酵母甘油代谢工程与基因组重排构建乙醇高产菌株及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇是已被大规模生产与应用的可再生生物能源之一。但目前乙醇生产的总体效率效益低。拥有优良的高产酿酒酵母菌株,实现高效率酒精发酵是提高乙醇生产效益的重要途径之一。优良工业酿酒酵母菌株的选育以往主要采用自然筛选和随机诱变育种的传统方法。应用杂交、细胞融合、基因工程等技术构建优良酿酒酵母菌株有颇多论文报道,但获得工业化大规模应用的高水平成果尚鲜见。其主要原因是高产酒精的优良酿酒酵母菌株需具备耐高糖浓度、耐乙醇、耐酸、适应的温度范围宽、生长与发酵速度快、糖醇转化率高等多重优良性能。而这些性能均非单基因所能控制,性能及其发挥所涉及的许多遗传与调控因子、作用途径与机制等尚待研究,单种剧烈的育种手段,常常导致菌株关键性能退化或衰变。因此获得能大规模生产应用的高产优良酿酒酵母菌株,研究难度极大。本文在总结前人经验的基础上,运用诱变、杂交、细胞工程、基因工程与多种方法相结合的基因组重排等方法的单项改进与集成创新,改良、选育、构建高产优良酿酒酵母菌株,并对有关机制进行了研究探索。研究获得如下结果:
     1、筛选优良工业酿酒酵母出发菌株诱导三株工业酿酒酵母菌株THA、S25和C87产孢获得90株单倍体。筛选四株高乙醇产量单倍体z1、Z4、Z8和Z9作为后续育种的出发菌株。将两株交配型确定的出发菌株z1和Z4杂交,获得的杂交重组子在230g/L葡萄糖的醪液中发酵。重组子z14乙醇产量最高,达到100.05g/L,比zl和Z4的亲株THA和S25分别提高1.75%和3.04%。
     2、利用RAPD-SCAR分子标记筛选细胞融合重组子针对不具有产孢和交配能力的出发菌株z8和Z9,获得菌株特异的RAPD(随机扩增多态性DNA, Random Amplified Polymorphic DNA)-SCAR(特异序列特征性扩增区域,Sequence Characterized Amplified Region)分子标记,替代传统育种的营养缺陷型标记,筛选菌株Z8和Z9的电融合重组子。在含230g/L葡萄糖的醪液中发酵,重组子与出发菌株Z8和Z9相比,乙醇产量提高4.33~8.08%。
     3、实验菌株体系的甘油代谢改造基于酵母甘油代谢调控机制,以降低甘油生成、提高乙醇产量为目标。敲除实验菌株4741内源基因FPS1(编码甘油跨膜运输的通道蛋白Fpslp),并同时表达变链球菌Streptococcus mutans的gapN基因(编码NADP+依赖型3-磷酸甘油醛脱氢酶GAPN)获得改造菌株4FG。与对照菌株相比,改造菌株4FG副产物甘油和乙酸产量分别降低21.47%和27.09%,乙醇产量提高9.18%。因此,在实验菌株体系敲除FPS1基因并同时表达异源gapN基因可有效降低副产物甘油和乙酸生成,提高乙醇产量。
     4、工业酵母菌株体系的甘油代谢改造对交配型相异的出发菌株Z1(MATα)和Z4(MATa)分别进行甘油代谢改造,应用kanMX和Zeocin抗性标记替代营养缺陷型标记,敲除FPS1基因并整合表达异源gapN基因。将不同抗性标记的改造菌株KFG (MATa fps1ΔgapN-kanMX)和ZFG (MATa fpslΔgapN-Zeocin)进行杂交,G418-Zeocin双抗平板高效筛选获得杂交重组子FG1(MATa/αfps1ΔgapN-kanMX fpslΔgapN-Zeocin)。在含250g/L葡萄糖醪液中发酵,与Z1和Z4的重组子Z14(MATa/α)相比,基因改造重组子FG1的副产物甘油和乙酸产量分别降低18.14%和25.04%,乙醇产量(114.00g/L)提高4.14%。在工业菌株体系进行相同甘油代谢改造可同样改良发酵性状,但效果与实验菌株体系有所差异。
     5、通过改进的全基因组重排技术提高菌株乙醇耐受力以提高酵母乙醇耐受力为育种目标,在甘油代谢改造的基础上,利用紫外和EMS两种诱变方式对菌株KFG (MATαfpslΔgapN-kanMX)和ZFG (MATa fpslΔgapN-Zeocin)进行诱变,为后续全基因组重排提供更加多样化的变异菌群。经过两轮全基因组重排及G418-Zeocin双抗平板的高效筛选,获得乙醇耐受力提高的重组子A1。在8%(v/v)乙醇胁迫条件下,重组子A1最大比生长速率比对照菌株FGl提高23.83%。细胞膜完整性分析表明,重组子A1在乙醇胁迫下细胞膜完整性较高,这可能是其耐受力提高的原因之一。同时,高糖(含285g/L葡萄糖)发酵结果表明,重组子A1发酵前30h乙醇生成速率是对照菌株FG1的1.4倍,发酵时间缩短,最终乙醇产量高达117.61g/L,比FG1提高3.91%。
Ethanol is one kind of the most important and well-established reproducible biofuel. However, there are several issues and obstacles reminded in the technology of ethanol production. The achievement of fermentation under ultrahigh ethanol concentration opens a new and important avenue to increase the efficiency of ethanol production, and the basic requirement is the development of Saccharomyces cerevisiae strains with high ethanol-production. Random mutagenesis and screening is the leading method for the development of industrial yeast strains. There are many studies which report hybridization, protoplast fusion and genetic engineering for breeding strains, but few can be applied in a large-scale industrial production. Because the industrial yeasts should maintain mutilple performances, such as stress tolerance, fast growth and fermentation rate, which are based on complex metabolic and regulatory networks. It is difficult to improve complex phenotypes of yeasts for industrial production by single technology. Based on previsious studies, we improved and combined hybridization, protoplast fusion, metabolic engineering and whole genome shuffling for strain improvement, and explored the mechanisam. The results were shown as follows:
