苏云金芽胞杆菌YBT-1520基因组中插入序列组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
插入序列(Insertion Sequence, IS)是一类最为简单并具有高度可移动性的转座因子,是对基因组上一个或多个位点具有插入能力的小分子DNA片段。插入序列广泛存在于原核生物中,可通过剪切和插入影响功能基因的表达、突变和移动,同时也是导致原核微生物基因组重排的重要因素之一。本研究通过对苏云金芽胞杆菌(Bacillus thuringiensis)菌株YBT-1520全基因组序列的分析,注释了染色体上的134个转座酶基因,最终确定了68个完整的插入序列单元。在整体数量上明显多于其他已完成测序的蜡状芽胞杆菌群基因组。这68个拷贝分别属于6个IS家族中的14个不同的插入序列单元,其中有7个插入序列是由本研究新发现并命名的。
     为了从整体上了解插入序列在YBT-1520基因组中的分布和功能,本研究全面考察了YBT-1520染色体和质粒上所含有的每种插入序列的拷贝数、其在基因组上的定位、移码以及是否插入到功能基因中等。结果表明,菌株YBT-1520染色体中大量的插入序列主要是由IS231C, IS232A和ISBth166的多拷贝造成的。大部分插入到功能基因中的事件都是由IS231C介导的。而菌株YBT-1520基因组中唯一拷贝的铁载体蛋白(siderophore biosynthesis protein)编码基因被IS232A插入导致失活,从而使得YBT-1520菌株在贫铁环境中吸收铁离子的能力大大减弱。
     本研究以IS231C, IS232A, ISBth166这三个在YBT-1520染色体上拷贝数最高的插入序列为探针,对菌株YBT-1520和菌株HD-1这两株库斯塔克亚种(subsp.kurstaki)菌株进行了Southern杂交试验,结果显示,拷贝数最多且存在于多个功能基因内部的IS231C在两株菌中的定位基本一致。这表明IS231C的大量转座是发生在这两株菌分化之前的近期事件,IS231C并没有大范围介导这两株菌的同源重组。通过对多株不同亚种苏云金芽胞杆菌的Southern杂交试验还发现了ISBth66主要分布于库斯塔克亚种中,在本研究涉及的8个非库斯塔克亚种中则比较少见。本实验室正在测序的另外一个苏云金芽胞杆菌中华亚种CT-43的染色体上也存在不少于40个完整的插入序列单元。菌株CT-43染色体上不含有IS231C,但含有IS231A的多个拷贝;同时还含有不少于6个拷贝的IS232A;而已发现的菌株CT-43基因组中拷贝数最高的插入序列是属于IS110家族的ISBth13,有7个拷贝。这说明具有近期活性的插入序列在不同亚种的苏云金芽胞杆菌中存在着亚种差异性。此外,菌株CT-43基因组中还存在不少于4拷贝的与ISBth166有87%相似性的插入序列。
     蜡状芽胞杆菌群是完成全基因组测序最多的种群之一,现已有18株菌公布了全基因组序列。本研究通过重新注释,对这些插入序列所属家族进行了指定和修正。通过比较基因组的分析,对在蜡状芽胞杆菌群中广泛分布的插入序列家族进行了系统发育分析。结果表明与炭疽芽胞杆菌亲缘关系接近的菌株中的插入序列在分布和系统发育方面有着自身特有的进化分支,而大部分插入序列之间的进化关系和蜡状芽胞杆菌群各菌株之间的亲缘关系并不对应。这说明同一家族中的多个插入序列的分化发生在蜡状芽胞杆菌群分化之前,而插入序列的种类和进化可能与这些菌株特有的生境(niche)相关。插入序列在蜡状芽胞杆菌群菌株中分布的不均衡性可能是影响其进化的重要力量之一。
     运用上述对苏云金芽胞杆菌YBT-1520基因组中插入序列组的分析方法,本研究还针对一株致病菌鼻疽诺卡菌Nocardia farcinica) IFM10152中的细胞色素P450蛋白超家族进行了比较基因组分析。推测了鼻疽诺卡菌能合成抗生素的能力和其基因组中P450蛋白的多样性有很大关系。从对P450蛋白的聚类分析可以看出鼻疽诺卡菌是在进化上介于链霉菌和分支杆菌之间的菌株。
Insertion sequences (ISs) are small transposable DNA fragments that can insert into one or multiple loci of genome.It is well recognized that IS elements sometimes inactivate genes upon insertion or activate and/or enhance the expression of nearby genes. Meanwhile, ISs have played an important role in genome reshuffling and evolution by facilitating horizontal gene transfer and mediating homologous recombination between multiple copies present in a given genome.Sequencing of YBT-1520 genome revealed 134 transposase coding genes (at least 68 intact genes) on the chromosome which is one of the most notable features of YBT-1520. In this work,fourteen kinds of intact ISs including seven new-named elements were identified in YBT-1520.A detailed characterization of these ISs distributed into 6 families is presented. Moreover, a comparative analysis of their counterparts in 18 finished Bacillus cereus group genomes as well as in different B. thuringiensis strains has been done in order to understand the distribution and evolution of these IS elements.
