用户名: 密码: 验证码:
长链非编码RNA在骨肉瘤患者中的差异表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1ncRNA在基因调控中起重要作用,目前它对骨肉瘤的发病机制的影响仍不清楚。本研究利用微矩阵基因芯片技术研究1ncRNA在骨肉瘤和癌旁组织表达谱的差异并初步探讨其生物学作用。
     方法:分别取9例骨肉瘤癌组织和对照癌旁组织,提取总RNA后进行质量测定,合格后杂交合成cDNA后经过Microarray基因芯片扫描仪扫描后得到原始数据,原始数据经过统计软件转换后进行统计分析,得到两种组织之间1ncRNA和mRNA的差异表达谱。分别选取上调的1ncRNA6个:ASLNC21868,ASLNC22124, ASLNC23844, ASLNC24587, BE503655, BC050642,下调的1ncRNA4个:ASLNC00339, ASLNC11435, ASLNC13387, ASLNC18814采用SYBR GREEN I实时荧光定量聚合酶链反应(RT-PCR)验证,并用GAPDH做内参。综合NCBI RefSeq, UCSC, RNAdb, LncRNAs等数据库资源,对芯片结果进行Gene Ontology、Pathways分析等初步生物信息学分析,并通过计算Pearson相关系数(≥0.95)建立1ncRNA与靶基因的基因网络图。
     结果:将差异表达的标准设为:Folgchange值≥2,P值≤0.05,发现两种不同组织芯片表达有明显差异。骨肉瘤组织与对照癌旁组织相比,在检测的1ncRNA表达谱中,9例样本平均上调的lncRNAs为3528个(从2723到4537),平均下调的1ncRNAs为3958(从3469到4368),其中在9例样本都上调的1ncRNAs403个,都下调的1ncRNAs798个,上调倍数最大的是ASLNC02724,7.23倍,下调倍数最大的是ASLNC05129,27.39倍。上调的1ncRNAs略少于下调的1ncRNAs。在检测的mRNA表达谱中,9例样本平均上调的mRNAs为2604个(从1394到3710),平均下调的mRNAs为2344(从1513到2867),其中在9例样本都上调的mRNAs986个,都下调的mRNAs933个。采用SYBR绿色荧光染料(SYBR GREENI)实时检测的聚合酶链反应(RT-PCR)验证表达上调的6个1ncRNAs: ASLNC21868, ASLNC22124, ASLNC23844, ASLNC24587, BE503655, BC050642,表达下调的4个1ncRNAs:ASLNC00339, ASLNC11435, ASLNC13387, ASLNC18814, RT-PCR结果显示ASLNC21868, ASLNC22124, ASLNC23844, ASLNC24587, BE503655, BC0506426个基因表达上调,ASLNC00339, ASLNC11435, ASLNC13387, ASLNC188144个基因表达下调,和芯片结果基本吻合。GO (Gene Ontology)分析显示,在上调表达的mRNAs中,cell adhesion、 extracellular matrix和protein binding分别在生物学进程(ontology: biological process)、细胞组件(ontology:cellular component)和分子功能(ontology:molecular function)三个方面富集程度最高,提示这些上调的mRNAs与这三者相关程度最高;在下调表达的mRNAs中,muscle system process、contractile fiber和structural constituent of muscle分别在生物学进程(ontology:biological process)、细胞组件(ontology:cellular component)和分子功能(ontology:molecular function)三个方面富集程度最高,同样提示这些下调的mRNAs与这三者相关程度最高。Pathways分析显示,在骨肉瘤组织中有32条通路(pathway)受下调的mRNAs调控,富集程度最高的是通路"Hypertrophic cardiomyopathy-Homo sapiens (human)”由24个目的基因组成;有34条通路(pathway)受上调的mRNAs调控,富集程度最高的是通路"ECM-receptor interaction-Homo sapiens (human)"由22个目的基因组成。我们选取了6个表达下调的lncRNA:ASLNC00339, ASLNC04683, ASLNC08248, ASLNC11435, ASLNC13387, ASLNC23339和6个表达上调的1ncRNA:ASLNC02419, ASLNC21868, ASLNC23844, ASLNC24079, BE050642, BE503655,通过计算与目的基因的Pearson相关系数(≥0.95),得到227个目的基因并共同建立编码-非编码基因共表达网络(coding-noncoding gene co-expression network)。
     结论:
     (1)1ncRNA microarray基因芯片是筛选骨肉瘤差异表达基因一种理想有效的方法;
     (2)首次利用1ncRNA microarray基因芯片揭示在骨肉瘤中存在异常表达的1ncRNA基因,利用实时荧光定量PCR对异常表达的部分1ncRNA基因进行验证进一步提高了芯片结果的可信度,生物信息学初步分析显示这些1ncRNA在骨肉瘤的发生发展中发挥复杂的调控作用:
     (3)1ncRNA可能是全新的骨肉瘤肿瘤标记物和潜在的基因治疗靶点
Objective:Long noncoding RNAs (lncRNAs) have a critical role in genome regulation. The contributions of lncRNAs to osteosarcoma remain unknown. Here, we describe the expression profile of lncRNAs in osteosarcomas compared with paired adjacent noncancerous tissue using microarray analysis and study their biology funtions prelininarily.
