminase and reductase involved inbiosynthesis of riboflavin. J Bacteriol, 1978, 136(2): 657-667.
    [36] Bacher A and Mailander B. Biosynthesis of riboflavin in Bacillus subtilis :Function and genetic control of the riboflavin synthase complex. J Bacteriol,1978, 134(2):476-482.
    [37]张会图,姚斌,范云六,核黄素基因工程研究进展,中国生物工程杂志,2004,24(12):32-38.
    [38]张克旭,《代谢控制发酵》,北京:中国轻工业出版社,1998,237-259.
    [39]张星元,王琴,代谢调节理论指导下的核黄素发酵条件,无锡轻工业大学学学报,食品与生物技术,1997,16:1-6.
    [40]陆文清,章克昌,核黄素生产菌的补料发酵,无锡轻工业大学学报,2000,19(3):240-243.
    [41] Stepanov G. Production of riboflavin by bacteria. French patent, 2546907.1984-12.
    [42] Chen Xun. New approaches to construction of recombinant strains- riboflavinproducers. Dissertation for Academic Degree of Candidate of BiologicalSciences. State Scientific research institute of genetics and selection ofindustrial microorganisms. MOSCOW. 1997.
    [43] Chen T, Chen X, Wang JY, et al. Effect of riboflavin operon dosage onriboflavin productivity in Bacillus subtilis. Transactions of Tianjin University,2005, 11(1):1-5.
    [44]李晓静,枯草芽孢杆菌核黄素操纵子及呼吸链的代谢工程改造,[博士学位论文],天津;天津大学,2006.
    [45] Bailey JE. Towards a science of metabolic engineering. Science, 1991, 252:1668-1674.
    [46]张星元,潘中明,牟奕,代谢网络刚性与代谢工程,生物工程进展,1999,19:37-42.
    [47] Heinrich R, Schuster S. The modeling of metabolic systems: structure, controland optimality. Biosystems, 1998, 47(1):61-77.
    [48] Varner J, Ramkrishna D. Mathmatical modes of metabolic pathways. Curr OpinBiotechnol, 1999, 10(2):146-150.
    [49] Gombert AK, Nielsen J. Mathematical modeling of metabolism. Curr OpinBiotechnol, 2000, 11(2):180-186.
    [50] Stephanopoulos G, Sinskey AJ. Metabolic engineering-methodologies andfuture prospects. Trends Biotechnol, 1993, 11(9):392-396.
    [51]赵学明,白冬梅等译,《代谢工程—原理与方法》,北京;化学工业出版社,2003.
    [52] Dunn WD, Ellis DI. Metabolomics: Current analytical platforms andmethodologies.Trends in Ana Chem, 2005, 24 (4):285-294.
    [53] Wiback SJ, Mahadevan R, Palsson B. Using metabolic flux data to furtherconstrain the metabolic solution space and predict internal flux patterns: theEscherichia coli spectrum. Biotechnol Bioeng, 2004, 86(3):317-331.
    [54] Riascos CAM, Gombert AK, Pinto JM. A global optimization approach formetabolic flux analysis based on labeling balance. Compu. Chem Eng, 2005,29:447-458.
    [55] Lee SY, Hong SH, Moon SY, et al. In silico metabolic pathway analysis anddesign:succinic acid production by metabolically engineered Escherichia coli.as an example. Genome inform, 2002, 13:214-223
    [56] Zamboni N, Fischer E, Muffler A, et al. Transient expression and flux changesduring a shift from high to low riboflavin production in continuous cultures ofBacillus subtilis. Biotechnol Bioeng, 2005, 89(2):219-232.
    [57] Franzén CJ. Metabolic flux analysis of RQ-controlled microaerobic ethanolproduction by Saccharomyces cerevisiae. Yeast, 2003, 20(2):117-132
    [58] Nicola Z. Toward metabolome-based P13PC flux analysis: a universal tool formeasuring in vivo metabolic activity. Topics in Current Genetics. 2007, DOI10.1007/4735_2007_0220
    [59] Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific andpractical use. Bio-Technol, 1994, 12:994-998.
    [60] Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichiacoli glucose catabolism under various oxygenation rates. Appl EnvironMicrobiol, 1993, 59(8):2465-2473.
    [61] Fernie AR, Geigenberger P, Stitt M. Flux an important, but neglected,component of functional genomics. Curr Opin Plant Bio, 2005, 8(2):174-182.
    [62] Huang GS, Hong MY, Liu YC. Incorporation of DNA chip technology to thesimulation and validation of flux analysis in yeast diauxic growth. Life Sci,2003, 72(22):2525-2531.
    [63] Sauer U, Hatzimanikatis V, Hohmann HP, et al. Physiology and metabolic fluxesof wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol,1996, 62:3687-3696.