     The IS elements of YBT-1520 were subjected to a careful analysis of IS copies, location and insertion into function genes.Furthermore, these ISs were compared to the elements of the other B. cereus group genomes, in an attempt to demonstrate the distribution and evolution of IS elements in these closely related genomes. YBT-1520 chromosome contains a larger number of transposase coding genes than that of other B. cereus group genomes mainly due to the multi-copies of IS231C, IS232A and ISBth166. Although most of the IS elements randomly distributed throughout the genome were inserted in non-coding regions, at least 9 CDSs were disrupted by the insertion of IS elements (mostly by IS231C). The only copy of siderophore biosynthesis protein coding gene, which is a growth-determining factor under iron-limited conditions in the host insect gut, was inserted by IS232A.
     To further assess the involvement of IS elements in promoting genome reorganization between two B. thuringiensis kurstaki strains (YBT-1520 and B. thuringiensis HD-1),hybridization experiments were performed using fragments of three most abundant IS elements (IS231C, IS232A and ISBth166) of different families as probes. The result showed that the most multitudinous IS231C had minor different hybridization profiles between these two isolates, which indicated that it did not cause large-scale rearrangements.The distribution of ISBth166 among B. thuringiensis serovars was further examined by Southern blot analysis which suggesting that ISBth166 is widely distributed among kurstaki strains.Genome survey of B. thuringiensis CT-43 revealed at least 40 intact IS elements. Multi-copies of IS231A, in stead of IS231C, were found in CT-43 genome. Meanwhile,4 copies of ISs show 87% similarity to ISBth166.All these results showed species specificity of ISs in B. thuringiensis and was in concert with the conclusion we've drawn before.
     To data, eighteen B. cereus group genomes have been completely sequenced and published in Genbank. A careful analysis and re-annotation were performed to the IS complement in B. cereus group. The extended survey of all IS elements among the B. cereus group genomes showed some correlation between MLST phylogenetic relatedness and distribution of IS families.IS3 family transposases of subgroup I members were clustered together. The different existence of IS4 and IS110 family elements were also found between subgroup I and the other two groups. This indicated that the IS elements of subgroup I B. anthracis-related genomes may have their distinct phylogenetic lineage, which may affected by their different ecological niche. The disequilibrium in distribution and copy numbers of ISs among B. cereus group genomes is probably one of the major forces of genome evolution.
     Genome analyses of cytochrome P450 complement of Nocardia farcinica genome were further performed using the same method. Comparative analyses of these cytochrome P450 proteins with their courterparts in related Actinomycetes showed different function relationship among them. The unique features of Nocardia farcinica genome were probably due to the abundant and various cytochrome P450 members.