     Methods:Firstly, we extracted total RNA from nine clinical samples of primary osteosarcoma and their paired adjacent noncancerous tissues.Labeling and hybridization of RNA were precessed and we got the differentially expression profiles after a series of procedures. Secondly, Six over-regulated lncRNA and four under-regulated from the differentially expression profiles were validated by RT-PCR in nine clinical samples of primary osteosarcoma and their paired adjacent noncancerous tissues, using GAPDH as inter reference. Thirdly, Bioinformatic analysis (gene ontology analysis, pathway analysis was used for further research on the differentially expression profiles based on NCBI RefSeq, UCSC, RNAdb, LncRNAs databases and we constructed a coding-noncoding gene co-expression network that included the differentially expressed lncRNAs and targeted coding genes by calculating PCC (PCC≥0.95).
     Results:Compared with adjacent noncancerous tissues, the lncRNA and mRNA expression profiles are significantly differentially expressed in the primary osteosarcoma tissues. An average of3528lncRNA (range from2723-4537) was significantly over-regulated and an average of3958lncRNA (range from3469-4368) was significantly under-regulated (foldchange≥2.0, P≥0.05).403lncRNAs were consistently over-regulated and798lncRNAs were consistently under-regulated in all samples analyzed. ASLNC02724was the most over-regulated lncRNA (foldchange:7.23) and ASLNC05129was the most under-regulated lncRNA (foldchange:27.39). Over-regulated lncRNA was more common than under-regulated lncRNA. An average of2604mRNA (range from1394-3710) was significantly over-regulated and an average of2344mRNA (range from1513-2867) was significantly under-regulated (foldchange≥2.0, P≦0.05).986mRNAs were consistently over-regulated and933mRNAs were consistently under-regulated in all samples analyzed. NM_013227was the most over-regulated lncRNA (foldchange:33.17) and NM_005963was the most under-regulated lncRNA (foldchange:170.32). Over-regulated mRNA was equal to under-regulated mRNA. Six over-regulated lncRNAs:ASLNC21868, ASLNC22124, ASLNC23844, ASLNC24587, BE503655, BC050642and four under-regulated lncRNAs:ASLNC00339, ASLNC11435, ASLNC13387, ASLNC18814were validated by RT-PCR in in nine clinical samples of primary osteosarcoma and their paired adjacent noncancerous tissues. The results demonstrated that ASLNC21868, ASLNC22124, ASLNC23844, ASLNC24587, BE503655and BC050642were over-regulated and ASLNC00339, ASLNC11435, ASLNC13387and ASLNC18814were under-regulated in the osteosarcoma samples compared with normal samples. The RT-PCR results and microarray data are consistent. We found that the highest enriched GOs targeted by the over-regulated lncRNAs were cell adhesion (ontology:biological process), extracellular matrix (ontology:cellular component) and protein binding (ontology:molecular function) and that the highest enriched GOs targeted by under-regulated lncRNAs were muscle system process (ontology:biological process), contractile fiber (ontology:cellular component) and structural constituent of muscle (ontology:molecular function). Pathway analysis indicated that34pathways corresponded to over-regulated transcripts and that the most enriched network was "ECM-receptor interaction-Homo sapiens (human)" composed of22targeted genes. Furthermore, this analysis showed that32pathways corresponded to under-regulated transcripts and that the most enriched network was "Hypertrophic cardiomyopathy-Homo sapiens (human)" composed of24targeted genes. We constructed a coding-noncoding gene co-expression network that included six over-regulated lncRNAs: ASLNC02419, ASLNC21868, ASLNC23844, ASLNC24079, BE050642, BE503655and six under-regulated lncRNAs:ASLNC00339, ASLNC04683, ASLNC08248, ASLNC11435, ASLNC13387, ASLNC23339and227targeted coding genes. The lncRNAs and coding genes that had Pearson correlation coefficients equal to or greater than0.95were chosen to construct the network.