    [64] Sauer U, Hatzimanikatis V, Bailey JE, et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol, 1997, 15:448-452.
    [65] Dauner M, Storni T, Sauer U. Bacillus subtilis metabolism and energetics incarbon-limited and excess-carbon chemostat culture. J Bacteriol, 2001,183(24):7308–7317.
    [66] Dauner M, Sonderegger M, Hochuli M, et al. Intracellular carbon fluxes inriboflavin-producing Bacillus subtilis during growth on two-carbon substratemixtures. Appl Environ Microbiol, 2002, 68(4):1760-1771.
    [67] Dauner M, Bailey JE, Sauer U. Metabolic flux analysis with a comprehensiveisotopomer model in Bacillus subtilis. Biotechnol Bioeng, 2001,76:144-156.
    [68] Zamboni N, Mouncey N, Hohmann HP, et al. Reducing maintenancemetabolism by metabolic engineering of respiration improves riboflavin byBacillus subtilis. Metab Eng, 2003, 5:49-55.
    [69] Zamboni N, Maaheimo H, Szyperski T, et al. The phosphoenolpyruvatecarboxykinase also catalyzes CB3B carboxylation at the interface of glycolysis andthe TCA cycle of Bacillus subtilis. Metab Eng, 2004, 6:277–284.
    [70] Gottschalk G. Bacterial metabolism, 2nd ed. Springer-Verlag, New York. NY.1986
    [71] Knorr B, Schlieker H, Hohmann HP. Scale-down and parallel operation of theriboflavin production process with Bacillus subtilis. Biochem Eng J, 2007,33:263–274
    [72]陈涛,王靖宇,周士奇等,基于基因组重排的代谢工程用于改进产核黄素Bacillus subtilis的性能,化工学报,2004,55(11):1842-1848.
    [73]陈涛,应用代谢工程方法改进枯草芽孢杆菌的核黄素合成,[博士后研究工作报告],天津;天津大学,2006.
    [74]李衍达,孙之荣,生物信息学基因和蛋白质分析的实用指南,清华大学出版社,2000.
    [75]郝柏林,张淑誉,生物信息学手册,上海科学技术出版社,2000.
    [76] Bethesda, The NCBI Handbook. National Library of Medicine (US), NCBI,2002.
    [77] Stülke J, Hillen W. Regulation of carbon catabolism in Bacillus subtilis. AnnuRev Microbiol, 2000, 54:849–480.
    [78] Gonzy-Trésboul G, Waard de JH, Zagorec M, et al. The Glucose permease of thephosphotransferase system of Bacillus subtilis: evidence for IIGlc and III Glcdomains. Mol Microbiol, 1991, 5(5):1241-1249.
    [79] Fiegler H, Bassias J, Jankovic I, et al. Identification of a gene in Staphylococcusxylosus encoding a novel glucose uptake protein. J Bacteriol, 1999,181(16):4929-4936.
    [80] Stülke J, Bachem S. Regulation of the Bacillus subtilis GlcT AntiterminatorProtein by Components of the Phosphotransferase System. Journal ofBacteriology, 1998, 180(20):5319-5326.
    [81] Blencke HM, Homuth G, Ludwig H, et al. Transcriptional profiling of geneexpression in response to glucose in Bacillus subtilis: regulation of the centralmetabolic pathways. Metab Eng, 2003, 5(2):133–149.
    [82] Dauner M and Sauer U. Stiochiometric growth model for riboflavin producingBacillus subtilis. Biotechnol Bioeng, 2001, 76 (2):132-143.
    [83] Dahl MK. CcpA-independent carbon catabolite repression in Bacillus subtilis. JMol Microbiol Biotechnol, 2002, 4(3):315-321.
    [84] Ludwig H, Rebhan N, Blencke HM, et al. Control of the glycolytic gapA operonby the catabolite control protein A in Bacillus subtilis: a novel mechanism ofCcpA mediated regulation. Mol. Microbiol, 2002, 45(2):543–553.
    [85] Russell JB, Cook GM. Energetics of bacterial growth: balance of anabolic andcatabolic reactions. Microbiol Rev, 1995, 59(1):48–62.
    [86] Jense KF, Pederson S. Metabolic growth rate control in Escherchia coli may bea consequence of subsaturation of macromolecular apparatus with substratesand catalytic components. Microbiol Rev, 1990, 54:89-100.
    [87] Sauer U, Bailey JE. Estimation of P-to-O ration in bacillus subtilis and itsinfluence on maximum riboflavin yield. Biotechnol Bioeng, 1999, 64:750-754.
    [88] Zamboni N, Sauer U. Knockout of the high-coupling cytochrome aaB3B oxidasereduces TCA cycle fluxes in Bacillus subtilis.FEMS Microbiology Letters, 2003,226:121-126.
