基因组重排和进化工程进行菊糖芽孢乳杆菌菌种改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以菊糖芽孢乳杆菌SP-BME126为出发菌株,将基因组重排技术和进化工程相结合,进行了具有耐酸性的菊糖芽孢乳杆菌D-乳酸高产株的选育。
     首先通过UV、DES诱变和pH梯度筛选三种方法,筛选出8株遗传稳定性较高的菌株,构建了基因组重排的亲本菌株库。利用响应面实验设计方法对菊糖芽孢乳杆菌原生质体的制备及再生条件进行了研究,其优化条件为:菌龄12h,酶浓度7.75mg/mL,酶解时间1.59h,酶解温度38℃。在此条件下菊糖芽孢乳杆菌原生质体制备率和再生率的乘积可达到59.6%,在RSM优化工艺条件的基础上,得到8种原生质体,分别研究了PEG浓度、融合温度、融合时间以及Ca2+浓度对原生质体融合的影响。经过三轮有效的基因组重排,得到高产D-乳酸的基因组重排菌F3-3,通过在MRS发酵培养基(pH5.0)中发酵培养,其菌体OD值达到3.84,D-乳酸最大积累浓度为66.5g/L。
     用进化工程的方法对基因组重排菌F3-3进行了耐酸性的进化选择。首先确定了菌株在不同pH下的代时和筛选压力,通过在恒定pH和梯度pH下的持续进化选择,发现梯度pH进化筛选耐酸性菌株效果优于恒定pH下的筛选。将进化工程菌EV-1在pH5.0的MRS发酵培养基中进行发酵罐培养,其最大OD值为3.89,D-乳酸的最大产量为85.2g/L。
     通过将96孔板和生物传感器分析有机结合,确定了在高通量筛选中菌株培养时间为3天,D-乳酸提取溶剂为无菌水,以0.015%溴甲酚紫作为微孔板培养中的筛选试剂,在此基础上确定了一种用于胞外代谢物的菌株高通量筛选方法。
     利用GC/MS和HPLC等分析手段对D-乳酸发酵过程中胞内外的代谢产物进行了分析,推测出14种胞内代谢物;建立了S. inulinus菌的代谢通量模型;通过代谢通量分析和关键酶活分析,对比了进化工程菌EV-1和出发菌株SP-BME126在不同发酵时期的代谢通量分布情况和关键酶活的变化。
     通过单因素实验、P-B实验和中心组合实验设计对进化工程菌EV-1的发酵工艺条件进行了优化,其优化条件为:葡萄糖95g/L、蛋白胨22g/L、种龄24h、接种量5%、碳酸钙3g/100mL、装液量112mL/500mL、温度35℃。在pH5.0的MRS优化培养基中发酵培养,菌株最大D-乳酸产量为91.7g/L,葡萄糖转化率达到96.5%,较优化前的进化工程菌株EV-1(85.2g/L)提高了7.63%。
In this paper, evolutionary engineering was integrated with genome shuffling technology to generate the evolved Sporolactobacillus inulinus (SP-BME126) with acid tolerance and high lactic acid production in laboratory-scale fermentation.
     Eight mutants with high genetic stabilities were obtained by using ultraviolet radiation, DES mutations and pH gradient screenings were used as the start population for genome shuffling. The conditions for protoplast preparation and regeneration were studied by response surface methodology (RSM), and the obtained optimal condition was: seed age 12 h, lysozyme concentration 7.75 mg/l, treating time 1.59 h and 38℃, which resulted that the product of protoplast preparation and regeneration was above 59.6 %. Then, eitht protoplasts were obtained based on the optimized condition from RSM. The effects of PEG concentration, Ca2+ concentration, fusion time and temperature on protoplast fusion were studied. A D-lactic acid producing mutant F3-3 was obtained by three rounds of genome shuffling. Under the fermentation condition (pH5.0) in MRS culture broth, the strain F3-3 could produce 66.5 g/L D-lactic acid.
     At a 5 L fermentor, F3-3 acquired high acid tolerance by evolution engineering. The generation time and selection pressure of F3-3 were determined and it was found that the efficiency of pH-gradient selection for obtaining strains with higher acid tolerance was much better than that of immobilized pH selection. Under the fermentation condition, the evolved strain EV-1 could produce D-lactic acid 85.2 g/L at pH5.0.
     The 96-well plate was integrated with biosensor to determine the content of lactic acid in the colonies. The culture time of strains in 96-well plate was 3 days. Sterile water was employed as solvent for the abstract of lactic acid from the colonies. The solution of 0.015 % bromcresol purple was applied to strain screening in 96-well plate. So a platform was established for high-throughput screening of strains producing extracellular metabolite.