     Conclusions:
     (1) LncRNA microarray analysis was ideal and effective way to screen the differentially expression profiles in osteosarcoma;
     (2) Our results were the first to reveal differentially expressed lncRNAs in osteosarcoma and some of the differentially expressed lncRNAs were validated by RT-PCR to promote the credibility of results. Prelininary bioinformatic analysis revealed that lncRNA was involved in the occurrence and development of osteosarcoma;
     (3) lncRNAs may be novel candidate biomarkers for the diagnosis of osteosarcoma and potential targets for gene therapy
引文
[1]Picci, P., Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis,2007.2:p.6.
    [2]Fellenberg, J., et al., Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol,2007.20(10):p.1085-94.
    [3]Moon, S.H., et al., Tumor volume change after chemotheraphy as a predictive factor of disease free survival for osteosarcoma. Yonsei Med J,2005.46(1):p. 119-24.
    [4]Bacci, G., et al., Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy:15-year experience in 789 patients treated at a single institution. Cancer,2006.106(5):p.1154-61.
    [5]Wang, L.L., Biology of osteogenic sarcoma. Cancer J,2005.11(4):p.294-305.
    [6]Rao-Bindal, K. and E.S. Kleinerman, Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma,2011.2011:p.679457.
    [7]Fromigue, O., et al., RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ,2006.13(11):p.1845-56.
    [8]Heare, T., M.A. Hensley, and S. Dell'Orfano, Bone tumors:osteosarcoma and Ewing's sarcoma. Curr Opin Pediatr,2009.21(3):p.365-72.
    [9]Ozaki, T., et al., Osteosarcoma of the pelvis:experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol,2003.21(2):p.334-41.
    [10]Lin, F., et al., Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma. Med Oncol,2011. 28(2):p.649-53.
    [11]Tsukahara, T., et al., HLA-A*0201-restricted CTL epitope of a novel osteosarcoma antigen, papillomavirus binding factor. J Transl Med,2009.7:p. 44.
    [12]Birney, E., et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature,2007.447(7146):p. 799-816.
    [13]Consortium, I., Finishing the euchromatic sequence of the human genome. Nature,2004.431(7011):p.931-45.
    [14]van Leeuwen, S. and H. Mikkers, Long non-coding RNAs:Guardians of development. Differentiation,2010.80(4-5):p.175-183.
    [15]Wang, J.Y., et al., CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Research, 2010.38(16):p.5366-5383.
    [16]Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and Functions of Long Noncoding RNAs. Cell,2009.136(4):p.629-641.
    [17]Chen, L.-L. and GG Carmichael, Decoding the function of nuclear long non-coding RNAs. Current Opinion in Cell Biology,2010.22(3):p.357-364.
    [18]Dinger, M.E., et al., The Hippocampal Expression of 31 Noncoding Rnas is Upregulated in Alzheimer's Disease Patients and Three Positively Correlate With MMSE Results and Other Biomarkers of Disease Progression. Alzheimer's and Dementia,2010.6(4, Supplement 1):p. e47-e48.
    [19]Prasanth, K.V. and D.L. Spector, Eukaryotic regulatory RNAs:an answer to the 'genome complexity'conundrum. Genes Dev,2007.21(1):p.11-42.
    [20]Amaral, P.P., et al., The eukaryotic genome as an RNA machine. Science,2008. 319(5871):p.1787-9.