    [89] Li XJ, Chen T, Chen X, et al. Redirection electron flow to high couplingefficiency of terminal oxidase to enhance riboflavin biosynthesis. ApplMicrobiol Biotechnol 2006, 73:374–383.
    [90]朱英波,产核黄素枯草芽孢杆菌中心碳代谢的代谢工程,[天津大学博士论文],天津;天津大学,2007.
    [91] Van de Walle M, Shiloach J. Proposed mechanism of actete accumulation in tworecombinant Escherichia coli. Strains during high density fermentation.Biotechnol Bioeng, 1998, 57(1):71-78.
    [92] Chou CH, Bennett GN, San KY. Effect of modulated glucose uptake onhigh-level recombinant protein production in a dense Escherichia coli culture.Biotechnol Prog, 1994, 10(6):644-647.
    [93]马红武,由发酵实验数据和基因组信息基于计量关系分析代谢网络,[博士学位论文],天津:天津大学,2001.
    [94] Sauer U. Cameron DC, Baily JE. Metabolic capacity of Bacillus subtilis for theproduction of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng,1998, 59(2):227-238.
    [95] Chatterjee R, Millard CS, Champion K, et al. Mutation of the ptsG gene resultsin increased production of succinate in fermentation of glucose by Escherichiacoli, Appl Environ Microbiol, 2001, 67(1):148-154
    [96] Nakano K, Rischke M, Sato S, et al. Influenceof actetic acid on the growth ofEscherichia coli.K12 during high cell density cultivation in a dialysis reactor.Appl Microbiol Biotechnol, 1997, 48:597-601.
    [97] Rowley DL, Wolf RE Jr. Molecular Characterization of the Escherichia coliK-12 zwf Gene Encoding Glucose 6-Phosphate Dehydrogenase. J Bacteriol,1991, 173(3):968-977.
    [98] Rowley DL, Pease AJ, Wolf RE JR. Genetic and Physical Analyses of theGrowth Rate-Dependent Regulation of Escherichia coli zwf Expression. Journalof Bacteriology, 1991, 173(15):4660-4667.
    [99] Zhao J, Baba T, Mori H, et al.Global metabolic response of Escherichia coli tognd or zwf gene-knockout, based on P13PC-labeling experiments and themeasurement of enzyme activities. Appl Microbiol Biotechnol, 2004,64(1):91–98.
    [100] Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodesthe NADPP+P-Dependent 6-P-Gluconate dehydrogenase in the pentose phosphatepathway. J Bacteriol, 2004, 186(14):4528–4534.
    [101] Butler MJ, Brutheim P, Jovetic S, et al. Engineering of primary carbonmetabolism for improved in antibiotic production in streptomyces Lividans.Appl Environ microbilol, 2002, 68(10):4731-4739.
    [102] Strohl WR, Schmidt TM, Lawry NH, et al. Characterization of Vitreoscillabeggiatodes and Vitreoscilla filifornis sp.nov., nom, rev., and comparison withVitreoscilla stercoraria and Beggiatoa alba. Int J syst Bacteriol, 1986,36:302-313.
    [103] Tyree B, Webster DA. The Binding of Cyanide and Carbon Monoxide toCytochrome o Purified from Vitreoscilla Bernadette. J Bio Chem, 1978,253(19):6988-6991.
    [104] Wakaayashi S, Matsubara H, Webster DA. Primary sequence of a dimericbacterial haemoglobin from Vtreoscilla. Nature, 1986, 322(6078):481-483.
    [105] Khosla C, and Bailey JE. Heterologous expression of a bacterial hemoglobinimproves the growth properties of recombinat E. coli. Nature, 1988,381(6157):633-635.
    [106]李莉莉,透明颤菌血红蛋白基因和λ噬菌体裂解基因在产聚羟基烷酸重组大肠杆菌中作用的研究,[中国农业大学硕士学位论文],北京;中国农业大学,2004.
    [107] Dikshit KL, Webster DA. Cloning, characterization and expression of thebacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 1988, 70(2):377-386.
    [108] Khosla C, Bailey JE. The Vitreoscilla hemoglobin gene:molecular cloning, nucleotide sequence and genetic expressionin Escherichia coli. Mol Gen Genet,1988, 214:158-161.
    [109] Dikshit KL, Dikshit RP, Webster DA. Study of Vitreoscilla globin (vgb) geneexpression and promoter activity in E. coli through transcriptional fusion.Nucleic Acids Res.1990, 18(14):4149-4155.
    [110] Joshi M, Mande S, Dikshit KL. Hemoglobin Biosynthesis in Vitreoscillastercoraria DW: Cloning, Expression, and Characterization of a New Homologof a Bacterial Globin Gene. TAppl Environ MicrobiolT, 1998, 64(6):2220–2228.