     1. Screening industrial S. cerevisiae yeasts as original strains for industrial breeding. Among the ninety haploids of three industrial strains THA, S25 and C87, four high ethanol-producing strains Z1, Z4, Z8 and Z9 were selected as the original strains for industrial breeding. The hybrids of two haploids Zl and Z4 with mating ability were obtained by hybridization. On a sweet distillery mash (230g/L glucose), the hybrid Z14 with the highest ethanol yield (100.05g/L) increased the ethanol production by 1.75% and 3.04%, compared with the parent strain THA and S25 of haploid Z1 and Z4, respectively.
     2. Development and application of RAPD-SCAR markers to identify hybrids of industrial S. cerevisiae. For the original strain Z8 and Z9 without sporulation and mating ability, RAPD (Random Amplified Polymorphic DNA)-SCAR (Sequence Characterized Amplified Region) markers were developed. Instead of traditional auxotrophic markers, the RAPD-SCAR markers were applied to identify the hybrids from protoplast fusion. On a sweet distillery mash (230g/L glucose), hybrids increased ethanol production by 4.33~8.08%, compared with their parent strain Z8 and Z9.
     3. Glycerol metabolic engineering in a laboratory strain. To reduce glycerol yield and increase ethanol production, the laboratory strain 4741 was engineered by expressing GAPN (NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase) of Streptococcus mutans and deleting the FPS1 gene (encoding a channel protein Fps1p for glycerol export). The resulting strain 4FG increased the ethanol production by 9.18%, while decreased the yield of glycerol and acetic acid by 21.47% and 27.09%, respectively. The deletion of FPS1 and expression of gapN could be combined to improve the fermentation of yeast strain.
     4. Glycerol metabolic engineering in industrial strains. In the original strain Z1 (MATa) and Z4 (MATa), the FPS1 gene was deleted and the gapN gene (encoding GAPN of Streptococcus mutans) was integrated at the locus of the FPS1 gene with kanMX- or Zeocin-resistance marker. The G418-Zeocin drug plate could efficiently select the hybrid FG1 (MATa/αfps1ΔgapN-kanMX fps1ΔgapN-Zeocin) of the engineered strain KFG (MATαfps1ΔgapN-kanMX) and ZFG (MATa fps1ΔgapN-Zeocin). In fermentation medium contaning 250g/L glucose, the ethanol yield of the engineered hybrid FG1 was up to 114.00g/L. Compared with the hybrid Z14(MATa/α) of the original strain Zland Z4, FG1 increased the ethanol production by 4.14%, while decreased the formation of glycerol and acetic acid by 18.14% and 25.04%, respectively.