引文
1.程萍,王清锋,喻子牛.苏云金芽胞杆菌转座因子的类群和结构.生命科学,1997,9:123-128
    2.杜耀华,王正志,倪青山,李冬冬.一种基于特征筛选的原核生物启动子判别分析方法.生物物理学报,2006,22:39-48
    3.黄天培,刘晶晶,关雄,张杰.苏云金芽孢杆菌转座因子研究进展.生物技术通报,2006,1:1-4
    4.刘超.苏云金芽胞杆菌菌株YBT-1520全基因组序列的初步分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    5.刘志强,海荣,俞东征.炭疽芽胞杆菌中插入序列研究进展.地方病通报,2006,21:92-94
    6.孙明,戴经元,罗曦霞,喻凌,刘子铎,喻子牛.对棉铃虫高毒力的苏云金芽胞杆菌YBT-1520菌株的特性.中国病毒学,1996,11:42-45
    7.孙明,刘子铎,喻子牛.苏云金芽胞杆菌YBT-1520杀虫晶体蛋白基因的属性.微生物学报,2000,40:33-39
    8.喻子牛.苏云金芽胞杆菌杀虫晶体蛋白及其基因的研究与应用.见:李阜棣,李学垣,刘武定,喻子牛主编,生命科学和土壤学中几个领域的研究进展.北京:农业出版社,1993,170-179
    9.张剑冰,欧广东,孙明,陈亚华,喻子牛.苏云金杆菌CT-43菌株质粒与ICPs及苏云金素产生的关系研究.华中农业大学学报,1993,12:579-584
    10. Alavi S M, Poussier S, Manceau C. Characterization of ISXax1,a novel insertion sequence restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol,2007,73:1678-1682.
    11.Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25:3389-3402
    12.Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich S D, Overbeek R, Kyrpides N, Ivanova N. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol Lett,2005, 250:175-184
    13.Aronson A I. The two faces of Bacillus thuringiensis:insecticidal proteins and post-exponential survival. Mol Microbiol,1993,7:489-496.
    14. Ash C, Farrow J A, Dorsch M, Stackebrandt E, Collins M D. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol,1991,41:343-346
    15.Bentley S D, Chater K F, Cerdeno-Tarraga A M, Challis G L, Thomson N R, James K D, Harris D E, Quail M A, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen C W, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nature,2002,417:141-147.
    16.Bavykin S G, Lysov Y P, Zakhariev V, Kelly J J, Jackman J, Stahl D A, Cherni A. Use of 16S rRNA,23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol,2004,42:3711-3730
    17. Bentley S D, Corton C, Brown S E, Barron A, Clark L, Doggett J, Harris B, Ormond D, Quail M A, May G, Francis D, Knudson D, Parkhill J, Ishimaru C A. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp.sepedonicus suggests recent niche adaptation. J Bacteriol,2008,190:2150-2160.
    18.Berg, DE, and Howe MM.Mobile DNA. American Society for Microbiology, Washington, D.C. 1989.
    19. Berry C, O'Neil S, Ben-Dov E, Jones A F, Murphy L, Quail M A, Holden M T, Harris D, Zaritsky A, Parkhill J. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol,2002,68:5082-5095
    20. Beuzon C R, Chessa D, Casadesus J. IS200:an old and still bacterial transposon. Int Microbiol, 2004,7:3-12.
    21.Buchner J M, Robertson A E, Poynter D J, Denniston S S, Karls A C. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases. J Bacteriol,2005,187:3431-3437.
    22. Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald G F, Beresford T, Ross R P.Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol,2008,190:727-735.
    23.Carlson C R, Caugant D A, Kolsto A B.Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains. Appl Environ Microbiol,1994,60:1719-1725
    24. Challacombe J F, Altherr M R, Xie G, Bhotika S S, Brown N, Bruce D, Campbell C S, Campbell M L, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett N A, Fawcett J J, Glavina T, Goodwin L A, Green L D, Han C S, Hill K K, Hitchcock P, et al. The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol,2007,189:3680-3681.
    25.Chen Y, Braathen P, Leonard C, Mahillon J. MIC231,a naturally occurring mobile insertion cassette from Bacillus cereus. Mol Microbiol,1999,32:657-668
    26. Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res,2003,31:3497-3500.
    27. Choi S, Ohta S,Ohtsubo E. A novel IS element, IS621,of the IS110/IS492 family transposes to a specific site in repetitive extragenic palindromic sequences in Escherichia coli. J Bacteriol,2003, 185:4891-4900.
    28.Converse S E, Mougous J D, Leavell M D, Leary J A, Bertozzi C R, Cox J S.MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A,2003,100:6121-6126.
    29. Coros A, DeConno E, Derbyshire K M. IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J Bacteriol,2008,190:3408-3410.