     A scheme of metabolomics analysis by GC/MS was developed for detecting the metabolites in the broth. Fourteen intracellular metabolites were confirmed according to the GC/MS data. A quantitative metabolic flux model was developed and tested for Sporolactobacillus inulinus. Accordingly, the metabolic flux distribution was determined between the evolved strain EV-1 and the parental strain SP-BME126 at different fermentation phase.
     The optimal fermentation condition for D-lactic acid production was investigated by single factor experiment, Plackett-Burman design, central composite design and response surface methodology (RSM). The obtained optimal condition was: glucose 95 g/L, peptone 22 g/L, seed age 24 h, inoculum size 5 %, calcium carbonate 3 g/100mL, medium volume 112 mL/500mL and temperature 35℃. Under this condition, the evolved strain EV-1 showed 96.5 % yield efficiency, led to 7.63 % increase in D-lactic acid production from 85.2 g/L to 91.7 g/L.
引文
[1]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社, 2000
    [2]金其荣,张继民,徐勤.有机酸发酵工艺学[M].北京:中国轻工业出版社, 1989
    [3] Datta, R.,Henry, M. Lactic acid: recent advances in products, processes and technologies - a review[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(7): 1119-1129
    [4] Singh, S.K., Ahmed, S.U., Pandey, A. Metabolic engineering approaches for lactic acid production[J]. Process Biochemistry, 2006, 41(5): 991-1000
    [5] Xu, H., Teng, C.q.,Yu, M. Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer[J]. Polymer, 2006, 47(11): 3922-3928
    [6] Ikavalko, M., Skytta, E.T., Belt, E.A. One-year results of use of poly-L/D-lactic acid joint scaffolds and bone packing in revision metacarpophalangeal arthroplasty[J]. Journal of Hand Surgery-British and European Volume, 2007, 32E(4): 427-433
    [7] Antonio, G.V.R., Davide, P., Maddalena, R., et al. Production of L(+)a nd D(-) Lactic Acid Isomers by Lactobacihs casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in Continuous Fermentation[J]. Journal of fermentation and bioengineering, 1996, 81(6): 548-552
    [8] Hirata, M.,Kimura, Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions[J]. Polymer, 2008, 49(11): 2656-2661
    [9]白冬梅. L-乳酸高产菌株的诱变选育及代谢通量分析: [博士学位论文].天津,天津大学, 2001
    [10] Datta., R., Bonsignore., P.,Shih-Perng, T. Technological and economic potential of poly(lactic acid) and lactic acid derivatives[J]. FEMS Microbiology Reviews, 1995, 16: 221-231
    [11] Shigeno, T.,Nakahara, T. Production of D-lactic acid from 1,2-Propanediol by Pseudomonas sp. strain TB-135[J]. Biotechnology Letters, 1991, 13(6): 427-432
    [12] Joachim, V. Utilization of renewables for lactic acid fermentation[J]. Biotechnology Journal, 2006(1): 1428-1432
    [13] Roman, A., Yanez, R., Garrote, G., et al. SSF production of lactic acid from cellulosic biosludges[J]. Bioresource Technology, 2008, 99(10): 4247-4254
    [14] Marques, S., Santos, J.A.L., Gio, F.M., et al. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation[J]. Biochemical Engineering Journal, 2008, 41(3): 210-216
    [15]沈宏宇,胡永红,沈树宝等.生物催化剂固定化技术的研究进展[J].化工进展, 2003, 22(1): 18-21
    [16] Wee, Y.-J., Yun, J.-S., Lee, Y.Y., et al. Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater[J]. Journal of Bioscience and Bioengineering, 2005, 99(2): 104-108
    [17] Yi, S.S., Lu, Y.C.,Luo, G.S. Separation and concentration of lactic acid by electro-electrodialysis[J]. Separation and Purification Technology, 2008, 60(3): 308-314
    [18] Wang, Z.H.,Zhao, K.F. Kinetics and mass transfer for lactic acid recovered with anion exchange method in fermentation solution[J]. Biotechnology and Bioengineering, 1995, 47(1): 1-7
    [19] Wasewar, K.L., Yawalkar, A.A., Moulijn, J.A., et al. Fermentation of glucose to lactic acid coupled with reactive extraction: A review[J]. Industrial & Engineering Chemistry Research, 2004, 43(19): 5969-5982
    [20] Merrill, N.C.,Max, S.D. A D-lactic acid-requiring mutant of lactobacillus case[J]. the Journal of biological chemistry, 1952(9): 621-628