    [21]Dinger, M.E., et al., NRED:a database of long noncoding RNA expression. Nucleic Acids Res,2009.37(Database issue):p. D122-6.
    [22]Villegas, J., et al., Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res,2007.35(21):p.7336-47.
    [23]Mercer, T.R., et al., Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci,2010.11:p.14.
    [24]Rapicavoli, N.A., E.M. Poth, and S. Blackshaw, The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol,2010.10:p.49.
    [25]Han, L., et al., LncRNA pro fi le of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. hit J Oncol,2012.40(6): p.2004-12.
    [26]Yang, R, et al., Long non-coding RNA high expressed in hepatocellular carcinoma (1ncRNA-HEIH) facilitates tumor growth through enhancer of zeste homolog 2. Hepatology,2011.
    [27]Tahira, A.C., et al., Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer,2011.10:p.141.
    [28]Cui, J., et al., Epigenetic changes in osteosarcoma. Bull Cancer,2011.98(7):p. E62-8.
    [29]Finkel, M.P., C.A. Reilly, Jr., and B.O. Biskis, Pathogenesis of radiation and virus-induced bone tumors. Recent Results Cancer Res,1976(54):p.92-103.
    [30]Swaney, J.J., Familial osteogenic sarcoma. Clin Orthop Relat Res,1973(97):p. 64-8.
    [31]McIntyre, J.F., et al., Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol,1994.12(5):p.925-30.
    [32]PosthumaDeBoer, J., et al., Molecular alterations as target for therapy in metastatic osteosarcoma:a review of literature. Clin Exp Metastasis,2011.28(5): p.493-503.
    [33]Fan, T.M., Animal models of osteosarcoma. Expert Rev Anticancer Ther,2010. 10(8):p.1327-38.
    [34]Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995.270(5235):p.467-70.
    [35]Lipovich, L., R. Johnson, and C.Y. Lin, MacroRNA underdogs in a microRNA world:Evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta,2010.1799(9):p.597-615.
    [36]Clark, M.B. and J.S. Mattick, Long noncoding RNAs in cell biology. Semin Cell Dev Biol,2011.22(4):p.366-76.
    [37]Mattick, J.S., RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. Bioessays,2010.32(7):p.548-52.
    [38]Pan, Y.F., et al., Expression profile of altered long non-coding RNAs in patients with HBV-associated hepatocellular carcinoma. J Huazhong Univ Sci Technolog Med Sci,2013.33(1):p.96-101.
    [39]Gibb, E.A., et al., Aberrant expression of long noncoding RNAs in cervical intraepithelial neoplasia. Int J Gynecol Cancer,2012.22(9):p.1557-63.
    [40]Gibb, E.A., et al., Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol,2011.47(11):p.1055-61.
    [41]Yu, G, et al., LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS One,2012.7(8):p. e42377.
    [42]Wang, Y., et al., Long non-coding RNA UCAla(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol,2012.41(1):p.276-84.
    [43]Gutschner, T., et al., The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res,2013.73(3):p.1180-9.
    [44]Huarte, M. and J.L. Rinn, Large non-coding RNAs:missing links in cancer? Hum Mol Genet,2010.19(R2):p. R152-61.
    [45]Tsai, M.C., R.C. Spitale, and H.Y. Chang, Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res,2011.71(1):p.3-7.
    [46]Gibb, E.A., C.J. Brown, and W.L. Lam, The functional role of long non-coding RNA in human carcinomas. Mol Cancer,2011.10:p.38.
    [47]Oliner, J.D., et al., Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature,1992.358(6381):p.80-3.
    [48]Wang, B., et al., MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta Biochim Biophys Sin (Shanghai), 2012.44(8):p.685-91.
    [49]Wu, X., et al., Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol, 2012.36(2):p.212-6.
    [50]Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res,2001.29(9):p. e45.
    [51]Blake, E., et al., Polymerase chain reaction (PCR) amplification and human leukocyte antigen (HLA)-DQ alpha oligonucleotide typing on biological evidence samples:casework experience. J Forensic Sci,1992.37(3):p.700-26.
