应用系统代谢工程方法改进产核黄素枯草芽孢杆菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统分析了三株不同核黄素产量B. subtilis工程菌株的代谢特征,揭示了菌株产核黄素的内在遗传机理,同时构建了一系列产核黄素B. subtilis基因工程菌,得到的主要结果如下:
     发现purF基因采用不同的整合方式对菌体代谢的影响有明显差异,原因在于采用双交换整合机理构建的系列工程菌中仅purF基因表达水平提高;而采用单交换整合机理构建的系列工程菌中不仅purF基因而且其下游purM、purN、purH、purD基因的表达水平皆有不同程度的提高,这些基因的编码产物可催化更多的嘌呤前体物谷氨酰胺、甘氨酸、10-甲醛四氢叶酸(10-Formyl-THF)进入嘌呤途径,故其对菌体代谢影响较大。
     从基因表达水平上揭示产核黄素工程菌的主要特点,确定了产核黄素菌株应具有的有利表型:表达增强显著的核黄素操纵子,将加强核黄素合成途径;citZ基因及副产物形成有关的基因的下调,可避免溢流代谢、减少副产物生成;采取谷氨酸脱氢酶催化的途径利用氮源(NH4+)能节约菌的能量消耗;葡萄酸支路可提供充足的核黄素合成起始物5-磷酸核酮糖;采用能量耦合效率高的aa3氧化酶来产生能量,可有效改善能量供给。
     以工程菌RH33和RH44为亲株,增强表达PRPP合成酶及核糖-5-磷酸异构酶可提高胞内PRPP浓度,促进PurR调控基因的表达,进而促使胞内更多的嘌呤核苷酸、谷氨酰胺、一碳单位、甘氨酸、二氧化碳和天冬氨酸等核黄素前体物合成途径加强并参与到核黄素合成途径,核黄素合成能力分别提高20%和3.4%。
     核黄素合成过程中,需要1分子的DARPP(长途径提供)和2分子的DHPB(短途径提供)生成1分子的核黄素。增加PRPP浓度虽然一方面加强了前体物的供给,另一方面解除了对嘌呤及甘氨酸合成途径等PurR调控基因的抑制,但这两方面作用仅仅在于提高GTP合成途径(长途径)的通量,没有缓解存在的前体物供给不平衡,RH44对此尤为敏感。为平衡前体物供给以提高核黄素生产,在RH44中增强表达3,4-二羟基磷酸丁酮(DHPB)合成酶以增加DHPB供给,缓解存在的前体物供给不平衡,从而构建RH44-RB。RH44-RB与其亲株RH44相比,菌体生长变慢,糖耗减少,核黄素产量在摇瓶培养下达到6.0 g/l,产率达到0.061(g riboflavin/g glucose),与出发菌RH44相比分别提高了17%和19%。
Based on system biology and metabolic engineering, here we reported the characterization of the riboflavin biosynthesis ability in three riboflavin overproducers. The metabolism and regulation contributed to the riboflavin overproducing was studied. Consequently, a series of genetic modified B. subtilis strains were constructed and the major findings are:
     In this study, the purF gene was introduced into the amyE gene locus by a double crossover mechanism and the purF locus by a single like mechanism. However, as demonstrated in this work, a significant different effect on the purine pathway and riboflavin production was found according to the used integration mechanism. It was reasoned that the double crossover mechanism would singly up-regulate the expression of purF, in contrast, the single crossover mechanism would simultaneously up-regulate purF and its downstream genes purM, purN, purH, purD, which efficiently increased the supply of the purine precursors into purine pathway.
     A comparative transcriptome profiling between riboflavin producing strains and the wild type strain was performed, and it found the genotype that contributed to the riboflavin overproducing trait: The strongly up-regulated transcription of rib operon would enforce riboflavin biosynthesis pathway; Down-regulation of gene citZ and the byproducts formation genes would facilitate reducing overflow metabolism; Adoption of the glutamate dehydrogenase system could save one molecule of ATP for the assimilation of one molecule of ammonium; The up-regulation of gdh and gntK modulated carbon flow through the gluconate bypass to provide more precursor ribulose-5-P; Redirection electron flow to high coupling efficiency of terminal oxidase could enhance energy generation.
     In RH33 and RH44, we selected and co-overexpressed prs and ywlF genes simultaneously, which are involved in the biosynthetic pathway of PRPP from ribulose-5-phosphate. This co-amplification led to an elevated PRPP pool and thus the increased transcript abundances of PurR-regulated genes participated in riboflavin precursor biosynthesis, including purine nucleotides, glycine, glutamine etc. The riboflavin biosynthetic ability was enhanced by 20% and 3.4%, respectively.