    [21] Kithara, K. Method for producing lactic acid with Sporolactobacillus US patent, 3262862, 1966
    [22] Demirci, A.,Pometto, A.L. Enhanced production of D(-)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649[J]. Journal of Industrial Microbiology, 1992(11): 23-28
    [23] Hartmut, V.,Dieterk, S. Process for the production of D-lactic acid with the use of Lactobacillus bulgaricus DSM 2129. US patent, 4467034, 1984
    [24] Hubertus, V. Procedure for the preparation of D(-)-lactic acid with lactobacillus bulgaricus. US patent, 5322781, 1994
    [25] Shahbazi, A., Salameh, M.M., Ibrahim, S.A. Immobilization of Lactobacillus helveticus on a spiral-sheet bioreactor for the continuous production of lactic acid[J]. Milchwissenschaft-Milk Science International, 2005, 60(3): 253-256
    [26] Toshiya, S.,Tadaatsu, N. Production of d-lactic acid from 1,2-propanediol by pseudomonas sp. strain tb-135[J]. Biotechnology Letters 1991, 13 (6): 427-432
    [27]甄卫军,李茜,石峰等.低能N+离子注入谷氨酸产生菌诱变选育及其发酵的研究[J].中国科学院研究生院学报, 2002, 19(4): 428-431
    [28]许婷婷,柏中中,何冰芳等.离子注入技术在D(-)-乳酸高产菌的选育中的应用.第一届全国化学工程与生物化工年会, 2004
    [29] Fukushima, K., Sogo, K., Miura, S., et al. Production of D-lactic acid by bacterial fermentation of rice starch[J]. Macromolecular Bioscience, 2004, 4(11): 1021-1027
    [30] Gao, L., Yang, H., Wang, X., et al. Rice straw fermentation using lactic acid bacteria[J]. Bioresource Technology, 2008, 99(8): 2742-2748
    [31] Lee, C.W. Production of D-lactic acid by bacterial fermentation of rice[J]. Fibers and Polymers, 2007, 8(6): 571-578
    [32] Yanez, R., Moldes, A.B., Alonso, J.L., et al. Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens[J]. Biotechnology Letters, 2003, 25(14): 1161-1164
    [33] Tanaka, T., Hoshina, M., Tanabe, S., et al. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation[J]. Bioresource Technology, 2006, 97(2): 211-217
    [34] Oh, H., Wee, Y.J., Yun, J.S., et al. Lactic acid production from agricultural resources as cheap raw materials[J]. Bioresource Technology, 2005, 96(13): 1492-1498
    [35] Ohkouchi, Y.,Inoue, Y. Impact of chemical components of organic wastes on L(+)-lactic acid production[J]. Bioresource Technology, 2007, 98: 546-553
    [36] Yanez, R., Alonso, J.L., Parajo, J.C. D-Lactic acid production from waste cardboard[J]. Journal of Chemical Technology and Biotechnology, 2005, 80(1): 76-84
    [37] Idris, A., Suzana, W. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii[J]. Process Biochemistry, 2006, 41(5): 1117-1123
    [38] Altaf, M.D., Naveena B.J., Gopal, R. Use of inexpensive nitrogen sources and starch for L(+)-lactic acid production in anaerobic submerged fermentation[J]. Bioresource Technology, 2007(98): 498-503
    [39] Ohkouchi, Y., Inoue, Y. Impact of chemical components of organic wastes on L(+)-lactic acid production[J]. Bioresource Technology, 2007, 98(3): 546-553
    [40]郑佐兴,刘祖同.德氏乳杆菌ZL-513发酵玉米粉生产乳酸的研究[J].食品与发酵工业, 1992(2): 22-25
    [41] Hofvendahl, K., Hahn-Hagerdal, B. Factors affecting the fermentative lactic acid production from renewable resources[J]. Enzyme and Microbial Technology, 2000, 26(2-4): 87-107
    [42] Bustos, G., Moldes, A.B., Alonso, J.L., et al. Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology[J]. Food Microbiology, 2004, 21(2): 143-148
    [43] Voelskow, H., Sukatsch, D. Process for the production of D-lactic acid with the use of Lactobacillus bulgaricus DSM 2129. US patent, 4467034, 1984
    [44] Michio, K., Kimitoshi, K. Fermentation to D-lactic acid. DE patent, 3686893T, 1993
    [45] Eiji, S., Chinami, O. Process for producing D-lactic acid and L-lactamide. USpatent, 5597716, 1997
    [46] Ishida, N., Suzuki, T., Tokuhiro, K., et al. D-Lactic acid production by metabolically engineered Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2006, 101(2): 172-177
    [47] Chang, D.E., Jung, H.C., Rhee, J.S., et al. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1[J]. Applied and Environmental Microbiology, 1999, 65(4): 1384-1389
