棉花胞质雄性不育系与保持系线粒体基因组差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花细胞质雄性不育(CMS)是母性遗传性状,在杂交棉制种中有重要的应用价值。通过不育系、保持系和恢复系的“三系”配套,以及“三系法”制种,可实现杂交棉种子规模化生产。目前,国内外已育成哈克尼西棉、三裂棉、陆地棉、海岛棉等胞质的不育系,并实现三系配套,其中陆地棉胞质不育系P30A(来源于104-7A)为核心的三系配套已应用于生产实践。导致植物细胞质雄性不育的基因被认为是位于线粒体基因组上,但是关于棉花CMS相关基因的研究报道很少。本文以P30A及其保持系P30B、恢复系Y18R为主要实验材料,对其线粒体基因组进行了Southern blot分析,克隆了不育胞质和可育胞质之间的差异序列,获得了胞质特异的RFLP、SCAR、SSR分子标记,并对差异序列进行了表达分析,为进一步克隆不育基因奠定了基础。
     本研究通过同源克隆的方法,获得了棉花31个线粒体基因的保守序列,从中选取20个基因做探针对不育系P30A、保持系P30B、恢复系Y18R的线粒体基因组(mtDNA)进行Southern blot分析,发现atpA、atp9、ccmB、nad1bc、nad6、nad7c、rrn18等7个基因在不育胞质和可育胞质间存在RFLP多态性。其中atpA基因的差异最明显,它在可育胞质和不育胞质中的两个RFLP片段均不相同。
     利用反向PCR(IPCR)方法,克隆到了可育胞质和不育胞质中atpA基因的所有EcoRI限制片段。在此基础上,应用TAIL-PCR方法,获得了可育胞质和不育胞质中atpA基因的所有HindIII限制片段。在可育胞质中,EcoRI限制片段长度分别是2225 bp和5083 bp,HindIII限制片段的长度分别是11689 bp和8501 bp;不育胞质中,EcoRI限制片段长度分别是2194 bp和3297 bp,HindIII限制片段的长度分别是11658 bp和9139 bp。序列分析发现,棉花atpA基因在可育胞质和不育胞质中各有两个拷贝:一个完整拷贝和一个3’截短型拷贝。完整atpA基因全长1524 bp;而可育胞质和不育胞质中的截短型atpA编码序列分别在1352 bp和1336 bp处截断。
     在完整atpA拷贝RFLP片段的3’端,即atpA基因下游第161-212 bp处,可育胞质(P30B)和不育胞质(P30A)存在差异,是一个SSR位点,该位点在P30B可育胞质中是(TAA)7(TA)6,在哈克尼西棉CMS系(CMS-D2)、P30A、晋A、湘远A不育胞质中是(TAA)3(TA)2,而在三裂棉CMS系(CMS-D8)胞质中是(TAA)4(TA)3,我们将其开发成SSR标记:SSR160。在atpA截短型拷贝RFLP片段上,即atpA编码序列截断位点(“断点”)后,可育胞质和不育胞质中分别存在一段515 bp(“N515”)和555 bp(“S555”)的差异序列,这两条差异序列完全不同,我们将其开发成SCAR515和SCAR555标记。这三个标记可用于鉴定棉花可育胞质和不育胞质。
     根据以上结果,对国内外的几种不同CMS系棉花的mtDNA进行了RFLP分析和差异片段的序列分析,发现在atpA基因位点,CMS-D2、P30A、晋A、湘远A这四种CMS系的RFLP图谱相同,而CMS-D8与CMS-D2、P30A、晋A、湘远A、P30B都不同。通过TAIL-PCR方法,克隆到了CMS-D8的差异EcoRI限制片段(4540 bp),发现其中的序列与P30A相比存在5处SNP位点,根据SNP位点,开发出CMS-D8特异分子标记:SCARD8,该标记可将CMS-D8与其他CMS系进行区分。
     应用RT-PCR方法对atpA进行表达分析,发现棉花可育胞质和不育胞质中全长atpA基因和截短型atpA基因均转录。分析atpA基因的RNA编辑情况时发现,棉花atpA基因全长拷贝(1524bp)中存在6处RNA编辑位点,且不育胞质与可育胞质的RNA编辑率基本相同;在截短型拷贝中存在4处RNA编辑位点,不育胞质的RNA编辑率明显高于可育胞质,说明不育胞质截短型拷贝可能仍承受较高选择压,很可能具有新功能。同时,利用环化RT-PCR (cRT-PCR)法克隆到不育胞质atpA全长拷贝和截短型拷贝的转录本全长,发现atpA全长拷贝转录本中包含完整SSR160位点;atpA截短型拷贝转录本中包含完整“S555”序列。
     在atpA基因3’侧翼区,存在一些短重复序列,这些序列来自于nad6基因3’部分编码序列。在不育胞质中,这些短重复序列位于关键的“断点”位置,推测其在不育胞质线粒体基因组重排中发挥重要的介导作用。根据短重复序列在两种胞质中的位置和拷贝数不同开发出一个SCAR标记:SCARN6,可用于鉴别棉花可育胞质和不育胞质。Northern blot分析显示,nad6基因在棉花“三系”及F1代中都只有一个转录本(850 bp),且丰度基本一致。利用cRT-PCR法克隆到nad6基因的转录本全长,发现其mRNA在基因组终止密码子之前-14和-15 bp处提前终止,即该基因无终止密码子。
     在atpA基因5’上游存在rrn18-rrn5基因簇,并且不育胞质比可育胞质缺失一个rrn18拷贝,推测rrn18基因与棉花CMS可能相关。
     本研究首次克隆到了棉花细胞质雄性不育胞质和可育胞质线粒体基因组中atpA基因的所有EcoRI和HindIII限制片段,获得两种胞质在atpA基因3’下游存在的差异序列,开发出用于鉴定可育胞质和不育胞质的SCAR和SSR标记,确定了CMS-D8胞质与其它CMS系之间的差异序列,开发出CMS-D8胞质特异SCAR分子标记。同时发现nad6基因3’部分编码序列成为短重复序列,并在CMS系线粒体基因组重排中发挥重要介导作用;发现不育胞质比可育胞质缺失一个rrn18基因拷贝;获得不育胞质中atpA全长拷贝和截短型拷贝以及nad6基因的转录本全长,并发现截短型atpA基因的编辑率在两种胞质间存在明显差异。这些结果为进一步克隆棉花细胞质雄性不育基因奠定了基础。
Cytoplasmic male sterility (CMS) is a maternally inherited trait. It has been widely used in breeding programs to produce F1 hybrid seed in crops. The“three-line system”(involving a CMS line, maintainer line, and restorer line) can allow for large-scale cultivation of cotton hybrids. In cotton, there are several different types of CMS lines: CMS-D2 (G. Harknessii), CMS-D8 (G. trilobum), 104-7A, JinA, XiangyuanA and so on. CMS line P30A (cytoplasm originated from 104-7A) has been used in practical production.CMS-determining factors are believed to be located at the mitochondrial genomes. But CMS-associated genes in cotton are almost unknown. In this study, CMS line P30A, maintainer line P30B, restorer line Y18R, were used as the main materials. Mitochondrial gene probes were used to identify the differences between the P30B normal fertile (N-) and the P30A male sterile (S-) cytoplasm with Southern blot method. The differential sequences between N- and S-cytoplasm were cloned, and cytoplasm-specific RFLP, SCAR and SSR markers were developed. Further expression analysis was performed on the differential sequences. These work made foundation for cloning CMS-determining genes in cotton.