     Since two DHBP molecules and one DARPP molecule were needed for the formation of one riboflavin molecule, DHBP was consumed at a higher rate than DARPP, which resulted in an imbalance supply of riboflavin synthesis precursors. However, enhancing purine biosynthesis pathway or PurR-regulated genes only facilitated the formation DARPP, which is provided by the long and normally tight-regulated metabolic pathway. Therefore, lacking of DHBP, the imbalance of precursors supply would limit the riboflavin overproducing in RH44. To solve this imbalance problem, ribB gene from E. coli that only coding the DHBP synthase was selected and overexpressed. As a result, a 17% increase in the riboflavin production and a 19% increase in the yield were obtained, which suggested that the expression of ribB gene from E. coli would produce more DHBP to recover the balance of the precursors supply.
引文
[1]褚志义.生物合成药物学.北京:化学工业出版社, 2000.
    [2] McCormick D. Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev, 1989, 69:1170-1198.
    [3]童朝阳,徐琪寿.核黄素的药理作用及应用前景.军事医学科学院院刊, 2003, 27(3):223-226.
    [4] Dufosse L. Microbial production of food grade pigments. Food Technol Biotechnol, 2006, 44:313-321.
    [5]马凤楼.我国“推荐的每日膳食中营养素供给量(RDA)”的沿革与修订目标.营养学报, 1999, 21:220-223.
    [6]李晓瑜.美国的食品强化管理.国外医学:卫生学分册, 2006, 33(2):65-69.
    [7]李庆龙.执行营养强化小麦粉国家标准的思考.面粉通讯, 2008, 2:36-37.
    [8]庾莉萍.核黄素的市场消费及生产格局.广东饲料, 2007, 16(06):6-7.
    [9] Stahmann KP, Revuelta JL, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol, 2000, 53(5):509-516.
    [10]经济合作与发展组织.生物技术在工业可持续发展中的应用.北京,科学技术文献出版社, 2005.
    [11] http://www.bio.org/ind/pubs/cleaner2004/.
    [12] Kasler B, Sahm H, Stahmann KP, et al. Riboflavin-production process by means of micro-organisms with modified isocitratlyase activity. US Patent: 5976844, 1999.
    [13] Forster C, Santos MA, Ruffert S, et al. Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem, 1999, 274(14):9442-9448.
    [14] Bigelis R. Industrial products of biotechnology: application of gene technology. In: Rehm HJ, Reed G (eds) Biotechnology, 1989, 7b:243-256.
    [15] Heefner DL, Weaver CA, Yarus MJ, et al. Method for producing riboflavin with Candida famata. US Patent 5,164,303, 1992.
    [16] Lee KH, Park YH, Han JK, et al. Microorganism for producing riboflavin and method for producing riboflavin using the same. WO 2004/050863 A1, 2003.
    [17] Mironov AS, Korolkova NV, Errais LL, et al. Method for producing riboflavin. EP Patent 1,563,057, 2005.
    [18] Lee KH, Park YH, Han JK, et al. Microorganism for producing riboflavin and method for producing US patent 7166456, 2003.
    [19] Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol, 2004, 50(1):1-17.
    [20] FDA. Everything Added to Food in the United States: Boca Raton: CRC Press, 1993.
    [21]黄明志,蔡显鹏,陈双喜,等.鸟苷发酵过程的定量和优化:抑制NH4 +离子积累提高了苷产量70%.生物工程学报, 2003, 19(2):200-205.
    [22] Perkins JB, Sloma A, Hermann T, et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol, 1999, 22(1):8-18.
    [23] Matsui H, Sato K, Enei H, et al. Mutation of an inosine-producing strain of Bacillus subtilis to DL-methionine sulfoxide resistance for guanosine production. Appl Environ Microbiol, 1977, 34:337-341.
    [24]钱江潮,姚泉洪.肌苷和鸟苷生产菌中嘌呤核苷合成途径三段基因序列的分析.微生物学报, 2003, 43(2):200-205.
    [25] Kuninaka A. Nucleotides and related compounds. In Biotechnology, 2nd edn, Vol. 6. Rehm, H.J., Reed, G., Pühler, A., and Stadler, P. (eds). Verlagsgesellschaft, Weinheim, VCH, 1996. 561-612.
    [26] Kunst F., Ogasawara N., Moszer I., et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390:249-256.
    [27] Oh YK, Palsson BO, Park SM, et al. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem, 2007, 282(39):28791-28799.
    [28] Bacher A, Eberhardt S, Fischer M, et al. Biosynthesis of vitamin B-2 (riboflavin). Annu Rev Nutr, 2000, 20:153-167.
    [29] Mironov VN, Kraev AS, Chikindas ML, et al. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Mol Gen Genet, 1994, 242(2):201-208.