    30. Daffonchio D, Cherif A, Borin S.Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the "Bacillus cereus group". Appl Environ Microbiol,2000,66:5460-5468
    31.Darling A E, Treangen T J, Messeguer X, Perna N T. Analyzing patterns of microbial evolution using the mauve genome alignment system. Methods Mol Biol,2007,396:135-152.
    32.De Been M, Francke C, Moezelaar R, Abee T, Siezen R J. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology,2006,152:3035-3048.
    33.De Palmenaer D, Siguier P, Mahillon J. IS4 family goes genomic. BMC Evol Biol,2008,8:18.
    34. De Palmenaer D,Vermeiren C,Mahillon J. IS231-MIC231 elements from Bacillus cereus sensu lato are modular. Mol Microbiol,2004,53:457-467
    35.Delcher A L, Harmon D, Kasif S, White O, Salzberg S L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res,1999,27:4636-4641
    36. Detmers F J, Lanfermeijer F C, Poolman B.Peptides and ATP binding cassette peptide transporters. Res Microbiol,2001,152:245-258.
    37.Drobniewski F A. Bacillus cereus and related species. Clin Microbiol Rev,1993,6:324-338.
    38.Evans J C, Segal H. A novel insertion sequence, ISPA26, in oprD of Pseudomonas aeruginosa is associated with carbapenem resistance. Antimicrob Agents Chemother,2007,51:3776-3777.
    39. Ewing B, Hillier L, Wendl M C, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res,1998,8:175-185.
    40. Filee J, Siguier P, Chandler M. Insertion sequence diversity in archaea. Microbiol Mol Biol Rev, 2007,71:121-157.
    41.Fujimura T, Murakami K. Staphylococcus aureus clinical isolate with high-level methicillin resistance with an lytH mutation caused by IS 1182 insertion. Antimicrob Agents Chemother,2008, 52:643-647.
    42. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol,2001,40: 963-975.
    43.Gordon D, Abajian C, Green P. Consed:a graphical tool for sequence finishing. Genome Res, 1998,8:195-202.
    44. Gregory S T, Dahlberg A E. Transposition of an insertion sequence, ISTth7, in the genome of the extreme thermophile Thermus thermophilus HB8. FEMS Microbiol Lett,2008,289:187-192.
    45.Haas M, Rak B.Escherichia coli insertion sequence IS150:transposition via circular and linear intermediates. JBacteriol,2002,184:5833-5841.
    46.Hallet B,Rezsohazy R, Mahillon J, Delcour J. IS231A insertion specificity:consensus sequence and DNA bending at the target site. Mol Microbiol,1994,14:131-139.
    47.Han C S, Xie G, Challacombe J F, Altherr M R, Bhotika S S, Brown N, Bruce D, Campbell C S, Campbell M L, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett N A, Fawcett J J, Glavina T, Goodwin L A, Green L D, Hill K K, Hitchcock P, et al. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. JBacteriol,2006,188:3382-3390.
    48.Helgason E, Okstad O A, Caugant D A, Johansen H A, Fouet A, Mock M, Hegna I, Kolsto A B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol,2000,66:2627-2630.
    49. Helgason E, Tourasse N J, Meisal R, Caugant D A, Kolsto A B.Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol,2004,70:191-201
    50. Henderson I, Yu D, Turnbull P C.Differentiation of Bacillus anthracis and other'Bacillus cereus group' bacteria using IS231-derived sequences. FEMS Microbiol Lett,1995,128:113-118.
    51.Hernandez E, Ramisse F, Ducoureau J P, Cruel T, Cavallo J D.Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection:case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol,1998,36:2138-2139.
    52. Hill K K, Ticknor L O, Okinaka R T, Asay M, Blair H, Bliss K A, Laker M, Pardington P E, Richardson A P, Tonks M, Beecher D J, Kemp J D, Kolsto A B,Wong A C, Keim P, Jackson P J. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol,2004,70:1068-1080.
    53.Hodgman T C, Yu Z, Shen J, Ellar D J. Identification of a cryptic gene associated with an insertion sequence not previously identified in Bacillus thuringiensis. FEMS Microbiol Lett,1993, 114:23-29
    54. Huang J, Guo S, Mahillon J, Van der Auwera G A, Wang L, Han D, Yu Z, Sun M. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis. BMC Genomics,2006,7:270.