    [111] Joshi M, and Dikshit KL. Oxygen dependent regulation of Vitreoscilla globingene: evidence for positive regulation by FNR. Biochem Biophys Res Commun,1995, 202:535–552.
    [112] Sharrocks AD, Green J, Guest JR. FNR activates and represses transcription invitro. Proc Biol Sci, 1991, 245(1314):219-226.
    [113] Spiro S, Guest JR. FNR and its role in oxygen-regulated gene expression inEscherichia coli.FEMS Microbiol Rev, 1990, 6(4):399-428.
    [114]吴奕,杨胜利,透明颤菌血红蛋白基因调控与功能的研究,生物工程学报,1997年,13(1):1-5.
    [115]竺嘉,TVitreoscilla血红蛋白基因的研究T,[博士学位论文],上海;中国科学院上海药物研究所,1994.
    [116] Khosla C, Bailey JE. Characterization of the Oxygen-Dependent Promoter ofthe Vitreoscilla Hemoglobin Gene in Escherichia coli. J Bacteriol, 1989,171(11):5995-6004.
    [117] Yang JG, Webster DA, Stark BC. ArcA works with Fnr as a positive regulatorof Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli.Microbiological Research, 2005, 160:405-415.
    [118] Zhang L, Li YJ, Wang ZN, et al. Recent developments and future prospects ofVitreoscilla hemoglobin application in metabolic engineering. BitechnologyAdvance, 2007, 25(2):123-126.
    [119] Khosla C, Curtis JE, Bydalek P, et al. Expression of recombinant proteins inEscherichia coli using an oxygen-responsive promoter. Biotechnology(N/Y),1990, 8(6):554-558.
    [120] Ramandeep, Hwang KW, Raje M, et al. Vitreoscilla Hemoglobin:IntracellularLocalization and Binding to Membranes. J Biol Chem, 2001, 276(27):24781-24789.
    [121] Wittenberg JB. The molecular mechanism of hemoglobin-facilitated oxygendiffusion. J Biol Chem, 1996, 241:104-114.
    [122] Kallio PT, Kim DJ, Tsai PS, et al. Intracellular expression of Vitreoscillahemoglobin alters Escherichia coli energy metabolism under oxygen-limitedconditions. Eur I Biochem, 1994, 219:201-208.
    [123] Khosla C, Curtis JE, DeModena J, et al. Expression of intracellular hemoglobinimproves protein synthesis in oxygenlimited Escherichia coli. Biotechnology(NY). 1990, 8:849–853.
    [124]周艳芬,赵晓瑜,静天玉等,透明颤菌血红蛋白的生理功能机制与应用,河北大学学报,2003,26:139-141.
    [125] TTsai PST, TN?geli MT, TBailey JET. Intracellular expression of Vitreoscillahemoglobin modifies microaerobic Escherichia coli metabolism throughelevated concentration and specific activity of cytochrome o. Biotechnol Bioeng,1996, 49(5):151-160.
    [126] Chen W, Hughes DE, Bailey JM. Intracellular expression of Vitreoscillahemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae.Biotechol Prog, 1994, 10(3):308-313.
    [127] Kim Y, Webster DA, Stark BC. Improvement of bioremediation byPseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene(VHb) integrated into their chromosomes. J Ind Microbiol Biotechnol, 2005,32(4):148–154.
    [128]李尔漡,蔡志强,透明颤菌血红蛋白基因在恶臭假单胞菌种的克隆及表达,江苏工业学院学报,2006,18 (3):20-23.
    [129]文莹,宋渊,李季伦,透明颤菌血红蛋白在肉桂地链霉菌中的表达对其细胞生长及抗生素合成的影响,T生物工程学报T,2001,17(1):24-29.
    [130]江曙,陈代杰,戈梅等,透明颤菌血红蛋白基因在吸水链霉菌NND-52-C,中的克隆与表达,南京农业大学学报,2004,27(4): 60-63.
    [131] Liang F, Shouwen C, Ming S, et al. Expression of Vitreoscilla hemoglobin inBacillus thuringiensis improve the cell density and insecticidal crystal proteinsyield. Appl Microbiol Biotechnol, 2007, 74(2):390–397.
    [132] Wu TJMT,Hsu TTAT,T LeeT CK. TExpression of the gene coding for bacterialThemoglobinT improvesβ-galactosidase production in a recombinant PichiapastorisT. TBiotechnology LettersT. 2003, 25:1457-1462.
    [133] Chien LJ, Lee CK. Expression of bacterial hemoglobin in the yeast Pichiapastoris, with a low OB2B-induced promoter. Biotechnol Lett, 2005,27(19):1491–1497.