    [30] Perkins JB, Sloma A, Pero JG, et al. Bacterial strains which overproduce riboflavin. US patent 5925538, 1999.
    [31] Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA, 2002, 99(25):15908-15913.
    [32] Vogl C, Grill S, Schilling O, et al. Characterization of riboflavin (Vitamin B-2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol, 2007, 189:7367-7375.
    [33] Kreneva RA, Gel'fand MS, Mironov AA. Study of the phenotypic occurrenceof ura gene inactivation in Bacillus subtilis. Genetika, 2000, 36(8):1166-1168.
    [34] Mack M, van Loon APGM, Hohmann HP. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol, 1998, 180(4):950-955.
    [35] Gelfand MS, Mironov AA, Jomantas J, et al. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet, 1999, 15(11):439-442.
    [36] Solovieva IM, Kreneva RA, Leak DJ, et al. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology, 1999, 145:67-73.
    [37] Soloveva IM, Iomantas YAV, Kreneva RA, et al. Cloning of ribR, an additional regulatory gene of the Bacillus subtilis riboflavin operon. Genetika, 1997, 33(6):739-743.
    [38] Higashitsuji Y, Angerer A, Berghaus S, et al. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5'-untranslated leader of rib mRNA. FEMS Microbiol Lett, 2007, 274(1):48-54.
    [39] Solovieva IM, Kreneva RA, Errais LL, et al. Study of the mechanism for regulating ribR gene activity in Bacillus subtilis. Russ J Genet, 2004, 40(5):580-583.
    [40]沈同,王镜岩.生物化学.北京:高等教育出版社, 1993.
    [41] Ebbole DJ, Zalkin H. Bacillus subtilis pur operon expression and regulation. J Bacteriol, 1989, 171(4):2136-2141.
    [42] Bera AK, Zhu JH, Zalkin H, et al. Functional dissection of the Bacillus subtilis pur operator site. J Bacteriol, 2003, 185(14):4099-4109.
    [43] Ebbole DJ, Zalkin H. Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J Biol Chem, 1989, 264(6):3553-3561.
    [44] Mantsala P, Zalkin H. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol, 1992, 174(6):1883-1890.
    [45] Saxild HH, Brunstedt K, Nielsen KI, et al. Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO. J Bacteriol, 2001, 183(21):6175-6183.
    [46] Weng M, Nagy PL, Zalkin H. Identification of the Bacillus subtilis pur operon repressor. Proc Natl Acad Sci USA, 1995, 92(16):7455-7459.
    [47]张克旭.代谢控制发酵.北京:中国轻工业出版社, 1998:237-259.
    [48] Eriksen TA, Kadziola A, Bentsen AK, et al. Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase. Nat Struct Biol, 2000, 7:303-308.
    [49]邵继红,徐耀初,莫宝庆.高尿酸血症与痛风的分子流行病学研究进展.国外医学.卫生学分册, 2003, 30(4):238-242.
    [50] Shimaoka M, Takenaka Y, Kurahashi O, et al. Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli. J Biosci Bioeng, 2007, 103(3):255-261.
    [51] Jiménez A, Santos MA, Revuelta JL. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol, 2008, 8(1):67-78.
    [52] Makaroff CA, Zalkin H, Switzer RL, et al. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme. J Biol Chem, 1983, 258(17):10586-10593.
    [53] Chen S, Tomchick DR, Wolle D, et al. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides. Biochemistry, 1997, 36(35):10718-10726.
    [54]宋勇波,蔡显鹏,储炬,等.肌苷合成关键酶活性与肌苷积累之间的关系.微生物学报, 2003, 43(3):361-365.
    [55] Jimenez A, Santos MA, Pompejus M, et al. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol, 2005, 71:5743-5751.
    [56] Magasanik B, Moyed HS, Gehring LB. Enzymes essential for the biosynthesis of nucleic acid guanine; inosine 5'-phosphate dehydrogenase of Aerobacter aerogenes. J Biol Chem, 1957, 226(1):339-350.
    [57] Miyagawa K, Kimura H, Nakahama K, et al. Cloning of the Bacillus Subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Bio/Technology, 1986, 4(3):225-228.
    [58]宫川一郎,神崎直之,长谷川建夫.含有IMP脱氢酶基因的DNA及其应用, CN901021938 1990.
    [59]朱晓宏,柏建新,张一平,等.肌苷产生菌guaA基因的修饰.生物技术, 2004, 14(3):35-37.
    [60] Inaoka T, Ochi K. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol, 2002, 184(14):3923-3930.
    [61] J·莱尔希尔, T·埃尔哈德特, U·苏恩瓦德,等.植物GMP合成酶CN1390261,2003.
    [62] Dauner M, Sonderegger M, Hochuli M, et al. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol, 2002, 68:1760-1771.