    [48] Schliecker, G., Schmidt, C., Fuchs, S., et al. Characterization of a homologous series of L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro[J]. Biomaterials, 2003, 24(21): 3835-3844
    [49] van Maris, A.J.A., Winkler, A.A., Porro, D., et al. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export[J]. Applied and Environmental Microbiology, 2004, 70(5): 2898-2905
    [50] Zhou J., Shimizu, K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli[J]. Applied and Microbiology Biotechnology, 2004(64): 367-375
    [51] Zhou, S.D., Shanmugam, K.T. Functional replacement of the Escherichia coli D(-)-lactate dehydrogenase gene (ldhA) with the L(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici[J]. Applied and Environmental Microbiology, 2003(69): 2237-2244
    [52] Dien, B.S., Nichols, N.N., Bothast, R.J. Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars[J]. Journal of Industrial Microbiology & Biotechnology, 2001(27): 259-264
    [53]李剑,刘如林,马建芳等. D-乳酸脱氢酶基因、包括该基因的重组载体及其宿主细胞, CN1546667. 2004
    [54] Saitoh, S., Ishida, N., Onishi, T., et.al. Genetically engineered wine yeast produces a high concentration of L(+)-lactic acid of extremely high optical purity[J]. Applied and Environmental Microbiology, 2005(71): 2789~2792
    [55] Albert, S., Baldwin, J., Kittler, E.L.W., et al. Structure, evolution, and regulation of a fast skeletal muscle troponin I gene[J]. Proceedings of the National Academy of Sciences, 1985, 82: 8080-8084
    [56] Sankoff, D., Goldstein, M. Probabilistic models of genome shuffling[J]. Bulletin of Mathematical Biology, 1989, 51(1): 117-124
    [57] Zhang, Y.X., Perry, K., Vinci, V.A., et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415(6872): 644-646
    [58] Yu, L., Lei, T., Pei, X.L., et al. Application of Genome Shufflingin Enhancing L-lactic Acid Production by Improving Glucose Tolerance of Lactobacillus rhamnosus[J]. food science, 2007, 28(9): 369-373
    [59]张文学,刘春莉,蒋宏.利用原生质体融合和诱变育种技术选育高酶活菌株[J].四川大学学报, 2003, 35(6): 66-70
    [60]周东坡,平文祥.微生物原生质体融合[J].哈尔滨:黑龙江科学技术出版社, 1990
    [61] Gong, J., Zheng, H., Wu, Z., et al. Genome shuffling: Progress and applications for phenotype improvement[J]. Biotechnology Advances, 2009, doi: 10.1016/j.biotech. adv.2009.05.016
    [62] Stemmer, W.P.C. Molecular breeding of genes, pathways and genomes by DNA shuffling[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20: 3-12
    [63] Stephanopoulos, G. Metabolic engineering by genome shuffling-Two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria[J]. Nature Biotechnology, 2002, 20(7): 666-668
    [64] Hopwood, D.A., Wright, H.M., Bibb, M.J., et al. Genetic recombination through protoplast fusion in Streptomyces[J]. Nature, 1977, 268: 171-174
    [65] Rassoulzadegan, M., Binetruy, B., Cuzin, F. High frequency of gene transfer after fusion between bacteria and eukaryotic cells[J]. Nature, 1982, 295: 257-259
    [66] Scheinbach, S. Protoplast fusion as a means of producing new industrial yeast strains[J]. Biotechnology Advances, 1983, 1: 289-300
    [67] Baltz, R.H. Genetic recombination by protoplast fusion in Streptomyces[J]. Journal of Industrial Microbiology & Biotechnology, 1999, 22(4-5): 460-471
    [68] Mirdamadi-Tehrani, J., Mitchell, J.I., Williams, S.T., et al. Interspecific protoplast fusion and genetic recombination between Streptomyces griseus and Streptomyces griseolus[J]. FEMS Microbiology Letters, 1992, 91(2): 187-192
    [69] Mirdamadi-Tehrani, J., Mitchell, J.I., Williams, S.T., et al. Genetic analysis of intraspecies recombinant formation by protoplast fusion with three species of Streptomyces[J]. FEMS Microbiology Letters, 1986, 36(2-3): 299-302
    [70] Hewes, J.D. Whole genome shuffling: Rapid improvement of industrial micro-organisms by Maxygen, Inc. Abstracts of Papers of the American Chemical Society, 1999, 217: U885-U885
    [71] Ness, J.E., Welch, M., Giver, L., et al. DNA shuffling of subgenomic sequences of Subtilisin[J]. Nature Biotechnology, 1999, 17: 893-896.