     Conserved sequences of 31 mitochondrial genes were obtained from mitochondrial genome of cotton by homolog cloning strategy. 20 mitochondrial genes were selected to perform Southern blot analysis on mtDNA of CMS line P30A, maintainer line P30B, and restorer line Y18R. Among the 20 genes, atpA, atp9, ccmB, nad1bc, nad6, nad7c and rrn18 revealed restriction fragment length polymorphisms (RFLPs) between N- and S-cytoplasm. The differences on atpA locus were most obvious.
     All of the EcoRI restriction fragments of atpA were cloned by inverse PCR (IPCR) technique for the first time. And further, all of the HindIII fragments were cloned with TAIL-PCR method. In N-cytoplasm, the EcoRI restriction fragments were 2225 bp and 5083 bp in length, the HindIII restriction fragments were 11689 bp and 8501 bp in length. In S-cytoplasm, the EcoRI restriction fragments were 2194 bp and 3297 bp in length, the HindIII restriction fragments were 11658 bp and 9139 bp in length. Both N- and S-cytoplasm had an intact atpA copy and a 3’truncated copy. The full length of atpA was 1524 bp.The truncated copies in N- and S-cytoplasm were truncated at 1352 bp and 1336 bp of atpA coding region, respectively.
     At the 3’flanking, and 161-212 bp downstream of, the intact atpA gene, a simple sequence repeat (SSR) locus was found between N- and S-cytoplasm. In N-cytoplasm, the locus was (TAA)7(TA)6; in P30A, JinA, XiangyuanA and CMS-D2, the locus was (TAA)3(TA)2; in CMS-D8, the locus was (TAA)4(TA)3. And the SSR locus was developed to be a molecular marker: SSR160.
     As far as the 3’truncated atpA copy was concerned, the truncating site (breakpoint) was different in N- and S-cytoplasm. Following the breakpoints, chimerical fragments of 515 bp (“N515”) and 555 bp (“S555”) were found in N- and S-cytoplasm, respectively. According to the chimerical sequences, two cytoplasm-specific sequence characterized amplified region (SCAR) markers were successfully developed. Three of the PCR markers can be used to distinguish N- and S-cytoplsam in cotton.
     Additionally, based on SSR polymorphisms and SNPs in truncated region, five CMS lines can be classified into two major groups: one corresponds to CMS-D8 and the other consists of other four CMS lines. Furthermore, a new SCAR marker was identified to distinguish CMS-D8 from other CMS lines.
     RT-PCR analysis showed that these atpA copies in N- and S-cytoplasm were all transcribed. There were six RNA edit sites in full length atpA coding sequences.The RNA editing rates of the full length atpA gene were the same between the two cytoplasms, but when the truncated copies were conserned, the RNA editing rates in S-cytoplasm were obviously higher than the N-cytoplasm. In S-cytoplasm, the RNA editing rates of truncated copy were close to 100%, while in N-cytoplasm the values were less than 60%. It indicated that the selective pressure upon the truncated copy of S-cytoplasm is heavier than that of N-cytoplasm, and further implied that the truncated copy of N-cytoplasm had lost function, while the truncated copy of S-cytoplasm was likely to possess new function. The full-length cDNAs of the intact and truncated atpA copies in S-cytoplasm were obtained by the cRT-PCR method. The results showed that the transcript of intact atpA gene covered the SSR160 sequence, and the transcript of truncated atpA gene covered the S555 sequence.
     We found that at the 3’downstream of atpA gene, there were several short repeat sequences which belonged to the 3’coding sequences of nad6 gene. In S-cytoplasm, these short repeat sequences were located at the“breakpoint”loci, this implied that the short repeat sequences played an important role in rearrangement of mitochondrial genome in S-cytoplasm. According to the short repeat sequences, a SCAR marker was developed to distinguish N- and S-cytoplasm of cotton. Northern blot analysis showed that there was an identical transcript of nad6 in“three line”and F1 cultivars. In addition, full length transcript of nad6 gene was obtained with cRT-PCR method, the mRNA of the nad6 gene was found to be processed -14 bp and -15 bp upstream of the inframe stop codons.
     rrn18-rrn5 gene cluster was found located at the 5’upstream of atpA gene, and an rrn18 copy was found to be deleted in S-cytoplasm when compared with N-cytoplasm. This indicated that rrn18 gene may be associated with CMS in cotton.