     5. Improving ethanol tolerance in S. cerevisiae by the improved whole genome shuffling. Strain A1 was obtained after two rounds of genome shuffling of UV and EMS mutants derived from the engineered strain KFG and ZFG. Under the stress of 8%(v/v) ethanol, maximum specific growth rate of shuffled strain A1 increased 23.83%, compared with the control strain FG1. The protection of cell membrane integrality maybe the reason of the improved ethanol tolerance in strain A1. In fermentation medium contaning 285g/L glucose, ethanol yield rate of the shuffled strain A1 was 1.4-fold than that of the control strain FG1 during the first 30h. Moreover, the ethanol production of the shuffled strain A1 was up to 117.61g/L, and increased by 3.91%, compared with the control strain FG1.
引文
[1]Nevoigt E, Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews,2008.72(3):379-412.
    [2]Petri R and Schmidt-Dannert C, Dealing with complexity:evolutionary engineering and genome shuffling. Current Opinion in Biotechnology,2004.15(4):298-304.
    [3]Goffeau A, Barrell B, Bussey H, et al., Life with 6000 genes. Science,1996.274(5287):546, 563-567.
    [4]Ostergaard S, Olsson L, and Nielsen J, Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews,2000.64(1):34-50.
    [5]Alper H, Moxley J, Nevoigt E, et al., Engineering yeast transcription machinery for improved ethanol tolerance and production. Science,2006.314(5805):1565-1568.
    [6]Gibson BR, Lawrence SJ, Leclaire JP, et al., Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews,2007.31(5):535-569.
    [7]Hirasawa T, Yoshikawa K, Nakakura Y, et al., Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology,2007.131(1):34-44.
    [8]Ding J, Huang X, Zhang L, et al., Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2009.85(2):253-263.
    [9]Hu XH, Wang MH, Tan T, et al., Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics,2007.175(3):1479-1487.
    [10]You KM, Rosenfield CL, and Knipple DC, Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content Applied and Environmental Microbiology,2003. 69(3):1499-1503.
    [11]Salgueiro SP, Sa-Correia I, and Novais JM, Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity. Applied and Environmental Microbiology,1988.54(4):903-909.
    [12]Alper H and Stephanopoulos G, Global transcription machinery engineering:a new approach for improving cellular phenotype. Metabolic Engineering,2007.9(3):258-267.
    [13]Yomano L, York S, and Ingram L, Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology and Biotechnology,1998.20(2):132-138.
    [14]吴婷婷和吴雪昌,高乙醇转化率酿酒酵母工程菌株构建研究进展.食品与发酵工业,2006.32(008):88-92.
    [15]Nissen T, Kielland-Brandt M, Nielsen J, et al., Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering,2000.2(1):69-77.
    [16]Nevoigt E and Stahl U, Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews,1997.21(3):231-241.
    [17]Zhang A, Kong Q, Cao L, et al., Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae. Letters in applied microbiology,2007.44(2):212-217.
    [18]Remize F, Barnavon L, and Dequin S, Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metabolic Engineering,2001.3(4):301-312.
    [19]Albertyn J, Hohmann S, Thevelein J, et al., GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular and Cellular Biology,1994.14(6):4135-4144.
    [20]Eriksson P, Andre L, Ansell R, et al., Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Molecular Microbiology,1995.17(1):95-107.
    [21]Ansell R, Granath K, Hohmann S, et al., The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. The EMBO Journal,1997.16:2179-2187.
    [22]Luyten K, Albertyn J, Skibbe WF, et al., Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. The EMBO Journal,1995.14(7):1360-1371.
    [23]Bjorkqvist S, Ansell R, Adler L, et al., Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied and Environmental Microbiology,1997.63(1):128-132.
    [24]Valadi H, Larsson C, and Gustafsson L, Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol,1998.50(4):434-439.
    [25]Nissen TL, Hamann CW, Kielland-Brandt MC, et al., Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast,2000.16(5):463-474.