    [63]朱英波.产核黄素枯草芽孢杆菌中心碳代谢的代谢工程. [博士学位论文],天津;天津大学, 2007.
    [64] Moszer I, Jones LM, Moreira S, et al. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res, 2002, 30(1):62.
    [65]鲍晓明,高东.木糖代谢工程菌的研究进展.生物工程学报, 1998, 14:355-358.
    [66]李为全,陈海军,陈长华,等.糖代谢关键酶活性对林可霉生物合成影响的研究.药物生物技术, 2007, 14:424-428.
    [67] Dauner M, Storni T, Sauer U. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol, 2001, 183(24):7308-7317.
    [68]段云霞.产核黄素工程菌B. subtilis PY的代谢工程研究. [博士学位论文],天津;天津大学, 2008.
    [69] Johansson B, Hahn-Hagerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res, 2002, 2(3):277-282.
    [70] Zamboni N, Fischer E, Muffler A, et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol Bioeng, 2005, 89(2):219-232.
    [71] Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqiI gene encodes the NADP(+)-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol, 2004, 186(14):4528-4534.
    [72] Fujita Y, Ramaley R, Freese E. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J Bacteriol, 1977, 132(1):282-293.
    [73]张锦芳,籍小涛. D-葡萄糖脱氢酶活测定方法的研究-短小芽孢杆菌在D-核糖生产中的应用.天津轻工业学院学报, 2001, (3):37-40.
    [74] Kataoka M, Rohani LPS, Wada M, et al. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system. Biosci Biotechnol Biochem, 1998, 62(1):167-169.
    [75] Sasajima K, Doi M, Fukuhara T, et al. Method for the production of D-ribose. US Patent: 3,970,522, 1976.
    [76] Zhu YB, Chen X, Chen T, et al. Over-expression of glucose dehydrogenaseimproves cell growth and riboflavin production in Bacillus subtilis. Biotechnol Lett, 2006, 28(20):1667-1672.
    [77] Bailey J. Toward a science of metabolic engineering. Science, 1991, 252(5013):1668-1675.
    [78] Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol, 2001, 55:263-283.
    [79] Stephanopoulos GN, Aristidou AA, Nielsen J. Metabolic Engineering: Principles and Methodologies. San Diego: Academic Press, 1998.
    [80] Sauer U, Hatzimanikatis V, Hohmann HP, et al. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol, 1996, 62(10):3687-3696.
    [81] Sauer U, Hatzimanikatis V, Bailey JE, et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol, 1997, 15(5):448-452.
    [82] Sauer U, Bailey JE. Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum riboflavin yield. Biotechnol Bioeng, 1999, 64(6):750-754.
    [83]马红武.由发酵实验数据和基因组信息基于计量关系分析代谢网络. [博士学位论文],天津;天津大学, 2001.
    [84] Dauner M, Sauer U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng, 2001, 76(2):132-143.
    [85] Dauner M, Bailey JE, Sauer U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng, 2001, 76(2):144-156.
    [86]陈涛,王靖宇,周士奇,等.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用.化工学报, 2004, 55(11):1842-1848.
    [87] Han BB, Wang H, Hao T, et al. High quality reconstruction of metabolic network of Bacillus subtilis. J Biotechnol, 2008, 136S:S66.
    [88] Bresler SE, Glazunov EA, Chernik TP, et al. Study of riboflavin biosynthesis operon in Bacillus subtilis. Flavinmononucleotide and flavinadeninedinucleotide as effectors of the riboflavin operon. Genetika, 1973, 9(3):84–92.
    [89]陈涛,董文明,李晓静,等.核黄素基因工程菌的构建及其发酵的初步研究.高校化学工程学报, 2007, 21(2):356-360.
    [90]陈涛.应用代谢工程方法改进枯草芽孢杆菌的核黄素合成. [博士后研究工作报告],天津;天津大学, 2006.
    [91]武秋立.重组枯草芽孢杆菌生产核黄素发酵优化及代谢组学研究. [博士学位论文],天津;天津大学, 2007.
    [92] Stepanov G. Production of riboflavin by bacteria. French patent 2546907, 1984.
    [93] Chen X. New approaches to construction of recombinant strains- riboflavin producers. Dissertation for Academic Degree of Candidate of Biological Sciences State Scientific research institute of genetics and selection of industrial microorganisms, MOSCOW 1997.
    [94] Van Loon A, Schurter W, Hohmann H, et al. Improved riboflavin production. European patent EP0821063 1998.
    [95] Humbelin M, Griesser V, Keller T, et al. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol, 1999, 22(1):1-7.
    [96] Mironov AS, Korolkova NV, Errais LL, et al. Method for producing riboflavin. WO2004/046347 A1, 2004.