     In this study, all of the EcoRI and HindIII restriction fragments of atpA in N- and S- cytoplasms of cotton were cloned for the first time. SCAR and SSR molecular markers were developed to distinguish N- and S-cytoplasm. And the differential sequences between CMS-D8 from the other four CMS lines were determind. And parts of nad6 coding sequences were found to be participated in the rearrangement of cotton mitochondrial genome, especially in the S-cytoplasm. And one rrn18 copy was found to be deleted in S-cytoplasm when compared with N-cytoplasm. Transcription of atpA and nad6 was analysed. And RNA editing rates of truncated atpA gene were different between N- and S-cytoplasm. The results made foundation for further cloning CMS-determining genes in cotton.
引文
[1]傅廷栋.杂交油菜的育种与利用(第二版)[M].武汉:湖北科学技术出版社,2000.
    [2]巩养仓.棉花细胞质雄性不育相关线粒体基因筛选[硕士学位论文].河南安阳:中国农业科学院棉花研究所,2008.
    [3]黄晋玲.棉花晋A细胞质雄性不育系的遗传研究[博士学位论文].太谷:山西农业大学,2003.
    [4]蒋培东.棉花细胞质雄性不育机理的研究[博士学位论文].浙江杭州:浙江大学,2007.
    [5]贾占昌.棉花雄性不育系104-7A的选育及三系配套[J].生物防治通报,1990,3:33.
    [6]沈金雄,万正杰,景兵等.油菜细胞质雄性不育及恢复的分子机理研究进展[J].中国油料作物学报,2008,30(3):374-383.
    [7]吴豪,徐虹,刘振兰等.植物细胞质雄性不育及其育性恢复的分子基础[J].植物学通报,2007,24: 399-413.
    [8]王学德.细胞质雄性不育棉花线粒体蛋白质和DNA的分析[J].作物学报,2000,26(1):35-39.
    [9]王学德,李悦有.彩色棉雄性不育系、保持系和恢复系的选育及DNA指纹图谱的构建[J].浙江大学学报, 2002,28(1):1-6.
    [10]易平,汪莉,孙清萍等.红莲型细胞质雄性不育水稻线粒体相关嵌合基因的发现[J].科学通报,2002, 47:130-133.
    [11]俞志华,王学德,蒋淑丽.棉花细胞质雄性不育性状的RAPD标记及Taq酶用量的影响[J].浙江大学学报,1999,25(5):503-504.
    [12]周长发,张锐,张晓等.地高辛随机引物法标记探针的Southern杂交技术优化[J].中国农业科技导报,2009,11(4):123-128.
    [13]朱云国,王学德,李悦有.用AFLP技术构建棉花雄性不育三系及其杂种F1的DNA指纹图谱[J].棉花学报,2001,13 (3):158-160.
    [14] Abdelnoor RV, Yule R, Elo A, et al. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5968-5973.
    [15] Allefs JJ, Salentijn EM, Krens FA, et al. Optimization of nonradioactive Southern blot hybridization: single copy detection and reuse of blots [J]. Nucleic Acids Research, 1990, 18:3099- 3100.
    [16] Allen JO, Fauron CM, Minx P, et al.Comparisons among two fertile and three male sterile mitochon- drial genomes of maize [J]. Genetics, 2007, 177:1173-1192.
    [17] Allen JO, Minx P, Fauron CM, et al. The complete mitochondrial genomes of five close relatives of maize. 2006. (Unpublished ttp://www.ncbi.nlm.nih.gov/genomes/Genomes Group.cgi? taxid= 33090 & opt=organelle).
    [18] Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome [J]. Nature, 1981, 290:457-465.
    [19] Alverson AJ, Wei XX, Rice DW, et al. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae) [J].Mol. Biol. Evol.,2010, 27(6):1436-1448.
    [20] Ashutosh, Dwivedi KK, Kumar VD, et al.Rep-PCR helps to distinguish different alloplasmic cytoplasmic male sterile lines of Brassica juncea [J]. Plant Sci., 2005, 168:1083-1087.
    [21] Ashutosh, Kumar P, Kumar VD, et al.A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm [J]. Plant Cell Physiol, 2008, 49(2):284-289.
    [22] Atsushi M and Kenzo N. Structure and Expression of Pea Mitochondrial F1 ATPase a-Subunit Gene and Its Pseudogene Involved in Homologous Recombination [J]. J. Biochem., 1987, 101: 967-976.
    [23] Bartoszewski G, Malepszy S and Havey MJ. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements [J]. Curr. Genet. , 2004, 45(1):45-53.
    [24] Bentolila S, Chateigner-Boutin A and Hanson M R. Ecotype allelic variation in C-to-U editing extent of a mitochondrial transcript identifies RNA-editing quantitative trait loci in Arabidopsis [J]. Plant Physiol., 2005, 139: 2006-2016.
    [25] Bergthorsson U, Richardson AO, Young GJ, et al. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella [J]. Proc. Natl. Acad. Sci., 2004, 101:17747-17752.
    [26] Bonhomme S, Budar F, Férault M,et al.A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids [J]. Curr. Genet. , 1991, 19: 121-127.
    [27] Bonhomme S, Budar F, Lancelin D, et al. Sequence and transcript analysis of the Nco2.5 Ogura- specific fragment correlated with cytoplasmic male sterility in Brassica cybrids [J]. Mol. Gen. Genet, 1992, 235(2-3):340-348.
    [28] Cardi T, Bastia T, Monti L,et al.Organelle DNA and male fertility variation in Solanum spp.and interspecific somatic hybrids [J].Theor. Appl. Genet., 1999, 99:819-828.
    [29] Chanut FA, Grabau EA and Gesteland RF. Complex organization of the soybean mitochondrial genome recombination repeats and multiple transcripts at the atpA loci [J]. Curt. Genet.,1993,23: 234-247.