    [26]杨瑞娟和吴雪昌,酿酒酵母体内氮的代谢作用.农机化研究,2008(001):35-39.
    [27]Kong Q, Gu J, Cao L, et al., Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol. Lett.,2006.28(24):2033-2038.
    [28]Kong QX, Cao LM, Zhang AL, et al., Overexpressing GLT1 in gpdlDelta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,2007. 73(6):1382-1386.
    [29]Kong QX, Zhang AL, Cao LM, et al., Over-expressing GLT1 in a gpd2Delta mutant of Saccharomyces cerevisiae to improve ethanol production. Applied Microbiology and Biotechnology, 2007.75(6):1361-1366.
    [30]Anderlund M, Nissen TL, Nielsen J, et al., Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Applied and Environmental Microbiology, 1999.65(6):2333-2340.
    [31]Bro C, Regenberg B, Forster J, et al., In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng,2006.8(2):102-111.
    [32]Stoughton RB, Applications of DNA microarrays in biology. Annual Review of Biochemistry, 2005.74:53-82.
    [33]Lynch MD, Gill RT, and Stephanopoulos G, Mapping phenotypic landscapes using DNA micro-arrays. Metabolic Engineering,2004.6(3):177-185.
    [34]Schuller C, Mamnun YM, Mollapour M, et al., Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Molecular Biology of the Cell,2004.15(2):706-720.
    [35]Lynch MD, Warnecke T, and Gill RT, SCALEs:multiscale analysis of library enrichment Nature Methods,2007.4(1):87-93.
    [36]Sebat JL, Colwell FS, and Crawford RL, Metagenomic profiling:microarray analysis of an environmental genomic library. Applied and Environmental Microbiology,2003.69(8):4927-4934.
    [37]Butler PR, Brown M, and Oliver SG, Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnology and Bioengineering,1996.49(2):185-196.
    [38]Mukai N, Nishimori C, Fujishige IW, et al., Beer brewing using a fusant between a sake yeast and a brewer's yeast Journal of Bioscience and Bioengineering,2001.91(5):482-486.
    [39]Prabavathy VR, Mathivanan N, Sagadevan E, et al., Self-fusion of protoplasts enhances chitinase production and biocontrol activity in Trichoderma harzianum. Bioresource Technology,2006. 97(18):2330-2334.
    [40]Zhang Y, Lin S, Zhu Y, et al., Protoplast fusion between Geotrichum candidium and Phanerochaete chrysosporium to produce fusants for corn stover fermentation. Biotechnology Letters, 2006.28(17):1351-1359.
    [41]Klosowski G, Czuprynski B, and Wolska M, Characteristics of alcoholic fermentation with the application of Saccharomyces cerevisiae yeasts:As-4 strain and 1-7-43 fusant with amylolytic properties. Journal of Food Engineering,2006.76(4):500-505.
    [42]Loray MA, Spencer JFT, Spencer DM, et al., Hybrids obtained by protoplast fusion with a salt-tolerant yeast Journal of Industrial Microbiology & Biotechnology,1995.14(6):508-513.
    [43]Sakanaka K, Yan W, Kishida M, et al., Breeding a fermentative yeast at high temperature using protoplast fusion. Journal of Fermentation and Bioengineering,1996.81(2):104-108.
    [44]Urano N, Kamimura M, Nanba T, et al., Construction of a yeast cell fusion system using a fluid integrated circuit Journal of Biotechnology,1991a.20:109-116.
    [45]Zhou S, Shanmugam KT, Yomano LP, et al., Fermentation of 12%(w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnology Letters,2006. 28(9):663-670.
    [46]Sonderegger M and Sauer U, Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology,2003.69(4):1990-1998.
    [47]Tyo KE, Zhou H, and Stephanopoulos GN, High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Applied and Environmental Microbiology, 2006.72(5):3412-3417.
    [48]Zhang YX, Perry K, Vinci VA, et al., Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature,2002.415(6872):644-646.
    [49]Patnaik R, Louie S, Gavrilovic V, et al., Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology,2002.20(7):707-712.
    [50]Wang Y, Li Y, Pei X, et al, Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. Journal of Biotechnology,2007.129(3):510-515.