    [134] Aydin S, Webster DA, Stark BC. Nitrite inhibition of Vitreoscilla hemoglobin(VHb) in recombinant E. coli: direct evidence that VHb enhances recombinantprotein production. Biotechnol Prog, 2000, 16(6):917–921.
    [135]李昕,透明颤菌血红蛋白基因的表达研究,[硕士学位论文],四川;四川大学,2003.
    [136] Kallio PT, Bailey JE. Intracellular expression of Vitreoscilla hemoglobin (VHb)enhances total protein secretion and improves the production of alpha-amylaseand neutral protease in Bacillus subtilis. Biotechnol Prog, 1996, 12(1):31–39.
    [137]马丽杰,透明颤菌血红蛋白基因在枯草杆菌中的克隆和表达,[硕士学位论文],内蒙古;内蒙古大学,2001.
    [138] Dogan I, Pagilla KR, Webster DA, et al. Expression of Vitreoscilla hemoglobinin Gordonia amarae enhances biosurfactant production. J Ind MicrobiolBiotechnol. 2006, 33(8):693–700.
    [139] Chen GQ, Zhang G, Park SJ. et al. Industrial scale production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol, 2001,57(1-2):50–55.
    [140] Qiu YZ, Han J, Chen GQ. Metabolic engineering of Aeromonas hydrophila forthe enhanced production of poly (3-hydroxybutyrate-co-hydroxyhexanoate).Appl Microbiol Biotechnol, 2006, 69:537-542.
    [141] Geckil H, Barak Z, Chipman DM, et al. Enhanced production of acetoin andbutanediol in recombinant Enterobacter aerogenes carrying Vitreoscillahemoglobin gene. Biprocess Biosys Eng, 2004, 26(5):325-330.
    [142] Chien LJ, Chen HT, Yang PF.Enhancement of Cellulose Pellicle Production byConstitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinu.Biotechnol Prog. 2006, 22:1598-1603.
    [143] Setyawati MI, Chien LJ, Lee CK. Expressing Vitreoscilla hemoglobin instatically cultured Acetobacter xylinum with reduced OB2B tension maximizesBacterial cellulose pellicle production. J Biotechnol, 2007,132:38–43.
    [144] T孙智杰T,T梁楠T,T李润东T等,利用透明颤菌血红蛋白基因在谷氨酸棒杆菌中的表达提高谷氨酸和谷氨酰胺的产量,T北京理工大学学报T,2005,25(2):180-184.
    [145] Brünker P, Minas W, Kallio PT, et al. Genetic engineering of an industrial strainof Saccharopolyspora erythraea for stable expression of the Vitreoscillahaemoglobin gene (vhb). Microbiology, 1998, 144:2441–2448.
    [146] Minas W, Brünker P, Kallio PT, et al. Improved erythromycin production in agenetically engineered industrial strain of Saccharopolyspora erythraea.Biotechnol Prog, 1998, 14(4):561–566.
    [147] DeModena JA, Gutierrez S, Velasco J, et al. The production of cephalosporin Cby Acremonium chrysogenum is improved by the intracellular expression of abacterial hemoglobin. Biotechnology (NY), 1993, 11(8):926–929.
    [148]孟春,叶勤,石贤爱等,透明颤菌血红蛋白在金色链霉菌中的克隆和表达,微生物学报,2002,42:305–310.
    [149] Wu JM, Hsu TN, Lee CK. Expression of the gene coding for bacterialhemoglobin improves beta-galactosidase production in a recombinant Pichiapastoris. Biotechnol Lett, 2003, 25:1457–1462.
    [150] Zhu H, Wang TW, Sun SJ, et al. Chromosomal integration of the Vitreoscillahemoglobin gene and its physiological actions in Tremella fuciformis. ApplMicrobiol Biotechnol, 2006, 72(4):770-776.
    [151] THolmberg N, Lilius G, Bailey JE, Tet al. TTransgenic tobacco expressingVitreoscilla hemoglobin exhibits enhanced growth and altered metaboliteproduction. Nat BiotechnolT,T 1997T, T15T(3):T244–247.
    [152] Mao ZC,Hu YL, Zhao J. Improvement of the Hydroponic Growth andWaterlogging Tolerance of Petunias by the Introduction of vhb Gene ActaBotanica Sinica, 2003, 45 (2):205-210.
    [153] Li X, Peng RH, Fan HQ, et al. Vitreoscilla hemoglobin overexpressionincreases submergence tolerance in cabbage. Plant Cell Rep, 2005, 23:710–715.
    [154]吴巧雯,透明颤菌血红蛋白基因的密码子优化、人工合成及其在烟草中的表达,[硕士学位论文],北京;中国农业科学院研究生院生物技术研究所,2002.
    [155] Wilhelmson A, H?kkkinen ST, Kallio PT, et al. Heterologous expression ofVitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloidprofile of Hyoscyamus muticus hairy roots. Biotechnol Prog, 2006, 22(2):350–358.