    [97] Chen T, Chen X, Wang JG, et al. Effect of riboflavin operon dosage on riboflavin productivity in Bacillus subtilis. Trans Tianjin Univ, 2005, 11(1):1-5.
    [98]李晓静.枯草芽孢杆菌核黄素操纵子及呼吸链的代谢工程改造. [博士学位论文],天津;天津大学, 2006.
    [99] Duan YX, Chen T, Chen X, et al. Enhancement of riboflavin production by over-co-expression of heterologous rib operon and zwf gene in Bacillus subtilis. J Biotechnol, 2008, 136S: S34.
    [100]应明.产核黄素枯草芽孢杆菌ccpA基因敲除及发酵特性的研究. [硕士学位论文],天津;天津大学, 2005.
    [101] Zhu YB, Chen X, Chen T, et al. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. FEMS Microbiol Lett, 2007, 266(2):224-230.
    [102] Zamboni N, Mouncey N, Hohmann HP, et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab Eng, 2003, 5(1):49-55.
    [103] Li XJ, Chen T, Chen X, et al. Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis. Appl Microbiol Biotechnol, 2006, 73(2):374-383.
    [104] Tannler S, Zamboni N, Kiraly C, et al. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng, 2008, 10(5):216-226.
    [105] Duan YX, Shi SB, Chen T, et al. Expression of Vitreoscilla hemoglobin enhances growth and production of riboflavin in recombinant Bacillus subtilis. J Biotechnol, 2008, 136S:S35.
    [106] Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol, 2006, 9(3):268-274.
    [107] Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep, 2008, 25(4):656-661.
    [108]侯进,沈煜,鲍晓明.酿酒酵母木糖代谢工程中辅酶工程的研究进展.中国生物工程杂志, 2006, 26(2):89-94.
    [109] Lee KH, Park JH, Kim TY, et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol, 2007, 3:149-156.
    [110] Lindon JC, Nicholson JK, Holmes E. Metabolic Profiling: Applications in Plant Science. The Handbook of Metabonomics and Metabolomics, 2007.
    [111] Nielsen J, Olsson L. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Res, 2002, 2(2):175-181.
    [112] Lee SY, Lee DY, Kim TY. Systems biotechnology for strain improvement. Trends Biotechnol, 2005: 349-358.
    [113]赵学明,王靖宇,陈涛,等.后基因组时代的代谢工程:机遇与挑战.生物加工过程, 2004, 2:1-7.
    [114] Peberdy JF. Biology of industrial microorganisms. In: A.L. Demain NAS, editor. Biology of penicillins. Menlo Park: Benjamin-Cummings, 1985.
    [115]陈洵,周世奇,陈涛,等.功能基因组学与代谢工程:微生物菌种改进与生物过程优化.化工学报, 2006, 57(8):1792-1801.
    [116] Takors R, Bathe B, Rieping M, et al. Systems biology for industrial strains and fermentation processes—Example: Amino acids. J Biotechnol, 2007, 129(2):181-190.
    [117] Park JH, Lee SY, Kim TY, et al. Application of systems biology for bioprocess development. Trends Biotechnol, 2008, 26(8):404-412.
    [118] Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits: Chapman & Hall/CRC, 2007.
    [119] Cassman M, Arkin A, Doyle F, et al. Systems Biology: International Research and Development: Springer Verlag, 2007.
    [120] Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2001, 2(1):343-372.
    [121] Park JH, Lee KH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA, 2007, 104:7797-7802.
    [122] Jaluria P, Chu C, Betenbaugh M, et al. Cells by design: A mini-review of targeting cell engineering using DNA microarrays. Mol Biotechnol, 2008, 39(2):105-111.
    [123] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays.Nature, 2000, 405(6788):827-836.
    [124] Stephanopoulos GN, Alper H, Moxley J. Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol, 2004, 22(10):1261-1267.
    [125] Dharmadi Y, Gonzalez R. DNA microarrays: Experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog, 2004, 20(5):1309-1324.
    [126] Ehrenreich A. DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol, 2006, 73(2):255-273.
    [127] Polen T, Wendisch VF. Genome-wide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol, 2004, 118:215-232.
    [128] Jewett MC, Oliveira AP, Patil KR, et al. The role of high-throughput transcriptome analysis in metabolic engineering. Biotechnol Bioproc Eng, 2005, 10:385-399.
    [129] Donson J, Fang Y, Espiritu-Santo G, et al. Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol, 2002, 48:75-97.
    [130] Barinaga M. Will "DNA chip" speed genome initiative? Science, 1991, 253(5027):1489-1489.
    [131] Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235):467.
    [132] Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet, 2001, 29(4):365-372.
    [133] Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol, 2006, 24(9):1151-1161.
    [134] Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995, 270:484-487.