    [30] Chase CD and Ortega VM. Organization of ATPA coding and 3' flanking sequences associated with cytoplasmic male sterility in Phaseolus vulgaris L [J]. Curt. Genet. , 1992, 22:147-153.
    [31] Chaw S M, Shih AC, Wang D, et al. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites [J]. Mol.Biol. Evol., 2008, 25(3):603-615.
    [32] Chrzanowska-Lightowlers ZMA, Temperley RJ, Smith PM, et al.Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons [J]. Biochem J., 2004, 377:725-731.
    [33] Clifton SW, Minx P, Fauron CMR, et al. Sequence and comparative analysis of the maize NB mitochondrial genome [J]. Plant Physiol., 2004, 136: 3486-3503.
    [34] Combettes B and Grienenberger JM. Analysis of wheat mitochondrially encoded polypeptides byin organello labeling [J].Plant Cell Rep., 1999, 19:161-167.
    [35] Covello PS and Gray MW. RNA editing in plant mitochondria [J]. Nature, 1989, 341:662-666.
    [36] Dewey RE, Levings CS and Timothy DH. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm [J].Cell, 1986, 44(3):439 -449.
    [37] Dewey RE, Timothy DH and Levings CS. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize [J]. Proc. Natl. Acad. Sci. U S A, 1987, 84(15):5374-5378.
    [38] Dieterich JH, Braun HP and Schmitz UK. Alloplasmic male sterility in Brassica napus (CMS‘Tournefortii-Stiewe’) is associated with a special gene arrangement around a novel atp9 gene [J]. Mol. Genet. Genomics, 2003, 269(6):723-731.
    [39] Dill CL, Wise RP and Schnable PS. Rf8 and Rf* mediate unique T-urf13 transcript accumulation, releaving a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize [J]. Genetics, 1997, 147:1367-1379.
    [40] Dohmen G, Hessberg H, Geiger HH, et al. CMS in rye: comparative RFLP and transcript analyses of mitochondria from fertile and male-sterile plants [J].Theor. Appl. Genet., 1994, 89:1014-1018.
    [41] Duchene AM and Marechal DL. The chloroplast-derived twnW and trnM-e genes are not expressed in Arabidopsis mitochondria [J]. Biochem. Biophys. Res. Commun., 2001, 285:1213-1216.
    [42] Engelke T and Tatlioglu T. A PCR-marker for the CMS1 inducing cytoplasm in chives derived from recombination events affecting the mitochondrial gene atp9 [J].Theor Appl. Genet., 2002, 104:698 -702.
    [43] Engelke T,Terefe D and Tatlioglu T.A PCR-based marker system monitoring CMS-(S),CMS-(T) and(N)-cytoplasm in the onion(Allium cepa L.) [J].Theor. Appl. Genet., 2003, 107(1):162-167.
    [44] Fauron CMR, Abbott AG, Brettell RIS, et al. Maize mitochondrial DNA rearrangements between the normal type, the Texas male sterile cytoplasm, and a fertile revertant cms-T regenerated plant [J]. Curr. Genet. , 1987, 11:339-346.
    [45] Forner J, Weber B, Thuss S, et al. Mapping of mitochondrial m RNA termini in Arabidopsis thaliana: t-elements contribute to 5’and 3’end formation [J]. Nucleic Acids Research, 2007, 35: 3676-3692.
    [46] Gaikwad K, Baldev A, Kirti PB, et al. Organization and expression of the mitochondrial genome in CMS (Moricandia) Brassica juncea: nuclear-mitochondrial incompatibility results in differential expression of the mitochondrial atpa gene [J]. Plant Breeding, 2006, 125(6):623-628.
    [47] GiegéP and Brennicke A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs [J]. Proc. Natl. Acad. Sci., 1999,96:15324-15329.
    [48] Goremykin VV, Salamini F, Velasco R, et al. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer [J]. Mol. Biol. Evol., 2009, 26(1):99-110.
    [49] Gray MW. Diversity and evolution of mitochondrial RNA editing systems [J]. IUBMB Life 2003, 55:227-233.
    [50] Gray MW. RNA editing in plant mitochondria: 20 years later [J]. IUBMB Life, 2009, 61(12): 1101-1104.
    [51] Gualberto JM, Lamattina L, Bonnard G, et al. RNA editing in wheat mitochondria results in conservation of protein sequences[J]. Nature, 1989, 341:660-662.
    [52] Hakansson G and Glimelius K. Extensive nuclear influence on mitochondrial transcription and genome structure in male-fertile and male-sterile alloplasmic Nicotina materials [J].Mol Gen Genet, 1991, 229:380-388.
    [53] Handa H. RNA editing of rapeseed mitochondrial atp9 transcripts: RNA editing changes four amino acids, but termination codon is already encoded by genomic sequence [J]. Jpn. J. Genet., 1993, 68:47-54.
    [54] Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana [J]. Nucleic Acids Res., 2003, 31:5907-5916.
    [55] Handa H and Nakajima K. Different organization and altered transcription of the mitochondrial atp6 gene in the male-sterile cytoplasm of rapeseed (Brassica napus L.) [J]. Curr. Genet., 1992, 21:153-159.
    [56] Hanson MR and Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development [J].Plant Cell, 2004, 16: S154-S169.
    [57] Hanson MR, Wilson RK, Bentolila S, et al. Mitochondrial gene organization and expression in petunia male fertile and sterile plants [J]. J. Hered., 1999, 90(3):362-368.
    [58] Hao W and Palmer JD. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes [J].Proc. Natl. Acad. Sci. USA, 2009, 106(39):16728-16733.
    [59] Havey MJ.Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations of onion [J].Theor.Appl.Genet.,1995,90: 263- 268.
    [60] Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals [J]. Mol. Gen. Genet., 1989, 217:185-194.
    [61] Hiesel R, Wissinger B, Schuster W, et al.RNA editing in plant mitochondria [J].Science, 1989, 246:1632-1634.