    55.Huang T, Liu J, Song F, Shu C, Qiu J, Guan X, Huang D, Zhang J. Identification, distribution pattern of IS231 elements in Bacillus thuringiensis and their phylogenetic analysis. FEMS Microbiol Lett,2004,241:27-32.
    56. Hubner A, Hendrickson W. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100. JBacteriol,1997,179:2717-2723.
    57. Lamb D C, Ikeda H, Nelson D R, Ishikawa J, Skaug T, Jackson C, Omura S, Waterman M R, Kelly S L. Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun,2003,307:610-619.
    58.Indiragandhi P, Anandham R, Madhaiyan M, Kim G H, Sa T. Cross-utilization and expression of outer membrane receptor proteins for siderophore uptake by Diamondback moth Plutella xylostella (Lepidoptera:Plutellidae) gut bacteria. FEMS Microbiol Lett,2008,289:27-33.
    59. Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H, Hotta K, Shiba T, Hattori M. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A,2004, 101:14925-14930.
    60. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B,Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D'Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature,2003,423:87-91
    61.Joung K B, Cote J C. Distribution analysis of IS231-like sequences among Bacillus thuringiensis serovars inferred from restriction fragment length polymorphisms. Curr Microbiol,2003,47: 417-424.
    62.Jung Y C, Chung, Y S,Cote J C. Cloning and nucleotide sequence of a new insertion sequence, IS231N, from a non-serotypable strain of Bacillus thuringiensis. Curr Microbiol,2001a,43: 192-197
    63.Jung Y C, Xu D, Chung Y S, Cote J C. A new insertion sequence, IS231M, in an autoagglutinable isolate of Bacillus thuringiensis. Plasmid,2001b,45:114-121
    64. Kazazian H H, Jr. Mobile elements:drivers of genome evolution. Science,2004,303:1626-1632.
    65.Komatsu M, Takano H, Hiratsuka T, Ishigaki Y, Shimada K, Beppu T, Ueda K. Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol, 2006,62:1534-1546.
    66. Koppisch A T, Browder C C, Moe A L, Shelley J T, Kinke B A, Hersman L E, Iyer S, Ruggiero C E. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals,2005,18:577-585.
    67. Lee J Y, Janes B K, Passalacqua K D, Pfleger B F, Bergman N H, Liu H C, Hakansson K, Somu R V, Aldrich C C, Cendrowski S, Hanna P C, Sherman D H. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. JBacteriol,2007,189:1698-1710.
    68.Leonard C, Chen Y, Mahillon J. Diversity and differential distribution of IS231,IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology,1997,143 (Pt 8):2537-2547.
    69. Leonard C, Zekri O, Mahillon J. Integrated physical and genetic mapping of Bacillus cereus and other gram-positive bacteria based on IS231A transposition vectors. Infect Immun,1998,66: 2163-2169.
    70.Lisser S, Margalit H. Compilation of E. coli mRNA promoter sequences.Nucleic Acids Res,1993, 21:1507-1516.
    71.Liu C, Bao Q, Song F, Sun M, Huang D, Liu G, Yu Z. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid,2007,57:44-54.
    72. Machuca A, Milagres A M F. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus.Lett Appl Microbiol,2003,36:177-181.
    73.Mahillon J, Chandler M. Insertion sequences.Microbiol Mol Biol Rev,1998,62:725-774.
    74. Mahillon J, Leonard C, Chandler M. IS elements as constituents of bacterial genomes. Res Microbiol,1999,150:675-687.
    75.Mahillon J, Rezsohazy R, Hallet B, Delcour J. IS231 and other Bacillus thuringiensis transposable elements:a review. Genetica,1994,93:13-26.
    76. Mahillon J, Seurinck J, van Rompuy L, Delcour J, Zabeau M. Nucleotide sequence and structural organization of an insertion sequence element (IS231) from Bacillus thuringiensis strain berliner 1715.EMBO J,1985,4:3895-3899
    77.Maiden M C, Bygraves J A, Feil E, Morelli G, Russell J E, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant D A, Feavers I M, Achtman M, Spratt B G. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A,1998,95:3140-3145.