    [72] Patthy, L. Genome evolution and the evolution of exon-shuffling-a review[J]. Gene, 1999, 238(1): 103-114
    [73] Zhou, D.P., Ping, W.X., Sun, J.Q., et al. Breeding of yeast for beer manufacturing by inactivated protoplast fusion[J]. Acta Microbiologica Sinica, 1999, 39: 454-460
    [74] Gibbs, M.D., Nevalainen, K.M.H., Bergquist, P.L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling[J]. Gene, 2001, 271(1): 13-20
    [75] Koga, Y., Haruki, M., Morikawa, M., et al. Stabilities of chimeras of hyperthermophilic and mesophilic glycerol kinases constructed by DNA shuffling[J]. Journal of Bioscience and Bioengineering, 2001, 91(6): 551-556
    [76] Marshall, S.H. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines[J]. Biotechnology Advances, 2002, 20(3-4): 229-238
    [77] Schmitz, H.P., Jockel, J., Block, C., et al. Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC for that of yeast Pkc1p[J]. Journal of Molecular Biology, 2001, 311(1): 1-7
    [78] Patnaik, R., Louie, S., Gavrilovic, V., et al. Genome shuffling of Lactobacillus for improved acid tolerance[J]. Nature Biotechnology, 2002, 20(7): 707-712
    [79] Petri, R., Schmidt-Dannert, C. Dealing with complexity: evolutionary engineering and genome shuffling[J]. Current Opinion in Biotechnology, 2004, 15(4): 298-304
    [80] Zhao, K, Ping, W.X., Zhang, L.N., et al. Screening and breeding of high taxol producing fungi by genome shuffling[J]. Science in China Series C: Life Sciences, 2008, 51(3): 222-231
    [81] Wei, P., Li, Z., He, P., et al. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance[J]. Biotechnology and Applied Biochemistry, 2008, 49(2): 113-120
    [82] Yu, L., Pei, X., Lei, T., et al. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus[J]. Journal of Biotechnology, 2008, 134: 154-159
    [83] Dai, M.H., Copley, S.D. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723[J]. Applied and Environmental Microbiology, 2004, 70(4): 2391-2397
    [84] Hida, H., Yamada, T., Yamada, Y. Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid[J]. Applied Microbiology and Biotechnology, 2007, 73(6): 1387-1393
    [85] John, R.P., Gangadharan, D., Madhavan, N.K. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes[J]. Bioresource Technology, 2008, 99(17): 8008-8015
    [86]陈涛,陈洵,王靖宇等. DNA及基因组改组在代谢工程中的应用[J].化工学报, 2004, 51(11): 1753-1758
    [87]陈涛,王靖宇,周世奇等.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用[J].化工学报, 2004, 55(11): 1842-1848
    [88] Lin, J., Shi, B.H., Shi, Q.Q., et al. Rapid improvement in lipase production of Penicillium expansum by genome shuffling[J]. Chinese Journal of Biotechnology, 2007, 23(4): 672-676
    [89] Liang, H.Y., Yang, G. Whole Genome shuffling to enhance activity of fibrinolytic enzyme coproducing strains[J]. China Biotechnology, 2007, 27(10): 39-43
    [90] Zhao, K., Ping, W., Zhang, L., et al. Screening and breeding of high taxol producing fungi by genome shuffling[J]. Science in China Series C: Life Sciences, 2008, 51(3): 222-231
    [91]于雷,雷霆,裴晓林等.应用基因组改组选育耐糖L-乳酸高产菌株[J].食品科学, 2008, 28(9): 369-373
    [92] Xu, B., Jin, Z.H., Wang, H.Z., et al. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling[J]. Applied Microbiology and Biotechnology, 2008, 80(2): 261-267
    [93] Hou, L.H., Novel methods of genome shuffling in Saccharomyces cerevisiae[J]. Biotechnology Letters, 2009, 31(5): 671-677
    [94] Xu, B., Wang, M.R., Yong, X., et al. Improvement of the output of teicoplanin by genome shuffling[J]. Chinese Journal of Antibiotics, 2006, 31(4): 237-242
    [95] Gong, G.L., Sun, X., Liu, L., et al. Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34: 615–623
    [96] Hida, H., Yamada, T., Yamada, Y. Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid[J]. Applied Microbiology and Biotechnology, 2007, 73(6): 1387-1393
    [97] Liang, H.Y., Guo, Y. Whole Genome Shuffling to Enhance Activity of Fibrinolytic Enzyme-producing Strains[J]. China Biotechnology, 2007, 27(10): 39-43
    [98] Zhu, H., Jin, Z.H., Cen, P.L. Natamycin-producing strain breeding by genome shuffling[J]. Chinese Journal of Antibiotics, 2006, 31(12): 739-742