    [135] Velculescu VE, Zhang L, Zhou W. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Science, 1995, 270:484-487.
    [136] Peters DG, Kassam AB, Yonas H, et al. Comprehensive transcript analysis in small quantities of mRNA by SAGE-Lite. Nucleic Acids Res, 1999, 27:e39-e39.
    [137] Ye SQ, Zhang LQ, Zheng F, et al. MiniSAGE: Gene expression profiling using serial analysis of gene expression from 1μg total RNA. Anal Biochem, 2000, 287:144-152.
    [138] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA, 2000, 97(1):349-353.
    [139] Matsumura H, Reich S, Ito A, et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA, 2003, 100(26):15718-15723.
    [140] Lash AE, Tolstoshev CM, Wagner L, et al. SAGEmap: A public gene expression resource. Genome Res, 2000, 10(7):1051-1060.
    [141] Van Kampen AHC, Van Schaik BDC, Pauws E, et al. USAGE: a web-based approach towards the analysis of SAGE data. Bioinformatics, 2000, 16(10):899-905.
    [142] Feng H, Taylor JL, Benos PV, et al. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma? J Virol, 2007, 81(20):11332-11340.
    [143] Gowda M, Li H, Alessi J, et al. Robust analysis of 5'-transcript ends (5'-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res, 2006, 34(19):e126.
    [144] Lucie H, Céline K, Nadine G, et al. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics, 2008, 9:418-426.
    [145] Uehara T, Sugiyama S, Masuta C. Comparative serial analysis of gene expression of transcript profiles of tomato roots infected with cyst nematode. Plant Mol Biol, 2007, 63(2):185-194.
    [146] Gibbings JG, Cook BP, Dufault MR, et al. Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnol J, 2003, 1:271-285.
    [147] Poroyko V, Hejlek LG, Spollen WG, et al. The maize root transcriptome by serial analysis of gene expression. Plant Physiol, 2005, 138(3):1700-1710.
    [148] Calsa T, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C 4 metabolism and putative antisense transcripts. Plant Mol Biol, 2007, 63(6):745-762.
    [149] Tuteja R, Tuteja N. Serial analysis of gene expression: applications in human studies. J Biomed Biotechnol, 2004, 2004:113-120.
    [150] Croix BS, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science, 2000, 289:1197-1202.
    [151] Herbert JMJ, Stekel D, Sanderson S, et al. A novel method of differential gene expression analysis using multiple cDNA libraries applied to the identification of tumour endothelial genes. BMC Genomics, 2008, 9:153-173.
    [152] Myerowitz R, Lawson D, Mizukami H, et al. Molecular pathophysiology inTay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet, 2002, 11:1343-1350.
    [153] Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol, 2000, 18:630-634.
    [154] Meyers BC, Vu TH, Tej SS, et al. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol, 2004, 22:1006-1011.
    [155] Forrest ARR, Taylor DF, Crowe ML, et al. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biol, 2006, 7:R5.
    [156] Nobuta K, Vemaraju K, Meyers BC. Methods for analysis of gene expression in plants Using MPSS. Methods Mol Biol, 2008, 406:387-408.
    [157] Meyers BC, Tej SS, Vu TH, et al. The use of MPSS for Whole-Genome transcriptional analysis in Arabidopsis. Genome Res, 2004, 14:1641-1653.
    [158] Huang J, Hao P, Zhang YL, et al. Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS). BMC Genomics, 2007, 8:207-218.
    [159] Cai J, Shin S, Wright L, et al. Massively parallel signature sequencing profiling of fetal human neural precursor cells. Stem Cells Dev, 2006, 15:232-244.
    [160] Freed WJ, Chen J, Backman CM, et al. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15. 5 and comparison to human dopaminergic neurons. PLoS ONE, 2008, 3:e1422-e1433.
    [161] Bentley D. Whole-genome re-sequencing. Curr Opin Genet Dev, 2006, 16(6):545-552.
    [162] Metzker M. Emerging technologies in DNA sequencing. Genome Res, 2005, 15(12):1767-1776.
    [163] Schuster S. Next-generation sequencing transforms today's biology. Nat Methods, 2008, 5:16-18.
    [164] Mardis E. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3):133-141.
    [165] Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7):621-628.
    [166] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10:57-63.
    [167] Wilhelm BT. RNA-Seq - Quantitative measurement of expression through massively parallel RNA-sequencing Methods, 2009, inpress:doi:10.1016/j.ymeth.2009.1003.1016.
    [168] Shendure J. The beginning of the end for microarrays? Nat Methods, 2008, 5:585-587.
    [169] Siddiqui AS, Delaney AD, Schnerch A, et al. Sequence biases in large scale gene expression profiling data. Nucleic Acids Res, 2006, 34(12):e83.