    [52]Walsh, P.S., H.A. Erlich, and R. Higuchi, Preferential PCR amplification of alleles:mechanisms and solutions. PCR Methods Appl,1992.1(4):p.241-50.
    [53]Arya, M., et al., Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn,2005.5(2):p.209-19.
    [54]Schmittgen, T.D. and K.J. Livak, Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc,2008.3(6):p.1101-8.
    [55]Wu, X., et al., p38 MAPK regulates the expression of ether a go-go potassium channel in human osteosarcoma cells. Radiol Oncol,2013.47(1):p.42-9.
    [56]O'Donoghue, L.E., et al., Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome. BMC Cancer,2010.10:p.506.
    [57]Santini, M.T., et al., Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2). Bioelectromagnetics,2003.24(5):p.327-38.
    [1]T.A. Farazi, S.A. Juranek, T. Tuschl, The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members, Development 135 (2008) 1201-1214.
    [2]P. Kapranov, J. Cheng, S. Dike, et al., RNA maps reveal new RNA classes and a possible function for pervasive transcription, Science 316 (2007) 1484-1488.
    [3]C.P. Ponting, P.L. Oliver, W. Reik, Evolution and Functions of Long Noncoding RNAs, Cell 136 (2009) 629-641.
    [4]M. Lapidot, Y. Pilpel, Genome-wide natural antisense transcription:coupling its regulation to its different regulatory mechanisms, EMBO Rep 7 (2006) 1216-1222.
    [5]S. Cawley, S. Bekiranov, H.H. Ng, et al., Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs, Cell 116 (2004) 499-509.
    [6]T. Ravasi, H. Suzuki, K.C. Pang, et al., Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome, Genome Res 16 (2006) 11-19.
    [7]P. Khaitovich, J. Kelso, H. Franz, et al., Functionality of intergenic transcription: an evolutionary comparison, PLoS Genet 2 (2006) e171.
    [8]K.C. Pang, M.C. Frith, J.S. Mattick, Rapid evolution of noncoding RNAs:lack of conservation does not mean lack of function, Trends Genet 22 (2006) 1-5.
    [9]J. Ponjavic, C.P. Ponting, The long and the short of RNA maps, Bioessays 29 (2007) 1077-1080.
    [10]J. Wang, J. Zhang, H. Zheng, et al., Mouse transcriptome:neutral evolution of 'non-coding'complementary DNAs, Nature 431 (2004) 1 p following 757; discussion following 757.
    [11]E.A. Elisaphenko, N.N. Kolesnikov, A.I. Shevchenko, et al., A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements, PLoS One 3(2008)e2521.
    [12]J.N. Hutchinson, A.W. Ensminger, C.M. Clemson, et al., A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains, BMC Genomics 8 (2007) 39.
    [13]A.B. Conley, W.J. Miller, I.K. Jordan, Human cis natural antisense transcripts initiated by transposable elements, Trends Genet 24 (2008) 53-56.
    [14]T.R. Mercer, M.E. Dinger, S.M. Sunkin, et al., Specific expression of long noncoding RNAs in the mouse brain, Proc Natl Acad Sci U S A 105 (2008) 716-721.
    [15]M. Sone, T. Hayashi, H. Tarui, et al., The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons, J Cell Sci 120 (2007) 2498-2506.
    [16]R. Louro, A.S. Smirnova, S. Verjovski-Almeida, Long intronic noncoding RNA transcription:expression noise or expression choice?, Genomics 93 (2009) 291-298.
    [17]D. Rearick, A. Prakash, A. McSweeny, et al., Critical association of ncRNA with introns, Nucleic Acids Res 39 (2011) 2357-2366.
    [18]S. Guil, M. Soler, A. Portela, et al., Intronic RNAs mediate EZH2 regulation of epigenetic targets, Nat Struct Mol Biol 19 (2012) 664-670.
    [19]J.B. Heo, S. Sung, Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA, Science 331 (2011) 76-79.
    [20]T. Babak, B.J. Blencowe, T.R. Hughes, Considerations in the identification of functional RNA structural elements in genomic alignments, BMC Bioinformatics 8(2007)33.
    [21]J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription, Nat Rev Mol Cell Biol 7 (2006) 612-616.