    [156] Farrés J, Kallio PT. Improved cell growth in tobacco suspension culturesexpressing Vitreoscilla hemoglobin. Biotechnol Prog, 2002,18(2):229–233.
    [157] Yu HM, Shi Y, Zhang Y, et al. Effect of Vitreoscilla hemoglobin biosynthesis inEscherichia coli on production of poly(β-hydroxybutyrate) and fermentativeparameters. FEMS Microbiology letters, 2002, 214 (2):223-227.
    [158] Lin JM, Stark BC, Webster DA. Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2, 4-DNT) dioxygenase activity of and on 2,4-DNTdegradation in two-phase bioreactors. J Ind Microbiol Biotechnol, 2003, 30(6):362–368.
    [159] So J, Webste DA, Stark BC, et al. Enhancement of 2,4-dinitrotoluenebiodegradation by Burkholderia sp. in sand bioreactors using bacterialhemoglobin technology. Biodegradation, 2004, 15(3):161-171.
    [160] Xiong X C, Xing JM, Li X. Enhancement of Biodesulfurization in Two-LiquidSystems by Heterogeneous Expression of Vitreoscilla Hemoglobin. ApplMicrobiol Biotechnol, 200, 73(7):2394-2397.
    [161] Meltem UD, Stark BC, Pagilla KR. Comparison of 2-chlorobenzoin acidbiodegration in a membrane bioreactor by B.cepacia and B. cepacia bearing thebacterial hemoglobin gene. Water Research, 2006, 40(16):3123-3130.
    [162] Pendse GJ, Bailey JE. Effect of Vitreoscilla hemoglobin expression on growthand specific tissue plasminogen activator productivity I recombinant Chinesehamster ovary cells. Biotechnol Bioeng, 1994, 44(11):1367-1370.
    [163] Khleifat KM. Correlation between bacterial hemoglobin and carbon sources:their effect on copper uptake by transformed E. coli. strain alpha DH5. CurrMicrobiol, 2006, 52(1):64-68.
    [164] Erendler SO, Gencer S, Gecckil H, et al. Cloning and expression of theVitreoscilla hemoglobin gene in Enterobacter aerogenes: effect on cell growthand oxygen uptake. Prikl Biokhim Mikrobiol, 2004, 40(3):288-295.
    [165] Roos V, Andersson CI, Arfvidsson C, et al. Expression of double Vitreoscillahemoglobin enhances growth and alters ribosome and tRNA levels inEscherichia coli. Biotechnol Prog, 2002, 18(3):652-656.
    [166] Frey AD, Farrés J, Bollinger CJ. Bacterial hemoglobins and flavohemoglobinsfor alleviation of nitrosative stress in Escherichia coli. Appl Environ Microbiol,2002, 68(10):4835-4840.
    [167]焦瑞身,从透明颤菌血红蛋白谈到植物缺氧与转基因作物,生物工程学报,2003,19(4):381-386.
    [168] Liu T, Chen JY, Zheng Z. Construction of highly efficient E.coli expressionsystems containing low oxygen induced promoter and partition region. ApplMicrobiol Biotechnmol, 2005, 68:346-354.
    [169]赵晓瑜,透明颤菌血红蛋白基因在苏云金杆菌中的表达,[硕士学位论文],河北;河北大学,2004.
    [170]陈新爱,徐志南,王芳等,透明颤菌vgb基因整合型大肠杆菌的培养特性,浙江大学学报,2003,37(1):124-128.
    [171]章银梅,李心治,黄凡等,血红蛋白基因在枯草杆菌中的表达及其作用的研究,遗传学报,2000,27(2):183-188.
    [172] Bustin SA. Quantification of mRNA using real-time reverse transcriptionPCR(RT-PCR): trends and problems. J Molecul Endocrinol, 2002, 29(1):23-39
    [173] Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. ClinicalChem Laboratory Medicine, 1998, 36:255-269.
    [174] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual.Cold Spring Harbor Laboratory Press, New York, USA. 1989.
    [175]萨姆布鲁克等著,金冬雁等译,《分子克隆实验指南》(第二版),北京;科学出版社,1992.
    [176]卢圣栋主编,《现代分子生物学实验技术》(第二版),北京;中国协和医科大学出版社,1999,213-364.
    [177] Yasbin RE, Wilson GA, Young FE. Transformation and transfection in lysogenicstrains of Bacillus subtilis: Evidence for selective induction of prophage incompetent cells. J Bacteriol, 1975, 121(1):296-304.
    [178] Chang S, Cohen SN. High-frequency transformation of Bacillus subtilisprotoplast by plasmid DNA. Mol Gen Genet, 1979, 168:111-115.