    [62] Horn R, Hustedt JoachimEG, Horstmeyer A, et al. The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower [J]. Plant Molecular Biology, 1996, 30(3): 523-538.
    [63] Hsu CL and Mullin BC. Physical characterization of mitochondrial DNA from cotton [J]. Plant Molecular Biology, 1989, 13(4):467-468.
    [64] Hu DC and Luo ZG. Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp [J].Scientia Horticulturae, 2006, 109(3):275-281.
    [65] Iwabuchi M, Koizuka N, Fujimoto H, et al. Identification and expression of the kosena radish(Raphanus sativus cv.Kosena)homologue of the ogura radish CMS-associated gene,orf138 [J]. Plant Mol Biol, 1999, 39(1):183-188.
    [66] Iwabuchi M, Kyozuka J and Shimamoto K. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice [J].EMBO J.,1993, 12(4):1437-1446.
    [67] Jean M, Brown GG and Landry BS. Genetic mapping of nuclear fertility restorer genes for the‘Polima’cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers [J].Theor Appl. Genet., 1997, 95:321-328.
    [68] Johns C, Lu M, Lyznik A, et al. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants [J].Plant Cell, 1992, 4:435-449.
    [69] Kadowaki K and Harada K. RFLP Differential organization of mitochondrial genes in rice with normal and male-sterile cytoplasms [J]. Japan J. Breed, 1989, 39:179-186.
    [70] Kadowaki K, Suzuki T and Kazame S. A chimeric gene containing the 5’portion of atp6 is associated with cytoplasmic male-sterility of rice [J]. Mol. Gen. Genet., 1990, 224(1):10-16.
    [71] Kasap M, Sazci A, Ergul E, et al. Molecular phylogenetic analysis of methylenetetrahydrofolate reductase family of proteins[J]. Mol Phylogenet Evol, 2007, 42(3):838-846.
    [72] Kazama T, Nakamura T, Watanabe M, et al. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice [J]. Plant J., 2008, 55(4):619 -628.
    [73] Kim DH, Kang JG and Kim BD. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.) [J]. Plant. Mol. Biol., 2007, 63:519-532.
    [74] Kim DH and Kim BD. Development of scar markers for early identification of cytoplasmic male sterility genotype in chili pepper (Capsicum annuum L.) [J].Mol. Cells, 2005, 20(3):416-422.
    [75] Kitazaki K and Kubo T. Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome [J]. Journal of Botany. 2010. 10:1155.
    [76] K?hler RH, Horn R, L?ssl A, et al. Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene [J].Mol. Gen. Genet., 1991, 227: 369-376.
    [77] Kubo N and Arimura S. Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms [J]. DNA Res., 2010, 17(1):1-9.
    [78] Kubo T and Mikami T. Organization and variation of angiosperm mitochondrial genome [J]. Physiologia Plantarum, 2007, 129: 6-13.
    [79] Kubo T, Nishizawa S, Sugawara A, et al. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys (GCA) [J]. Nucleic Acids Res., 2000, 28: 2571-2576.
    [80] Kuhn J and Binder S. RT-PCR analysis of 5’to 3’-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria [J]. Nucleic Acids Res., 2002, 30:439-446.
    [81] Kuzmin EV, Duvick DN and Newton KJ. A mitochondrial mutator system in maize [J].Plant Physiol., 2005, 137: 779-789.
    [82] Landgren M, Zetterstrand M, Sundberg E,et al.Alloplasmic male-sterile Brassica lines containing B.tournefortii mitochondria express an ORF 3’of the atp6 gene and a 32kDa protein [J].Plant Mol. Biol., 1996,32(5):879-890.
    [83] Lashermes P, Combes M C and Cros J.Use of non-radioactive digoxigenin-labelled DNA probes for RFLP analysis in coffee.in:Bervillie A.,Tressac M.(Eds.),Techniques et utilisations des marqueurs moleculaires,Les Colloques n0 72,Inra,Paris,1995:21-25.
    [84] Lee YP, Kim S, Lim H, et al.Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male sterility in radish(Raphanus sativus L.) [J]. Theor. Appl. Genet., 2009, 118 (4): 719-728.
    [85] Leclercq P. A case of cytoplasmic male-sterility in sunflower [J]. Annales De L’Amelioration Des Plantes, 1969, 19:99-106.
    [86] Lilly JW, Harvey MJ. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber [J]. Genetics, 2001, 159:317-328.
    [87] Liu ZY, Peter SO, Long M, et al. A PCR assay for rapid discrimination of sterile cytoplasm types in maize [J]. Crop Sci., 2002, 42:566-569.
    [88] L’Homme Y and Brown GG. Organization differences between cytoplasmic male sterile and mail fertile Brassica mitochondrial genomes are confined to a single transposed locus [J].Nucleic Acids Res., 1993, 21(8):1903-1909.
    [89] L’Homme Y, Stahl RJ, Li XQ, et al.Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene[J]. Curr. Genet. , 1997, 31(4):325-335.
    [90] Lu B, Wilson RK, Phreaner CG,et al. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene [J]. Mol. Cell. Biol., 1996, 16:1543-1549.
    [91] Maier RM, Neckermann K, Igloi GL, et al. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing [J]. J. Mol. Biol., 1995, 251:614-628.
    [92] Makaroff CA, Apel IJ and Palmer JD. The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish [J]. J. Biol. Chem., 1989, 264(20):11706-11713.
    [93] Makaroff CA, Apel IJ and Palmer JD. Characterization of radish mitochondrial atpA: influence of nuclear background on transcription of atpA-associated sequences and relationship with male sterility [J].Plant Mol. Biol., 1990, 15:735-746.
    [94] Makaroff CA and Palmer JD. Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish [J]. Mol. Cell Biol., 1988, 8(4):1474-1480.