    [22]P. Carninci, T. Kasukawa, S. Katayama, et al., The transcriptional landscape of the mammalian genome, Science 309 (2005) 1559-1563.
    [23]S. Katayama, Y. Tomaru, T. Kasukawa, K. Waki, et al., Antisense transcription in the mammalian transcriptome, Science 309 (2005) 1564-1566.
    [24]J. Gribnau, K. Diderich, S. Pruzina, R. Calzolari, et al., Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus, Mol Cell 5 (2000) 377-386.
    [25]N. Osato, Y. Suzuki, K. Ikeo, et al., Transcriptional interferences in cis natural antisense transcripts of humans and mice, Genetics 176 (2007) 1299-1306.
    [26]J.A. Martens, L. Laprade, F. Winston, Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene, Nature 429 (2004) 571-574.
    [27]S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, et al., Global transcription in pluripotent embryonic stem cells, Cell Stem Cell 2 (2008) 437-447.
    [28]M.E. Dinger, P.P. Amaral, T.R. Mercer, et al., Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation, Genome Res 18 (2008) 1433-1445.
    [29]K.C. Pang, M.E. Dinger, T.R. Mercer, et al., Genome-wide identification of long noncoding RNAs in CD8+T cells, J Immunol 182 (2009) 7738-7748.
    [30]K. Hirota, T. Miyoshi, K. Kugou, et al., Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs, Nature 456 (2008) 130-134.
    [31]J.R. Goni, X. de la Cruz, M. Orozco, Triplex-forming oligonucleotide target sequences in the human genome, Nucleic Acids Res 32 (2004) 354-360.
    [32]X. Wang, S. Arai, X. Song, et al., Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription, Nature 454 (2008) 126-130.
    [33]J. Feng, C. Bi, B.S. Clark, et al., The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator, Genes Dev 20 (2006) 1470-1484.
    [34]I. Shamovsky, M. Ivannikov, E.S. Kandel, et al., RNA-mediated response to heat shock in mammalian cells, Nature 440 (2006) 556-560.
    [35]A.T. Willingham, A.P. Orth, S. Batalov, et al., A strategy for probing the function of noncoding RNAs finds a repressor of NFAT, Science 309 (2005) 1570-1573.
    [36]V.T. Nguyen, T. Kiss, A.A. Michels, et al.,7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes, Nature 414 (2001) 322-325.
    [37]Z. Yang, Q. Zhu, K. Luo, et al., The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription, Nature 414 (2001) 317-322.
    [38]Y.S. Mao, B. Zhang, D.L. Spector, Biogenesis and function of nuclear bodies, Trends Genet 27 (2011) 295-306.
    [39]C. Mayer, M. Neubert, I. Grummt, The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus, EMBO Rep 9 (2008) 774-780.
    [40]C. Guetg, P. Lienemann, V. Sirri, et al., The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats, EMBO J 29 (2010) 2135-2146.
    [41]L.F. Zhang, K.D. Huynh, J.T. Lee, Perinucleolar targeting of the inactive X during S phase:evidence for a role in the maintenance of silencing, Cell 129 (2007) 693-706.
    [42]R.R. Pandey, T. Mondal, F. Mohammad, et al., Kcnqlotl antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation, Mol Cell 32 (2008) 232-246.
    [43]L.L. Chen, GG Carmichael, Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells:functional role of a nuclear noncoding RNA, Mol Cell 35 (2009) 467-478.
    [44]H. Sunwoo, M.E. Dinger, J.E. Wilusz, et al., MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles, Genome Res 19 (2009) 347-359.
    [45]C.M. Clemson, J.N. Hutchinson, S.A. Sara, et al., An architectural role for a nuclear noncoding RNA:NEAT1 RNA is essential for the structure of paraspeckles, Mol Cell 33 (2009) 717-726.
    [46]Y.T. Sasaki, T. Ideue, M. Sano, et al., MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles, Proc Natl Acad Sci U S A 106 (2009) 2525-2530.
    [47]Y.S. Mao, H. Sunwoo, B. Zhang, et al., Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs, Nat Cell Biol 13(2011)95-101.