    [179] Lee JM,Zhang SH, Anna SS, et al. RNA expression analysis using an antisenseBacollus subtilis genome array. J Bacteriol, 2001, 183(24):7371-7378.
    [180] Pfaffl MW. A new mathematical model for relative quantification in real-timeRT-PCR. Nucl Acids Res, 2001, 29(900):2002-2007.
    [181]王靖宇,蜡样芽孢杆菌核黄素操纵子的克隆与在枯草芽孢杆菌中的表达,[硕士学位论文],天津;天津大学,2004.
    [182] Vitreschak AG, Rodionov DA, Mironov AA, et al. Regulation of rivoflavinbiosynthesis and transport genes in bacteria by transcriptional and translationalattenuation. Nucleic Acids Research, 2002, 30(14):3141-3151.
    [183] Young M. Gene amplification in Bacillus subtilis. J Gen Microbiol, 1984,130(7): 1613-1621.
    [184] Tang XM, Shen W, Lakay FM, et al. Cloning and over-expression of an alkalineprotease from Bacillus licheniformis. Biotechnol Lett, 2004, 26(12): 975-979.
    [185] Jan J, Valle F, Boliver F, et al. Construction of protein overproducer strains InBacillus subtilis by an integration approach. Appl Microbiol Biotechno, 2001,55(1):69-75.
    [186] Tichopad A, Dilger M, Schwarz G, et al. Standardized determination ofreal-time PCR efficiency from a single reaction set-up. Nucl Acids Res, 2003,31(20):1-6.
    [187] Moszer I, Jones LM, Moreira S, et al. SubtiList: the reference database for theBacillus subtilis genome. Nucleic Acids Res, 2002, 30(1):62–65.
    [188] Ma JF, Hager PW, Michaell ML, et al. Cloning and Characterization of thePseudomonas aeruginosa zwf Gene Encoding Glucose-6-PhosphateDehydrogenase, an Enzyme Important in Resistance to Methyl Viologen(Paraquat). J Bacteriol, 1998, 180(7):1741–1749.
    [189] Bai DM, Zhao XM, Li XG, et al. Strain improvement of Rhizopus oryzae forover-production of L(+)-lactic acid and metabolic flux analysis of mutants.Biochem Eng J, 2004, 18:41-48.
    [190] Fisher SH, Mangasanik B. Synthesis of oxaloacetate in Bacillus subtilis mutantslacking the 2-ketoglutarate dehydrogenase enzymatic complex. J Bacteriol,1984, 158(1):55–62.
    [191] Sedmak JJ, Grossberg SE. A rapid sensitive and versatile assay for protein usingcoomassie brilliant blue G250. Anal Biochem, 1977, 79:544-552.
    [192] Müller RH, loffhagen N, Nabel W. Rapid extraction of (di) nucleotides frombacterial cells and determination by ion-pair reversed-phase HPLC. Journal ofMicrobiological methods, 1996, 25: 29-35.
    [193] Fraenkel DG, Levisohn SR. Glucose and Gluconate metabolism in anEscherichia coli. Mutant lacking phosphoglucose isomerase. J bacteriol, 1967,93(5):1571-1578.
    [194] Horne RN, Anderson WB, Nordlie RC. Glucose dehydrogenase activity of yeastglucose-6-phosphate dehydrogenase. Inhibition by adenosine 5’-triphosphateand other nucleoside 5’-triphosphates and diphosphates. Biochemistry, 1970,9(3):610–616.
    [195] Feucht A, Lewis PJ. Improved plasmid vectors for the production of multiplefluorescent protein fusions in Bacillus subtilis. Gene, 2001, 264(2):289-297.
    [196] Lowry OH, Passoneau J V. A flexible system of enzymatic analysis. AcademicPress, Inc, New York, NY. 1973.
    [197] Sánchez AM, Bennett GN, San KY. Batch culture characterization andmetabolic flux analysis of succinate-producing Escherichia coli strains. MetabEng, 2006, 8(3):209–226.
    [198] Doelle HW, Ewings KN, Hollywood NW. Regulation of glucose metabolism inbacterial systems. Adv Biochem Eng, 1982, 23:1-35.
    [199] Zamboni N. Metabolic engineering of respiration for improved riboflavinproduction and elucidation of NADPH metabolism in Bacillus subtilis. PhDThesis. Switzerland, 2003.
    [200] Varma A, Palsson BO. Biochemical production capabilities of Echerichia coli.Biotechnol Bioeng, 1993, 42:59-73.
    [201] TDrysch A, El Massaoudi M, Wiechert W, et al.T Serial flux mapping ofCorynebacterium glutamicum during fed-batch L-lysine production using thesensor reactor approach. Biotechnol Bioeng, 2004, 5:T85T(T5T):T497-505T.