    [99] Zheng, Z., Zhao, X. Astaxanthin-producing strain breeding by genome shuffling[J]. Journal of Biotechnology, 2008, 136(Supplement 1): S310-S311
    [100] Gong, G.L., Wang, C.L., Chen, M.H., et al. Genome shuffling to improve the ethanol production of Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2008, 136(Supplement 1): S311-S312
    [101] Shi, D.J., Wang, C.L.,Wang, K.M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology and Biotechnology 2009, 36(1): 139-147
    [102] Jin, Z., Xu, B., Lin, S., et al. Enhanced Production of Spinosad in Saccharopolyspora spinosa by Genome Shuffling[J]. Applied Biochemistry and Biotechnology, 2009, doi: 10.1007/s12010-008-8500-0
    [103] Wang, Y., Li, Y., Pei, X., et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus[J]. Journal of Biotechnology, 2007, 129(3): 510-515
    [104] Kumar, M. Improving polycylic aromatic hydrocarbons degration by genome shuffling[J]. Biotechnol and Environ Sciences, 2007, 9(1): 145-149
    [105] Butler, P.R., Brown, M., Oliver, S.G. Improvement of antibiotic titers fromStreptornyces bacteria by interactive continuous selection[J]. Biotechnology and Bioengineering, 1996, 49: 185-196
    [106] Sauer, U. Evolutionary engineering of industrially important microbial phenotypes[M]. Berlin: Springer-Verlag, 2001
    [107] Koffas, M., Cardayre, S.D. Evolutionary metabolic engineering[J]. Metabolic Engineering, 2005, 7(1): 1-3
    [108] Sonderegger, M., Sauer, U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose[J]. Applied and Environmental Microbiology, 2003, 69(4): 1990-1998
    [109] Kuyper, M., Winkler, A.A., van Dijken, J.P., et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle[J]. Fems Yeast Research, 2004, 4(6): 655-664
    [110] Kuyper, M., Toirkens, M.J., Diderich, J.A., et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J]. FEMS Yeast Research, 2005, 5(10): 925-934
    [111] Wisselink, H.W., Toirkens, M.J., Berriel, M.D.F., et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose[J]. Applied and Environmental Microbiology, 2007, 73(15): 4881-4891
    [112] Wisselink, H.W., Toirkens, M.J., Wu, Q., et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains[J]. Applied and Environmental Microblology, 2009, 75(4): 907-914
    [113] van Maris, A.J.A., Geertman, J.M.A., Vermeulen, A., et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast[J]. Applied and Environmental Microbiology, 2004, 70(1): 159-166
    [114] Jantama, K., Haupt, M.J., Svoronos, S.A., et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153
    [115] Steiner, P., Sauer, U. Long-term continuous evolution of acetate resistant Acetobacter aceti[J]. Biotechnology and Bioengineering, 2003, 84(1): 40-44
    [116] Cakar, Z.P., Seker, U.O.S., Tamerler, C., et al. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2005, 5(6-7): 569-578
    [117] Gilbert, A., Sangurdekar, D.P., Srienc, F. Rapid strain improvement through optimized evolution in the cytostat[J]. Biotechnology and Bioengineering, 2009, 103(3): 500-512
    [118] Plackett, R.L., Burman, J.P. The design of optimum multifactorialexperiments[J]. Biometrika, 1946(33): 305-325
    [119] Box, G E, Wilson, K.B. On the experimental attainment of optimum condition[J]. Journal of the Royal Statistical Society: Series B, 1951(13): 1-20
    [120] Myers, R.H., Khuri, A.I. Response surface methodology: 1966-1988[J]. Technometrics, 1989(31): 137-157
    [121] Myers, R.H. Response surface methodology: process and product optimization using designed experiments[J]. New York: John Wiley & Sons, 1995
    [122] Myers, R.H., Montgomery, D.C., Doganaksoy, N. et al., Response surface methodology-current status and future direction[J]. Journal of Quality Technology, 1999(31): 30-44
    [123] Sarabia, L.A., Ortiz, M.C., Stephen, D.B., et al. Response surface methodology, Oxford, Elsevier, 2009
    [124] Liu, C.B., Hu, B., Chen, S.L., et al. Utilization of condensed distillers solubles as nutrient supplement for production of nisin and lactic acid from whey[J]. Applied Biochemistry and Biotechnology, 2007, 137: 875-884