    [51]Dai M and Copley SD, Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology,2004.70(4):2391-2397.
    [52]Jia H, Zhang Y, Feng J, et al., Latest Key Technologies and Applications of Industrial Microbiology. Progress in Chemistry,2007.19:1223-1228.
    [53]Shinzato N, Namihira T, Tamaki Y, et al., Application of random amplified polymorphic DNA (RAPD) analysis coupled with microchip electrophoresis for high-resolution identification of Monascus strains. Applied Microbiology and Biotechnology,2009.82(6):1187-1193.
    [54]Sikorski RS and Hieter P, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics,1989.122(1):19-27.
    [55]Sauer B, Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Research,1996.24(23):4608-4613.
    [56]Oldenburg KR, Vo KT, Michaelis S, et al., Recombination-mediated PCR-directed plasmid construction in vivo in yeast Nucleic Acids Research,1997.25(2):451-452.
    [57]Iwaki T and Takegawa K, A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry,2004.68(3):545-550.
    [58]Gueldener U, Heinisch J, Koehler GJ, et al., A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast Nucleic Acids Research,2002.30(6):e23.
    [59]Goldstein AL, Pan X, and McCusker JH, Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast,1999.15(6):507-511.
    [60]Pronk JT, Auxotrophic yeast strains in fundamental and applied research. Applied and Environmental Microbiology,2002.68(5):2095-2100.
    [61]Engebrecht J and Roeder GS, MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis. Molecular and Cellular Biology,1990.10(5):2379-2389.
    [62]Aparicio O, Billington B, and Gottschling D, Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell,1991.66(6):1279-1287.
    [63]Nakayashiki T, Ebihara K, Bannai H, et al., Yeast [PSI+]. Molecular cell,2001.7(6):1121-1130.
    [64]Struhl K, Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-dedl gene region. Nucleic Acids Research,1985.13(23):8587-8601.
    [65]Fasullo MT and Davis RW, Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates. Molecular and Cellular Biology,1988.8(10):4370-4380.
    [66]Brachmann CB, Davies A, Cost GJ, et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C:a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast,1998.14(2):115-132.
    [67]Hinnen A, Hicks JB, and Fink GR, Transformation of yeast. Proceedings of the National Academy of Sciences of the United States of America,1978.75(4):1929-1933.
    [68]Meira LB, Henriques JA, and Magana-Schwencke N,8-Methoxypsoralen photoinduced plasmid-chromosome recombination in Saccharomyces cerevisiae using a centromeric vector. Nucleic Acids Research,1995.23(9):1614-1620.
    [69]Gaber RF and Culbertson MR, Frameshift suppression in Saccharomyces cerevisiae. Ⅳ. New suppressors among spontaneous co-revertants of the Group II his4-206 and leu 2-3 frameshift mutations. Genetics,1982.101(3-4):345-367.
    [70]Winston F, Dollard C, and Ricupero-Hovasse SL, Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast,1995. 11(1):53-55.
    [71]McDonald JP, Levine AS, and Woodgate R, The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics,1997.147(4):1557-1568.
    [72]Rose M and Winston F, Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Molecular and General Genetics MGG,1984.193(3):557-560.
    [73]Gritz L and Davies J, Plasmid-encoded hygromycin B resistance:the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene, 1983.25(2-3):179.
    [74]Wach A, Brachat A, PohImann R, et al., New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast,1994.10(13):1793-1808.
    [75]Guldener U, Heck S, Fielder T, et al., A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res,1996.24(13):2519-2524.
    [76]Schwartz DC and Cantor CR, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell,1984.37(1):67-75.
    [77]Nadal D, Carro D, Fernandez-Larrea J, et al., Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains. Applied and Environmental Microbiology,1999. 65(4):1688-1695.
    [78]Perez-Ort n J, Querol A, Puig S, et al., Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome research,2002. 12(10):1533.
    [79]Pataro C, Guerra JB, Petrillo-Peixoto ML, et al., Yeast communities and genetic polymorphism of Saccharomyces cerevisiae strains associated with artisanal fermentation in Brazil. Journal of Applied Microbiology,2000.89(1):24-31.
    [80]Senses-Ergul S, agoston R, Belak a, et al., Characterization of some yeasts isolated from foods by traditional and molecular tests. International Journal of Food Microbiology,2006.108(1):120-124.