    [170] Vega-Sánchez ME, Gowda M, Wang GL. Tag-based approaches for deep transcriptome analysis in plants. Plant Sci, 2007, 173:371-380.
    [171] Bainbridge MN, Warren RL, Hirst M, et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics, 2006, 7:1471-2164.
    [172] Emrich SJ, Barbazuk W B, Li L, et al. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res, 2007, 17:69-73.
    [173] Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40:1413-1415.
    [174] Torres TT, Metta M, Ottenwalder B, et al. Gene expression profiling by massively parallel sequencing. Genome Res, 2008, 18:172-177.
    [175] Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol, 2008, 17:1636-1647.
    [176] Weber APM, Weber KL, Carr K, et al. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol, 2007, 144(1):32-42.
    [177] Droege M, Hill B. The genome sequencer FLX (TM) system-longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol, 2008, 136:3-10.
    [178] Cloonan N, Forrest ARR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods, 2008, 5:613-619.
    [179] Rosenkranz R, Borodina T, Lehrach H, et al. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics, 2008, 92:187-194.
    [180] Blow N. Transcriptomics: The digital generation. Nature, 2009, 458(7235):239-242.
    [181] Conway T, Schoolnik GK. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol, 2003, 47(4):879-889.
    [182] Bro C, Nielsen J. Impact of‘ome’analyses on inverse metabolic engineering. Metab Eng, 2004, 6(3):204-211.
    [183] Hirasawa T, Yoshikawa K, Nakakura Y, et al. Identification of target genesconferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol, 2007, 131:34-44.
    [184] Hirasawa T, Nakakura Y, Yoshikawa K, et al. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl Microbiol Biotechnol, 2006, 70(3):346-357.
    [185] Choi JH, Lee SJ, Lee SJ, et al. Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol, 2003, 69:4737-4742.
    [186] Gasser B, Sauer M, Maurer M, et al. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in Yeasts. Appl Environ Microbiol, 2007, 73:6499-6507.
    [187] Gill RT, DeLisa MP, Valdes JJ, et al. Genomic analysis of high-cell-density recombinant Escherichia coli fermentation and "cell conditioning" for improved recombinant protein yield. Biotechnol Bioeng, 2001, 72(1):85-95.
    [188] Yoon SH, Han MJ, Lee SY, et al. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng, 2003, 81:753-767.
    [189] Sindelar G, Wendisch VF. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol, 2007, 76:677-689.
    [190] Bott M, Niebisch A. Respiratory energy metabolism. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum CRC Press, Boca Raton, USA, 2005.
    [191] Kabus A, Niebisch A, Bott M. Role of Cytochrome bd Oxidase from Corynebacterium glutamicum in Growth and Lysine Production. Appl Environ Microbiol, 2007, 73:861-868.
    [192] Lee JH, Lee DE, Lee BU, et al. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol, 2003, 185:5442-5451.
    [193] Van den Berg MA, Albang R, Albermann K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol, 2008, 26:1161-1168.
    [194] Harris DM, Westerlaken I, Schipper D, et al. Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng, 2009, 11:125-137
    [195] Wierckx NJP, Ballerstedt H, de Bont JAM, et al. Transcriptome analysis of aPhenol-Producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol, 2008, 190:2822-2830.
    [196] J.萨姆布鲁克,E.F.佛里奇,T.曼尼阿蒂斯.分子克隆实验指南[M].北京:科学出版社, 1989.
    [197]卢圣栋主编.现代分子生物学实验技术(第二版).北京:中国协和医科大学出版社, 1999.
    [198] Yasbin RE, Wilson GA, Young FE. Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J Bacteriol, 1975, 121:296-304.
    [199] Harwood CR, Simon M. Molecular biological methods for Bacillus: John Wiley, Chichester, 1990.
    [200] Lee JM, Zhang S, Saha S, et al. RNA expression analysis using an antisense Bacillus subtilis genome array. J Bacteriol, 2001, 183:7371-7380.
    [201] Pfaffl M. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res, 2001, 29(9):e45.
    [202] Buchholz A, Hurlebaus J, Wandrey C, et al. Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng, 2002, 19:5-15.
    [203] Müller RH, Loffhagen N, Babel W. Rapid extraction of (di) nucleotides from bacterial cells and determination by ion-pair reversed-phase HPLC. J Microbiol Methods, 1996, 25:29-35.
    [204] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem, 1976, 72:248-259.
    [205] Kim JH, Krahn JM, Tomchick DR, et al. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem, 1996, 271:15549-15557.
    [206]张宏建,段作营. SBA生物传感仪酶法测定谷氨酸定标值的校正.无锡轻工大学学报, 2002, 21(5):529-532.