    [125] Iyer, P., Singhal, R.S. Production of glutaminase (E.C.3.2.1.5) from Zygosaccharomyces rouxii: Statistical optimization using response surface methodology[J]. Bioresource Technology, 2008, 99(10): 4300-4307
    [126] Sampaio, F.C., De Faveri, D., Mantovani, H.C., et al. Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170[J]. Journal of Food Engineering, 2006, 76(3): 376-386
    [127] Khattar, J.I.S., Shailza. Optimization of Cd2+ removal by the cyanobacterium Synechocystis pevalekii using the response surface methodology[J]. Process Biochemistry, 2009, 44(1): 118-121
    [128] Tang, X.J., He, G.Q., Chen, Q.H., et al. Medium optimization for the production of thermal stable [beta]-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology[J]. Bioresource Technology, 2004, 93(2): 175-181
    [129] Chang, J.S., Huang, Y.B., Hou, S.S., et al. Formulation optimization of meloxicam sodium gel using response surface methodology[J]. International Journal of Pharmaceutics, 2007, 338: 48-54
    [130] Silva, C.J.S.M., Roberto, I.C. Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology[J]. Process Biochemistry, 2001, 36(11): 1119-1124
    [131] Liew, S.L., Ariff, A.B., Raha, A.R., et al. Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology[J]. International Journal of Food Microbiology, 2005, 102(2): 137-142
    [132] Liptakova, D., Valik, L., Laukova, A., et al. Characterisation of Lactobacillus rhamnosus VT1 and its effect on the growth of Candida maltosa YP1[J]. Journal of Food Sciences, 2007, 25(5): 272-282
    [133] Liu, C.H., Lu, W.B., Chang, J.S. Optimizing lipase production of Burkholderia sp. by response surface methodology[J]. Process Biochemistry, 2006, 41(9): 1940-1944
    [134]沈萍.微生物学.高等教育出版社, 2003
    [135] Buchanan, R.E, Gibbons, N.E.伯杰细菌鉴定手册[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译:科学出版社, 1984: 759-760
    [136] Bai, D.M., Zhao, X.M., Li, X.G., et al. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production[J]. Biotechnology and Bioengineering, 2004, 88(6): 681-689
    [137] Ohkouchi, Y., Inoue, Y. Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011[J]. Bioresource Technology, 2006, 97(13): 1554-1562
    [138] Xu, Z., Wang, Q., Wang, P., et al. Production of lactic acid from soybean stalk hydrolysate with Lactobacillus sake and Lactobacillus casei[J]. Process Biochemistry, 2007, 42(1): 89-92
    [139] Chang, Y.N., Huang, J.C., Lee, C.C., et al. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber[J]. Enzyme and Microbial Technology, 2002, 30(7): 889-894
    [140] Greenacre, E.J., Lucchini, S., Hinton, J.C.D., et al. The lactic acid-induced acid tolerance response in Salmonella enterica serovar typhimurium induces sensitivity to hydrogen peroxide[J]. Applied and Environmental Microbiology, 2006, 72(8): 5623-5625
    [141] Nielsen, J, Villadsen, J. Bioreaction engineering principles. New York: Plenum Press, 1994
    [142] Calik, P., Bilir, E., Calika, G., et al. Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis[J]. Enzyme and Microbial Technology, 2002, 31(5): 685-697
    [143] Gund, P., Sigal, N.H. Applying informatics systems to high-throughput screening and analysis[J]. Trends in Biotechnology, 1999, 17(Supplement 1): 25-29
    [144] Hertzberg, R.P., Pope, A.J. High-throughput screening: new technology for the 21st century[J]. Current Opinion in Chemical Biology, 2000, 4(4): 445-451
    [145] Wahler, D., Reymond, J.L. High-throughput screening for biocatalysts[J]. Current Opinion in Biotechnology, 2001, 12(6): 535-544
    [146] Battersby, B.J., Trau, M. Novel miniaturized systems in high-throughput screening[J]. Trends in Biotechnology, 2002, 20(4): 167-173
    [147] Khoronenkova, S.V., Tishkov, V.I. High-throughput screening assay for D-amino acid oxidase[J]. Analytical Biochemistry, 2008, 374(2): 405-410
    [148] Zhang, G.R., Gao, R.J., Zhang, A.J., et al. High-throughput screening of the enantioselectivity of hyperthermophilic mutant esterases from Archaeonaeropyrum pernix K1 for resolution of (R, S)-2-Octanol Acetate[J]. Chemical Research in Chinese Universities, 2007, 23(3): 319-324