    [95] Marienfeld J, Unseld M and Brennicke A. The mitochondrial genome of Arabidopsis is composed of both native and immigrant information [J]. Trends Plant Sci., 1999, 4:495-502.
    [96] Meurer J, Lezhneva L, Amann K, et al. A peptide chain release factor2 affects the stability of UGA-containing transcripts in Arabidopsis chloroplasts [J]. Plant Cell, 2002, 14:3255-3269.
    [97] Meyer VG and Meyer JR. Cytoplasmically controlled male sterility in cotton [J]. Crop Science, 1965, 5:444-448.
    [98] Meyer V G. Male sterility from Gossypium harknessii [J]. J. Heredity, 1975, 66:23-27.
    [99] Mikami T, Kishima Y and Sugiura M,et al. Organelle genome diversity in sugar beet with normal and different sources of male sterile cytoplasms [J].Theor. Appl. Genet., 1985, 71:166-171.
    [100] Monéger F, Smart CJ, Leaver CJ. Nuclear restoration of cytoplasmic male-sterility in sunflower is associated with the tissue specific regulation of a novel mitochondrial gene [J]. EMBO J., 1994, 13: 8-17.
    [101] Muto A, Ushida C and Himeno H. A bacterial RNA that functions as both a tRNA and an mRNA [J]. Trends Biochem Sci., 1998, 23:25-29.
    [102] Nahm S H, Lee H J, Lee S W, et al. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.) [J]. Theor. Appl. Genet., 2005, 111:1191-1200.
    [103] Nakazono M, Itadani H, Wakasugi T, et al.The rps3-rp116-nad3-rps12 gene cluster in rice mitochondrial DNA is transcribed from alternative promoters [J].Curr. Genet. , 1995, 27(2):184- 189.
    [104] Newton K. Molecular correlates of cytoplasmic types [J].Maize Genet.Crop. Newsl, 1989, 63: 197.
    [105] Nivison HT and Hanson M R. Identification of a Mitochondrial Protein Associated with Cytoplasmic Male Sterility in Petunia [J].The Plant Cell,1989,1:1121-1130.
    [106] Nivison HT, Sutton CA, Wilson RK, et al.Sequencing, processing, and localization of the Petunia CMS-associated mitochondrial protein [J]. Plant J., 1994, 5:613-623.
    [107] Nizampatnam NR, Doodhi H, Narasimhan YK, et al. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants [J]. Planta, 2009, 229(4): 987-1001
    [108] Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants [J]. Mol. Genet. Genomics, 2002, 268: 434- 445.
    [109] Ochman H, Gerber AS and Hartl DL. Genetic applications of an inverse polymerase chain reaction [J]. Genetics, 1988, 120:621-623.
    [110] Oda K, Yamato K, Ohta E, et al.Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA:A primitive form of plant mitochondrial genome [J]. J. Mol. Biol., 1992, 223:1-7.
    [111] Ogihara Y, Isono K, Kojima T, et al. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA [J]. Mol. Gen. Genomics, 2002, 266:740-746.
    [112] Ogihara Y, Yamazaki Y, Murai K, et al. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome [J]. Nucleic Acids Res., 2005, 33:6235-6250.
    [113] Ohyama K and Takemura M. Molecular evolution of mitochondrial introns in the liverwort Marchantia polymorpha [J]. Proc. Jpn. Acad., Ser. B, 2008, 84:17-23.
    [114] Parkinson CL, Mower JP, Qiu YL, et al. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae [J]. BMC Evol. Biol., 2005, 5:73.
    [115] Prakash S, Kirti PB, Bhat SR, et al.A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea [J]. Theor. Appl. Genet., 1998, 97:488-492.
    [116] Pring DR and Levings CS. Heterogeneity of maize cytoplasmic genomes among male-sterile cytoplasms [J]. Genetics, 1978, 89:121-136.
    [117] Qiu YL and Palmer JD. Many independent origins of trans splicing of a plant mitochondrial group II intron [J]. J. Mol. Evol. , 2004, 59:80-89.
    [118] Raczynska KD, Ret ML, Rurek M, et al. Plant mitochondrial genes can be expressed from mRNAs lacking stop codons [J]. FEBS letters, 2006, 580:5641-5646.
    [119] Rajeshwari R, Sivaramakrishnan S, Smith RL, et al. RFLP analysis of mitochondrial DNA from cytoplasmic male-sterile lines of pearl millet [J].Theor. Appl. Genet., 1994, 88:441-448.
    [120] Rajasekhar VK and Mulligan RM. RNA editing in plant mitochondria: [alpha]-phosphate is retained during C-to-U conversion in mRNAs [J]. Plant Cell, 1993, 5:1843-1852.
    [121] Rajendrakumar P, Biswal AK, Balachandran SM, et al.A mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines [J].Crop Sci., 2007, 47:207-211.
    [122] Rajendran N, Gandhimani R, Singh S, et al. Development of a DNA marker for distinguishing CMS lines from fertile lines in rice (Oryza sativa L.) [J].Euphytica, 2007, 156:129-139.
    [123] Rankin CT, Cutright MT and Makaroff CA.Characterization of the radish mitochondrial nad3/rps12 locus: analysis of recombination repeats and RNA editing [J].Curr. Genet. , 1996, 29: 564-571.
    [124] Rathburn HB and Hedgcoth C. A chimeric open reading frame in the 5’flanking region of coxI mitochondrial DNA from cytoplasmic male-sterile wheat [J].Plant Mol. Biol., 1991, 16:909-912.
    [125] Rhoads DM, Levings CS and Siedow JN. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria [J]. J. Bioenerg. Biomembr., 1995, 27:437- 445.
    [126] Rüdinger M, Polsakiewicz M and Knoop V.Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat proteins in jungermanniid but not in marchantiid liverworts [J].Mol. Biol. Evol., 2008, 25:1405-1414.
    [127] Saha D, Prasad AM and Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants [J]. Plant Physiol. Biochem., 2007, 45:521-534.