    [207] Frey AD, Kallio PT. Nitric oxide detoxification–a new era for bacterial globins in biotechnology? Trends Biotechnol, 2005, 23:69-73.
    [208] Denis V, Daignan-Fornier B. Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol Gen Genet, 1998, 259 246-255.
    [209] Monschau N, Sahm H, Stahmann KP. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol, 1998, 64:4283-4290.
    [210] Schlupen C, Santos MA, Weber U, et al. Disruption of the SHM2 gene,encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochemical Journal, 2003, 369:263-273.
    [211] http://www.affymetrix.com.
    [212] Binnewies TT, Motro Y, Hallin PF, et al. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics, 2006, 6:165-185.
    [213] Kornberg A, Lieberman I, Simms ES. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem, 1955, 215:389-402.
    [214] Sutcliffe IC, Russell RR. Lipoproteins of gram-positive bacteria. J Bacteriol, 1995, 177:1123-1128.
    [215] Lee KH, Park YH, Han JK, et al. Microorganism for producing riboflavin and method for producing riboflavin using the same. US patent 7,078,222, 2006.
    [216] Gershanovich VN, Bol'shakova TN, Dobrynina OI, et al. Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin. Mol Gen Mikrobiol Virusol, 2005, 3:29-34.
    [217]李建国. Bacillus subtilis 24/pMX45核黄素发酵种子培养及氮源影响的研究. [硕士学位论文],天津;天津大学,2003.
    [218]张会图.枯草芽孢杆菌368核黄素高产原因的遗传分析以及工程菌株的初步构建. [硕士学位论文],北京;中国农业科学院, 2005.
    [219] Blencke HM, Reif I, Commichau F.M, et al. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch Microbiol 2006, 185:136-146.
    [220] Park YS, Kai K, Iijima S, et al. Enhancedβ-galactosidase production by high cell-density culture of recombinant Bacillus subtilis with glucose concentration control. Biotechnol Bioeng, 1992, 40:686-696.
    [221] Tang IC, Okos MR, Yang ST. Effects of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum. Biotechnol Bioeng, 1989, 34:1063-1074.
    [222] Aristidou AA, Bennett GN, San KY. Modification of the central metabolic pathways Escherichia coli to reduce the acetate accumulation by the heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotechnol Bioeng, 1994, 44:944-951.
    [223] Maria CR, Najimudin N, Leslie RW, et al. Regulation of the Bacillus sibtilis alsD and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol, 1993, 175:3863-3874.
    [224] Nishimura T, Vertes AA, Shinoda Y, et al. Anaerobic growth ofCorynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol, 2007, 75:889-897.
    [225] Nygaard P. Purine and pyrimidine salvage pathways, In A.L. Sonenshein, J.A. Hoch, R. Losick (ed.). Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics: American Society for Microbiology, Washington, DC, pp. 359-378, 1993.
    [226]何俊锋. L-组氨酸产生菌的选育及其发酵条件优化. [硕士学位论文],无锡;江南大学, 2006.
    [227]徐咏全,张蓓,张克旭.谷氨酰胺磷酸核糖焦磷酸转酰胺酶研究进展.生物技术通讯, 2003, 14:535-538.
    [228] Lee HC, Kim JH, Kim JS, et al. Fermentative production of thymidine by a metabolically engineered Escherichia coli. Appl Environ Microbiol, 2009, 75(8):2423-32.
    [229] Sakuma R, Nishina T, Yamanaka H, et al. Phosphoribosylpyrophosphate synthetase in human erythrocytes: assay and kinetic studies using high-performance liquid chromatography. Clin Chim Acta, 1991, 203:143-152.
    [230] Hove-Jensen B, Maigaard M. Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol, 1993, 175:5628-5635.
    [231]康会茹.基于LC-MS的产核黄素枯草芽孢杆菌代谢物组的初步研究. [硕士学位论文],天津;天津大学, 2008.
    [232] Balo-Banga J, Weber G. Increased 5-phospho-alpha-D-ribose-1-diphosphate synthetase (ribosephosphate pyrophosphokinase, EC 2.7. 6.1) activity in rat hepatomas. Cancer Res, 1984, 44(11):5004-5009.
    [233]贾峰峰.基于二维凝胶电泳与质谱联用的枯草芽孢杆菌蛋白质组分析. [硕士学位论文],天津;天津大学, 2009.
    [234] Bacher A, Eberhardt S, Richter G. Biosynthesis of Riboflavin. In: F,Curtis, R, Ingraham, J, Lin, E, Brooks Low, K, Magasanik, B, Rezneikoff, W,Riley, M, Schaechter, M and Umberger, E (eds) Escherichia coli and Salmonella: Cellular and Molecular Biology Neidhardt,: ASM Press, Washington DC, pp 657-664, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700