    [149]唐惠儒,王玉兰.代谢组研究[J].生命科学, 2007, 19(3): 272-280
    [150]冉小蓉,梁琼麟,罗国安等.代谢物组学的应用及进展[J].中成药, 2005, 27(4): 381-385
    [151] McKinlay, J.B., Shachar-Hill, Y., Zeikus, J.G., et al. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers[J]. Metabolic Engineering, 2007, 9(2): 177-192
    [152] Amigo, J.M., Skov, T., Bro, R., et al. Solving GC-MS problems with PARAFAC2[J]. Trends in Analytical Chemistry, 2008, 27(8): 714-725
    [153] Yi, L.Z., He, J., Liang, Y.Z., et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA[J]. FEBS Letters, 2006, 580(30): 6837-6845
    [154] Villas-Boas, S.G., Delicado, D.G., Akesson, M., et al. Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry[J]. Analytical Biochemistry, 2003, 322(1): 134-138
    [155] Villas-Boas, S.G., Moxley, J.F., Akesson, M., et al. High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts[J]. Biochemical Journal, 2005, 388: 669-677
    [156] Koek, M.M., Muilwijk, B., van der Werf, M.J., et al. Microbial metabolomics with gas chromatography/mass spectrometry[J]. Analytical Chemistry, 2006, 78(4): 1272-1281
    [157] Smid, E.J., van Enckevort, F.J.H., Wegkamp, A., et al. Metabolic models for rational improvement of lactic acid bacteria as cell factories[J]. Journal of Applied Microbiology, 2005, 98(6): 1326-1331
    [158] Nielsen, J., Robert, A.M. Metabolic engineering, in Encyclopedia of Physical Science and Technology, New York: Academic Press, 2001
    [159] Vallino, J.J., Stephanopoulos, G. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 251: 1675-1681
    [160] Skory, C.D. Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae[J]. Applied and Environmental Microbiology, 2000, 66(6): 2343-2348
    [161] Zhu, Y., Yang, S.T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum[J]. Journal of Biotechnology, 2004, 110(2): 143-157
    [162] Zhu, Y., Yang, S.T. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor[J]. Biotechnology Progress, 2003, 19(2): 365-372
    [163] Goel, A., Lee, J., Domach, M.M. Suppressed acid formation by cofeedingglucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site[J]. Biotechnology Progress, 1995(11): 380-386
    [164] Lee, J., Goel, A., Ataai, M.M. Supply-side analysis of growth of Bacillus subtilis on glucose-citrate medium: feasible network alternatives and yield optimality[J]. Applied and Environmental Microbiology, 1997, 63: 710-718
    [165] Marks, E. Profile analysis in a two-way classification problem[J]. Multivariate Behavioral Research, 1968(3): 95-106
    [166] Naveena, B.J., Altaf, M., Bhadrayya, K. Direct fermentation of starch to L(+)-lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM.[J]. Process Biochemistry, 2005, 40: 681-690
    [167] Bai, D., Yan, Z., Wei, Q., et al. Ammonium lactate production by Lactobacillus lactis BME5-18M in pH-controlled fed-batch fermentations[J]. Biochemical Engineering Journal, 2004, 19(1): 47-51
    [168] Becker, J., Klopprogge, C., Herold, A., et al. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase[J]. Journal of Biotechnology, 2007, 132(2): 99-109
    [169] Chatziioannou, A., Palaiologos, G., Kolisis, F.N. Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate[J]. Metabolic Engineering, 2003, 5(3): 201-210
    [170] Venkatesh, K.V. Metabolic flux analysis of lactic acid fermentation: effects of pH and lactate ion concentration[J]. Process Biochemistry, 1997, 32(8): 651-655
    [171] Schwender, J. Metabolic flux analysis as a tool in metabolic engineering of plants[J]. Current Opinion in Biotechnology, 2008, 19(2): 131-137
    [172] Wee, Y.J., Ryu, H.W. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials[J]. Bioresource Technology, 2009, 100(18): 4262-4270
    [173] Yu, L., Lei, T., Ren, X., et al. Response surface optimization of L(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466[J]. Biochemical Engineering Journal, 2008, 39(3): 496-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700