    [128] Sakai T and Imamura J. Alteration of mitochondrial genomes containing atpA genes in the sexualprogeny of cybrids between Raphanus sativus cms line and Brassica napus cv. Westar [J].Theor. Appl. Genet., 1992, 84:923- 929.
    [129] Salazar RA, Pring DR and Kempken F. Editing of mitochondrial atp9 transcripts from two sorghum lines [J].Curr. Genet. , 1991, 20:483-486.
    [130] Sane AP, Nath P and Sane PV. Mitochondrial ATP synthase genes may be implicated in cytoplasmic male sterility in Sorghum bicolor [J]. Biosci. , 1994, 19:43-55.
    [131] Satoh M, Kubo T and Mikami T. The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions [J]. Theor. Appl. Genet., 2006, 113:477-484.
    [132] Satoh M, Kubo T, Nishizawa S, et al.The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs [J]. Mol. Genet. Genomics, 2004, 272:247-256.
    [133] Satho Y, Nagai M, Mikami T, et al. Use of mitochondrial DNA polymorphism in the classification of individual onion plants by cytoplasmic genotypes [J].JARQ, 1994,28:225- 229.
    [134] Sato Y. PCR amplification of CMS-specific mitochondrial nucleotide sequences to identify cytoplasmic genotypes of onion (Allium cepa L.) [J]. Theor. Appl. Genet., 1998, 96:367-370.
    [135] Seit-Nebi A, Frolova L, Justesen J,et al. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition [J]. Nucleic Acids Res., 2001, 29:3982-3987.
    [136] Senda M, Onodera Y and Mikami T. Recombination events across the atpA-associated repeated sequences in the mitochondrial genomes of beets [J]. Theor. Appl. Genet., 1998, 96:964-968.
    [137] Schnable PS and Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration [J]. Trends Plant Sci., 1998, 3:175-180.
    [138] Schuster W and Brennicke A. Pseudo copies of the ATPase a-subunit gene in Oenothera mitochondria are present on different circular molecules [J]. Molecular General Genetics, 1986, 204:29-35.
    [139] Schuster W and Brennicke A. RNA editing of ATPase subunit 9 transcripts in Oenothera mitochondria [J]. FEBS Letters, 1990, 268:252-256.
    [140] Shi G,Hou X and Wang Y. Identification of genetic markers linked to the cytoplasmic male sterility genes and sequencing specific fragments in non-heading Chinese cabbage [J].Acta Horticulturae, 2007, 763:55-61.
    [141] Shinjyo C.Cytoplasmic genetic male sterility in cultivated rice, Oryza sativa L.: II the inheritance of male sterility [J]. Jpn. J. Genet., 1969, 44:149-156.
    [142] Siculella L and Palmer JD. Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS-associated alterations in structure and transcription of atpA gene [J].Nucl. Acids Res., 1988, 16: 3787-3799.
    [143] Siculella L, Damiano F, Cortese MR, et al. Gene content and organization of the oat mitochondrial genome [J]. Theor. Appl. Genet., 2001, 103:359-365.
    [144] Siedow JN, Rhoads DM, Ward GC, et al. The relationship between the mitochondrial geneT-urfl3 and fungal pathotoxin sensitivity in maize [J]. Biochim. Biophys. Acta, 1995, 1271: 235-240.
    [145] Singh M and Brown GG. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region [J].Plant Cell, 1991, 3:1349-1362.
    [146] Singh M and Brown G G. Characterization of expression of a mitochondrial gene region associated with the Brassica‘polima’CMS: developmental influences [J].Curr. Genet. , 1993, 24:316-322.
    [147] Singh M, Hamel N, Menassa R, et al. Nuclear genes associated with a single Brassica CMS restorer locus influence transcript of three different mitochondrial gene regions [J].Genetics, 1996, 143:505-516.
    [148] Small ID and Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins [J]. Trends Biochem. Sci., 2000, 25:46-47.
    [149] Smart CJ, Moneger F and Leaver CJ. Cell-specific regulation of gene expression in mitochondria during anther development in sunflower [J]. Plant Cell, 1994, 6:811-825.
    [150] Smith RL and Chowdhury MKU.Characterization of pearl millet mitochondrial DNA fragments rearranged by reversion from cytoplasmic male sterility to fertility [J].Theor. Appl. Genet., 1991, 81:793-799.
    [151] Soranzo N, Provan J, and Powell W. An example of microsatellite length variation in the mitochondrial genome of conifers [J]. Genome, 1999, 42:158-161.
    [152] Stamper S, Dewey R, Bland M, et al. Characterisation of gene urf-13-T and an unidentified reading frame ORF-26 in maize and tobacco mitochondria [J]. Curr. Genet. , 1987, 12:457-463.
    [153] Stewart J McD. A new male sterility from G.trilobum[C]. Proc. Beltwide Cotton Conf, 1992,610.
    [154] Stoja?owski S, ?apiński M and Szklarczyk M.Identification of sterility-inducing cytoplasms in rye using the plasmotype–genotype interaction test and newly developed SCAR markers [J]. Theor. Appl. Genet., 2006, 112: 627-633.
    [155] Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats [J]. Proc. Natl. Acad. Sci. USA, 2001, 98:5099-5103.
    [156] Sugiyama Y, Watase Y, Nagase M, et al. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants [J]. Mol. Genet. Genomics, 2005, 272:603-615.
    [157] Sünkel S, Brennicke A, Knoop V. RNA editing of a conserved reading frame in plant mitochondria increases its similarity to two overlapping reading frames in Escherichia coli [J]. Mol. Gen. Genet., 1994, 242:65-72.
    [158] Szklarczyk M, Oczkowski M, Augustyniak H, et al. Organisation and expression of mitochondrial atp9 genes from CMS and fertile carrots [J].Thero.Appl.Genet., 2000, 100:263- 270.