    78.Marchler-Bauer A, Bryant S H. CD-Search:protein domain annotations on the fly. Nucleic Acids Res,2004,32:W327-331
    79. McLean K J, Clift D, Lewis D G, Sabri M, Balding P R, Sutcliffe M J, Leys D, Munro A W. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol,2006,14: 220-228.
    80. Miethke M, Marahiel M A. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev,2007,71:413-451.
    81.Nagy Z, Chandler M. Regulation of transposition in bacteria. Res Microbiol,2004,155:387-398.
    82.Nichol H, Law J H, Winzerling J J. Iron metabolism in insects.Ann Rev Entomol,2002,47: 535-559.
    83.Ohgushi A, Saitoh H, Wasano N, Ohba M. A new insertion variant IS231I, isolated from a mosquito-specific strain of Bacillus thuringiensis.Curr Microbiol,2005,51:95-99
    84. Okinaka R T, Cloud K, Hampton O, Hoffmaster A R, Hill K K, Keim P, Koehler T M, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson P J. Sequence and organization of pXO1,the large Bacillus anthracis plasmid harboring the anthrax toxin genes.J Bacteriol,1999,181:6509-6515
    85.Pearson T, Busch J D, Ravel J, Read T D, Rhoton S D, U'Ren J M, Simonson T S, Kachur S M, Leadem R R, Cardon M L, Van Ert M N, Huynh L Y, Fraser C M, Keim P. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A,2004,101:13536-13541
    86. Piao Z, Shibayama K, Mori S, Wachino J-i, Arakawa Y. A novel insertion sequence, IS 1642,of Mycobacterium avium, which forms long direct repeats of variable length. FEMS Microbiol Lett, 2009,291:216-221.
    87.Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res,2005,33:116-120
    88.Radnedge L, Agron P G, Hill K K, Jackson P J, Ticknor L O, Keim P, Andersen G L. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol,2003,69:2755-2764
    89. Rasko D A, Altherr M R, Han C S, Ravel J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev,2005,29:303-329.
    90. Rasko D A, Ravel J, Okstad O A, Helgason E, Cer R Z, Jiang L, Shores K A, Fouts D E, Tourasse N J, Angiuoli S V, Kolonay J, Nelson W C, Kolsto A B, Fraser C M, Read T D.The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1.Nucleic Acids Res,2004,32:977-988
    91.Read T D, Peterson S N, Tourasse N, Baillie L W, Paulsen IT, Nelson K E, Tettelin H, Fouts D E, Eisen J A, Gill S R, Holtzapple E K, Okstad O A, Helgason E, Rilstone J, Wu M, Kolonay J F, Beanan M J, Dodson R J, Brinkac L M, Gwinn M, et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature,2003,423:81-86
    92.Read T D, Salzberg S L, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch J D, Smith K L, Schupp J M, Solomon D, Keim P, Fraser C M. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science,2002,296:2028-2033
    93.Rezsohazy R, Hallet B,Delcour J. IS231D, E and F, three new insertion sequences in Bacillus thuringiensis:extension of the IS231 family. Mol Microbiol,1992,6:1959-1967
    94. Rezsohazy R, Hallet B, Mahillon J, Delcour J. IS231V and W from Bacillus thuringiensis subsp. israelensis, two distant members of the IS231 family of insertion sequences.Plasmid,1993,30: 141-149
    95.Robinson D A, Hollingshead S K, Musser J M, Parkinson A J, Briles D E, Crain M J. The IS 1167 insertion sequence is a phylogenetically informative marker among isolates of serotype 6B Streptococcus pneumoniae. J Mol Evol,1998,47:222-229.
    96.Rosso M L, Delecluse A. Distribution of the insertion element IS240 among Bacillus thuringiensis strains. Curr Microbiol,1997,34:348-353.
    97.Ryan M, Johnson J D, Bulla L A Jr. Insertion sequence elements in Bacillus thuringiensis subsp. Darmstadiensis. Can J Microbiol,1993,39:649-658
    98.Sambrook J, and D. W. Russell.2001.Molecular cloning:a laboratory manual [M],3rd ed ed. Cold Spring Harbor Laboratory Press; 2001.