    [81]Michelmore R and Hulbert S, Molecular markers for genetic analysis of phytopathogenic fungi. Annual Review of Phytopathology,1987.25(1):383-404.
    [82]Drubin D, Development of cell polarity in budding yeast Cell,1991.65(7):1093.
    [83]De Clercq D, Cognet S, Pujol M, et al., Development of a SCAR marker and a semi-selective medium for specific quantification of Pichia anomala strain K on apple fruit surfaces. Postharvest Biology and Technology,2003.29:237-247.
    [84]Cocolin L, Pepe V, Comitini F, et al., Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Research,2004. 5(3):237-245.
    [85]Quesada M and Cenis J, Use of Random Amplified Polymorphic DNA (RAPD-PCR) in the characterization of wine yeast American Journal of Enology and Viticulture,1995.46:204-208.
    [86]Tornai-Lehoczki J and Dlauchy D, Delimination of brewing yeast strains using different molecular techniques. International Journal of Food Microbiology,2000.62(1-2):37-45.
    [87]Walczak E, Czaplinska A, Barszczewski W, et al., RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiology,2007.24(3):305-312.
    [88]朱旭芬和吴雪昌,耐高温酿酒酵母单倍体的RAPD分析.生物工程学报,2001.17(005):557-560.
    [89]朱旭芬和曾云中,酿酒酵母耐热相关基因DNA片断的初探.菌物系统,2000.19(002):248-253.
    [90]Williams JG, Kubelik AR, Livak KJ, et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990.18(22):6531-6535.
    [91]Welsh J and McClelland M, Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990.18(24):7213.
    [92]Teresa Fernandez-Espinar M, Barrio E, and Querol A, Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast,2003.20(14):1213-1226.
    [93]何培彦和吴雪昌,利用分子分类技术监测酒精发酵过程中酵母菌群群落结构变化的可行性研究.酿酒,2006.33(003):42-45.
    [94]Lehmann P, Lin D, and Lasker B, Genotypic identification and characterization of species and strains within the genus Candida by using random amplified polymorphic DNA. Journal of Clinical Microbiology,1992.30(12):3249.
    [95]Brosnan MP, Donnelly D, James TC, et al., The stress response is repressed during fermentation in brewery strains of yeast Journal of Applied Microbiology,2000.88(5):746-755.
    [96]Hack C and Marchant R, Characterisation of a novel thermotolerant yeast, Kluyveromyces marxianus var marxianus:development of an ethanol fermentation process. Journal of Industrial Microbiology & Biotechnology,1998.20:323-327.
    [97]朱旭芬和吴雪昌,酿酒酵母产孢条件及核倍性分析.科技通报,2002.18(005):393-397.
    [98]吴帅,陈叶福和沈楠等,高耐性酿酒酵母的杂交育种.酿酒科技,2006(010):20-22.
    [99]施巧琴和吴松刚,工业微生物育种学.2003,北京:科学出版社.
    [100]曾云中,吴雪昌和金珊等,耐高温酿酒酵母的选育——Ⅱ.菌株的选育及产酒发酵特性初探.浙江大学学报(理学版),1992.19:325-327.
    [101]诸葛健和王正祥,工业微生物试验技术手册.1994:中国轻工业出版社.
    [102]王梅和张彭湃,TTC在黄酒酵母选育中的应用.酿酒,2001.28(005):62-64.
    [103]李华,刘丽丽和李娟,酿酒酵母产孢培养基的筛选及单倍体的分离.酿酒科技,2008(006):22-24.
    [104]Urano N, Kamimura M, Nanba T, et al., Construction of a yeast cell fusion system using a fluid integrated circuit Journal of Biotechnology,1991a.20:109-116.
    [105]Quesada M and Cenis J, Use of Random Amplified Polymorphic DNA (RAPD-PCR) in the characterization of wine yeast. American Journal of Enology and Viticulture,1995.46:204-208.
    [106]Vidal J, Delavault P, Coarer M, et al., Design of grapevine (Vitis vinifera L.) cultivar-specific SCAR primers for PCR fingerprinting. TAG. Theoretical and Applied genetics. Theoretische und Angewandte Genetik,2000.101(8):1194-1201.