    [202] Edwards J S, Palsson B O. How will bioinformatics influence metabolicengineering. Biotechno1 Bioeng, 1998, 58:162-l69.
    [203]陈涛,基于基因组重排的产核黄素枯草芽孢杆菌的代谢工程,[博士学位论文],天津;天津大学,2004.
    [204] Zhu Y, Yang ST. Effect of pH on metabolic pathway shift in fermentation ofxylose by Clostridium tyrobutyricum. J Biotechnol, 2004, 100(2):143-157.
    [205] Zhu Y, Yang ST. Adaptation of Clostridium tyrobutyricum for enhancedtolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol Prog, 2003, 19:365-372.
    [206]沈萍主编,《微生物学教程》,北京;高等教育出版社,2000.
    [207] Bachem S, Faires N, Stu?lke J. Characterization of the presumptivephosphorylation sites of the Bacillus subtilis glucose permease by site-directedmutagenesis:implication in glucose transport and catabolite repression. FEMSMicrobiol Lett, 1997, 156(2):233-238.
    [208] Schmiedel D, Hillen W. A Bacillus subtilis 168 mutant with increased xyloseuptake can utilize xylose as sole carbon source. FEMS Microbiol Lett, 1996,135:175–78.
    [209] Sá-Nogueira I, Nogueira TV, Soares S, et al. The Bacillus subtilis L-arabinose(ara) operon: nucleotide sequence, genetic organization and expression.Microbiology, 1997, 143:957–969.
    [210] Aristidou AA, San KY, Bennett GN. Metabolic flux analysis of Escherichia coliexpressing the Bacillus subtilis acetolactate synthase in batch and continuousculture. Biotech Bioeng, 1999, 63(6):737-749.
    [211] Cherrington CA, Hinton M, Chopra I. Effects of short-chain organic acids onmacromolecular synthesis in Escherichia coli. J Appl Bacteriol, 1990, 68:69-74.
    [212] Cherrington CA, Hinton M, Pearson GR, et al. Short-chain organic acids at pH5.0 kill Escherichia coli and Salmonella spp. without causing membraneperturbation. J Appl Bacteriol, 1991, 70:161-165.
    [213] Goel A, Ferrance J, Jeong J, et al. Analysis of metabolic fluxes in batch andcontinuous cultures of Bacillus subtilis. Biotechnol Bioeng, 1993, 42:686-696.
    [214] Desvaux M, Guedon E, Petitdemange H. Metabolic flux in cellulose batch andcellulose-fed continuous cultures of Clostridium cellulolyticum in response toacidic environment. Microbiol, 2001, 147:1461-1471.
    [215]于慧敏,史悦,沈忠耀等,CO差光谱法分析重组大肠杆菌中的透明颤菌血红蛋白,清华大学学报(自然科学版),2002,42(5):615-618.
    [216]李兵,周艳芬,何叶喧等,CO差光谱法分析重组大肠埃希菌及产黄青霉中VHb的活性表达,中国抗生素杂志,2005,30 (5):267-269.
    [217] Liu CY, Webster DA., Spectral characteristics and interconversions of thereduced, oxidized, and oxygenated forms of purified cytochrome o. J Biol Chem,1974, 249(13):4261–4266.
    [218] Shimotsu H, Henner DJ. Modulation of Bacillus subtilis Levansucrase GeneExpression by Sucrose and Regulation of the Steady-State mRNA Level bysacU and sacQ Genes, J Bicteriol, 1986, 168(1):380-388.
    [219] Aristidou AA, San KY, Bennett GN. Modification of the central metabolicpathways Escherichia coli to reduce the acetate accumulation by theheterologous expression of the bacillus subtilis acetolactate synthase gene.Biotechnol Bioeng, 1994, 44(8):944-951.
    [220] Renna MC, Najimudin N, Winik LR. et al. Regulation of the Bacillus sibtilisalsD, and alsR genes involved in post-exponential-phase production of acetoin.J Bacteriol, 1993, 175(12):3863-3874.
    [221] Frey AD, Bailey JE, Kallio PT. Expression of Alcaligenes eutrophusFlavohemoprotein and engineered Vitreoscilla Hemoglobin-Reducatase fusionprotein for improved Hypoxic growth of Escherichia coli. Appl Environmicrobiol, 2006, 66(1):98-104.
    [222] Buddenhagen RE, Webster DA, Stark BC. Enhancement by BacterialHemoglobin of Amylase Production in Recombinant E. coli Occurs UnderConditions of Low OB2B. Biotechnol Lett, 1996, 18:695-700.
    [223] Jiménez A, Santos M, Pompejus M, et al. Metabolic Engineering of the PurinePathway for Riboflavin Production in Ashbya gossypii. Appl Environ Microbiol,2005, 71(10):5743–5751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700