    99. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D R, Dean D H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62: 775-806.
    100. Shrinivas K, Kester K, Martin P A W, Brown B.Molecular markers to determine the ecological fate of Bacillus thuringiensis ssp kurstaki. Molecular Ecology Resources,2008,8:1145-1148.
    101.Siguier P, Filee J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol, 2006a,9:526-531.
    102. Siguier P,Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder:the reference centre for bacterial insertion sequences. Nucleic Acids Res,2006b,34:D32-36.
    103.Sonnhammer E L, Eddy S R, Durbin R. Pfam:a comprehensive database of protein domain families based on seed alignments. Proteins,1997,28:405-420.
    104. Stalder R, Caspers P, Olasz F, Arber W. The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element. J Biol Chem, 1990,265:3757-3762.
    105.Sun M, Liu Z, Yu Z. [Characterization of the insecticidal crystal protein genes of Bacillus thuringiensis YBT-1520].Wei Sheng Wu Xue Bao,2000,40:365-371.
    106. Takami H, Han C G, Takaki Y, Ohtsubo E. Identification and distribution of new insertion sequences in the genome of alkaliphilic Bacillus halodurans C-125.J Bacteriol,2001,183: 4345-4356.
    107. Tamura K, Dudley J, Nei M, Kumar S.MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599.
    108.Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Koonin E V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Smirnov S,Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A. The COG database:an updated version includes eukaryotes. BMC Bioinformatics,2003,4:41.
    109.Ticknor L O, Kolsto A B,Hill K K, Keim P, Laker M T, Tonks M, Jackson P J. Fluorescent Amplified Fragment Length Polymorphism Analysis of Norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Appl Environ Microbiol,2001,67:4863-4873
    110. Touchon M, Rocha E P. Causes of insertion sequences abundance in prokaryotic genomes.Mol Biol Evol,2007,24:969-981.
    111.Tourasse N J, Helgason E, Okstad O A, Hegna I K, Kolsto A B. The Bacillus cereus group:novel aspects of population structure and genome dynamics.J Appl Microbiol,2006,101:579-593.
    112. Tourasse N J, Kolsto A B.Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group:insights into their spread and evolution. Nucleic Acids Res,2008,36: 4529-4548.
    113.Wagner A. Periodic extinctions of transposable elements in bacterial lineages:evidence from intragenomic variation in multiple genomes.Mol Biol Evol,2006,23:723-733.
    114. Wang J, Chaudhuri R R, Ellar D J. Characterization of ISBth4, a functional new IS231 variant from Bacillus thuringiensis MEX312. Plasmid,2009,63:46-52.
    115.Wang X M, Galamba A, Warner D F, Soetaert K, Merkel J S, Kalai M, Bifani P, Lefevre P, Mizrahi V, Content J. IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis. Tuberculosis(Edinb),2008,88:399-409.
    116. Watson R J, Joyce S A, Spencer G V, Clarke D J. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Mol Microbiol,2005,56:763-773.
    117.Wilson M K, Abergel R J, Raymond K N, Arceneaux J E L, Byers B R. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Bioph Res Co,2006,348: 320-325.
    118. Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q. Complete genome sequence of the extremophilic Bacillus cereus strain Ql with industrial applications. JBacteriol,2009,191:1120-1121.
    119. Zaghloul L, Tang C, Chin H Y, Bek E J, Lan R, Tanaka M M. The distribution of insertion sequences in the genome of Shigella flexneri strain 2457T. FEMS Microbiol Lett,2007,277: 197-204.
    120. Zerillo M M, Van Sluys M A, Camargo L E A, Monteiro-Vitorello C B.Characterization of new IS elements and studies of their dispersion in two subspecies of Leifsonia xyli. BMC Microbiol, 2008,8:127.
    121.Zhao C, Luo Y, Song C, Liu Z, Chen S, Yu Z, Sun M. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520.Arch Microbiol,2007,187:313-319.
    122.Zhou F F, Olman V, Xu Y. Insertion Sequences show diverse recent activities in Cyanobacteria and Archaea. BMC Genomics,2008,9:36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700