    [107]Paran I and Michelmore R, Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. TAG. Theoretical and Applied genetics. Theoretische und Angewandte Genetik,1993.85:985-993.
    [108]Hernandez P, Martin A, and Dorado G, Development of SCARs by direct sequencing of RAPD products:a practical tool for the introgression and marker-assisted selection of wheat Molecular Breeding,1999.5(3):245-253.
    [109]曾云中和左小明,原生质体电融合构建酵母多倍体的研究.微生物学报,1995.35(004):264-270.
    [110]Xu H, Wilson D, Arulsekar S, et al., Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. American Society for Horticultural Science,1995.120:714-720.
    [111]Nakazawa N and Iwano K, Efficient selection of hybrids by protoplast fusion using drug resistance markers and reporter genes in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering,2004.98:353-358.
    [112]Mizuhiro M, Ito K, and Mii M, Production and characterization of interspecific somatic hybrids between Primula malacoides and P.obconica. Plant Science,2001.161(3):489-496.
    [113]Shasany A, Darokar M, Dhawan S, et al., Use of RAPD and AFLP markers to identify inter- and intraspecific hybrids of Mentha. Journal of Heredity,2005.96(5):542-549.
    [114]Shoyama Y, Kawachi F, Tanaka H, et al., Genetic and alkaloid analysis of Papaver species and their F1 hybrid by RAPD, HPLC and ELISA. Forensic Science International,1998.91(3):207-217.
    [115]Dnyaneshwar W, Preeti C, Kalpana J, et al., Development and application of RAPD-SCAR marker for identification of Phyllanthus emblica LINN. Biological & Pharmaceutical Bulletin,2006. 29(11):2313-2316.
    [116]Psomas E, Andrighetto C, Litopoulou-Tzanetaki E, et al., Some probiotic properties of yeast isolates from infant faeces and Feta cheese. International Journal of Food Microbiology,2001. 69:125-133.
    [117]Albani MC, Battey NH, and Wilkinson MJ, The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. TAG. Theoretical and Applied genetics. Theoretische und Angewandte Genetik,2004.109(3):571-579.
    [118]Wang P-M, Wu X-C, Chi X-Q, et al., Development and application of RAPD-SCAR markers to identify intra-species hybrids of industrial Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology,2010.
    [119]Marullo P, Bely M, Masneuf-Pomarede I, et al., Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Research,2006. 6(2):268-279.
    [120]Gietz R and Schiestl R, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method Nature protocols,2007.2(1):31-34.
    [121]Crow VL and Wittenberger CL, Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans. The Journal of Biological Chemistry,1979.254(4):1134-1142.
    [122]Wojda I, Alonso-Monge R, Bebelman JP, et al., Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology,2003.149(Pt 5):1193-1204.
    [123]Tamas MJ, Luyten K, Sutherland FC, et al., Fpslp controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology,1999.31(4):1087-1104.
    [124]Gardner N, Rodrigue N, and Champagne C, Combined effects of sulfites, temperature, and agitation time on production of glycerol in grape juice by Saccharomyces cerevisiae. Applied and Environmental Microbiology,1993.59(7):2022.
    [125]Albers E, Larsson C, Liden G, et al., Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Applied and Environmental Microbiology,1996. 62(9):3187.
    [126]Yu L, Pei X, Lei T, et al., Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology,2008.134(1-2):154-159.
    [127]Wei P, Li Z, He P, et al., Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnology and Applied Biochemistry,2008.49(Pt 2):113.
    [128]Wei P, Li Z, Lin Y, et al., Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment Biotechnology Letters,2007. 29(10):1501-1508.
    [129]Cullen D, Leong S, Wilson L, et al., Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene,1987.57(1):21-26.
    [130]戴朝波,吴雪昌和严力蛟,酵母紫外线诱变后培养温度与酒精发酵性状变异相关性研究.科技通报,2008.24(003):325-329.
    [131]Teixeira M, Raposo L, Mira N, et al., Genome-wide identification of genes required for maximal tolerance to ethanol in yeast:important role of FPS1. Applied and Environmental Microbiology,2009.
    [132]Yazawa H, Iwahashi H, and Uemura H, Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast,2007.24(7):551-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700