    [159] Tang HV, Pring DR, Shaw LC, et al. Transcript processing internal to a mitochondrial openreading frame is correlated with fertility restoration in male-sterile sorghum [J].Plant J., 1996, 10:123-133.
    [160] Tian XJ, Zheng J, Hu SN, et al. The rice mitochondrial genomes and their variations [J]. Plant Physiol., 2006, 140:401-410.
    [161] Thomson MC, Macfarlane JL, Beagley CT, et al. RNA editing of mat-r transcripts in maize and soybean increases similarity of the encoded protein to fungal and bryophyte group II intron maturases: evidence that mat-r encodes a functional protein [J]. Nucleic Acids Res., 1994, 22:5745 -5752.
    [162] Unseld M, Marienfeld JR, Brandt P, et al. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides [J]. Nat. Genet., 1997, 15:57-61.
    [163] Velasco R, Zharkikh A, Troggio M, et al.A high quality draft consensus sequence of the genome of a heterozygous grapevine variety [J].Plos One, 2007,2:1326.
    [164] Yesodi V, Hauschner H, Tabib Y, et al. An intact F1 ATPaseα-subunit gene and a pseudogene with differing genomic organization are detected in both male-fertile and CMS petunia mitochondria [J]. Curr. Genet. , 1997, 32:348-357.
    [165] Walker JE, Saraste M, Runswick MJ, et al. Distantly related sequences in the alpha- and beta- subunits of ATP synthase, myosin,kinases and other ATP-requiring enzymes and a common nucleotide binding fold [J]. EMBO J., 1982, 1:945-951.
    [166] Wang F, Feng CD, O’Connell MA, et al. RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton [J]. Euphytica, 2010, 172: 93-99.
    [167] Wang GZ, Matsuoka Y and Tsunewaki K. Evolutionary features of chondriome divergence in Triticum (wheat)and Aegilops shown by RFLP analysis of mitochondrial DNAs [J].Theor. Appl. Genet.,2000,100:221-231.
    [168] Wang ZH, Zou YJ, Li XY, et al.Cytoplasmic male sterility of rice with boroⅡcytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing [J]. Plant Cell, 2006, 18:676-687.
    [169] Watanabe N, Nakazono M, Kanno A, et al. Evolutionary variations in DNA sequences transferred from chloroplast genomes to mitochondrial genomes in the Gramineae [J].Curr. Genet. , 1994, 26: 512-518.
    [170] Waters ER, Nguyen SL, Eskandar R, et al. The recent evolution of a pseudogene: diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana [J].Genome, 2008, 51:177-186.
    [171] Weaver DB and Weaver JB. Inheritance of pollen fertility restoration in cytoplasmic male- sterile Upland cotton [J].Crop Sci., 1977, 17:497-499.
    [172] Wintz H and Hanson MR. A termination codon is created by RNA editing in the petunia mitochondrial atp9 gene transcript [J].Curr Genet, 1991, 19:61-64.
    [173] Wise RP, Fliss AE, Pring DR,et al. Urf13-T of T cytoplasm maize mitochondria encodes a 13 kDpolypeptide [J]. Plant Molecular Biology, 1987, 9:121-126.
    [174] Wise RP, Pring DR and Gengenbach BG. Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame [J]. Proc Natl. Acad. Sci. USA, 1987, 84:2858-2862.
    [175] Wu JY, Gong YC, Xing CZ, et al.Isolation and characterization of the cytoplasmic male sterility associated gene of cotton (Gossypium harknessii) [C]. ICGI Research Conference, 2008, 71.
    [176] Yamagishi H and Terachi T.Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. I. The origin and distribution of Ogura male-sterile cytoplasm in Japanese wild radishes (Raphanus sativus L.) revealed by PCR-aided assay of their mitochondrial DNAs [J].Theor. Appl. Genet., 1994, 87:996-1000.
    [177] Yamagish H and Terachi T. Molecular and biological studies on male-sterile cytoplasm in the Cruciferae.ⅢDistribution of ouura-type cytoplasm among Japanse wild radishes and Asian radish cultivars [J].Theor. Appl. Genet., 1996, 93:325-332.
    [178] Yamagishi H and Terachi T.Molecular and biological studies on male-sterile cytoplasm in the Cruciferae.Ⅳ. Ogura-type cytoplasm found in the wild radish, Raphanus raphanistrum [J]. Plant Breeding, 1997, 116:323-329.
    [179] Yamamoto MP, Kubo T and Mikami T. The 5’leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility [J].Mol. Genet. Genomics, 2005, 273:342-349.
    [180] Yashitola J, Sundaram RM, Biradar SK, et al. A sequence specific PCR marker for distinguishing rice lines on the basis of Wild Abortive cytoplasm from their cognate maintainer lines [J]. Crop Sci., 2004, 44:920-924.
    [181] Young EG and Hanson MR.A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated [J].Cell, 1987, 50:41-49.
    [182] Yu XL, Xiao QB, Cao JS, et al. Development of two new molecular markers specific to cytoplasmic male sterility in tuber mustard (Brassica juncea var. tumida Tsen et Lee) [J]. Euphytica ,2009, 166:367-378
    [183] Yu XL,Lu HY,Lu G,et al.Analysis of genetic diversity in cytoplasmic male sterility, and association of mitochondrial genes with petaloid-type cytoplasmic male sterility in tuber mustard (Brassica juncea var. tumida Tsen et Lee) [J]. Mol. Biol. Rep., 2010, 37:1059-1067.
    [184] Zabala G, Gabay-Laughnan S and Laughnan JR. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics, 1997, 147:847-860.
    [185] Zabaleta E, Mouras A, Hernould M, et al. Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 11259-11263.
    [186] Zeinalov OA and Negruk VI. Intraspecific heterogeneity of the Vicia faba mitochondrial genome: evidence for multiregional rearrangements in the mitochondrial chromosome associated with coxII-orf192 chimeric gene formation [J].Theor. Appl. Genet., 1992, 85:341-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700