    [48]D. Bernard, K. V. Prasanth, V. Tripathi, et al., A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression, EMBO J 29 (2010) 3082-3093.
    [49]V. Tripathi, J.D. Ellis, Z. Shen, et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation, Mol Cell 39 (2010) 925-938.
    [50]L. Yang, C. Lin, W. Liu, et al., ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs, Cell 147(2011)773-788.
    [51]S. Nakagawa, J.Y. Ip, G Shioi, et al., Malatl is not an essential component of nuclear speckles in mice, RNA 18 (2012) 1487-1499.
    [52]S. Nakagawa, T. Naganuma, G. Shioi, et al., Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice, J Cell Biol 193(2011)31-39.
    [53]M. Eissmann, T. Gutschner, M. Hammerle, et al., Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development, RNA Biol 9 (2012) 1076-1087.
    [54]B. Zhang, G. Arun, Y.S. Mao, et al., The 1nc RNA Malatl is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult, Cell Rep 2 (2012) 111-123.
    [55]P.K. Yang, M.I. Kuroda, Noncoding RNAs and intranuclear positioning in monoallelic gene expression, Cell 128 (2007) 777-786.
    [56]J. Chaumeil, P. Le Baccon, A. Wutz, et al., A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced, Genes Dev 20 (2006) 2223-2237.
    [57]M.S. Bartolomei, S. Zemel, S.M. Tilghman, Parental imprinting of the mouse H19 gene, Nature 351 (1991) 153-155.
    [58]X. Cai, B.R. Cullen, The imprinted HI9 noncoding RNA is a primary microRNA precursor, RNA 13 (2007) 313-316.
    [59]G. Smits, A.J. Mungall, S. Griffiths-Jones, et al., Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians, Nat Genet 40 (2008) 971-976.
    [60]C. Ciaudo, A. Bourdet, M. Cohen-Tannoudji, et al., Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation, PLoS Genet 2 (2006) e94.
    [61]C.J. Brown, A. Ballabio, J.L. Rupert, et al., A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome, Nature 349 (1991) 38-44.
    [62]C.M. Clemson, J.A. McNeil, H.F. Willard, et al., XIST RNA paints the inactive X chromosome at interphase:evidence for a novel RNA involved in nuclear/chromosome structure, J Cell Biol 132 (1996) 259-275.
    [63]I. Jonkers, K. Monkhorst, E. Rentmeester, et al., Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle, Mol Cell Biol 28 (2008) 5583-5594.
    [64]A. Wutz, J. Gribnau, X inactivation Xplained, Curr Opin Genet Dev 17 (2007) 387-393.
    [65]J. Zhao, B.K. Sun, J.A. Erwin, et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome, Science 322 (2008) 750-756.
    [66]A. Wutz, R. Jaenisch, A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation, Mol Cell 5 (2000) 695-705.
    [67]C.J. Brown, H.F. Willard, The human X-inactivation centre is not required for maintenance of X-chromosome inactivation, Nature 368 (1994) 154-156.
    [68]J. Peters, J.E. Robson, Imprinted noncoding RNAs, Mamm Genome 19 (2008) 493-502.
    [69]L. Redrup, M.R. Branco, E.R. Perdeaux, et al., The long noncoding RNA Kcnqlot1 organises a lineage-specific nuclear domain for epigenetic gene silencing, Development 136 (2009) 525-530.
    [70]C.I. Seidl, S.H. Stricker, D.P. Barlow, The imprinted Air ncRNA is an atypical RNAPⅡ transcript that evades splicing and escapes nuclear export, EMBO J 25 (2006) 3565-3575.
    [71]G.V. Fitzpatrick, P.D. Soloway, M.J. Higgins, Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMRl, Nat Genet 32 (2002)426-431.
    [72]D. Mancini-Dinardo, S.J. Steele, J.M. Levorse, et al., Elongation of the Kcnqlotl transcript is required for genomic imprinting of neighboring genes, Genes Dev 20 (2006) 1268-1282.
    [73]J.Y. Shin, G.V. Fitzpatrick, M.J. Higgins, Two distinct mechanisms of silencing by the KvDMRl imprinting control region, EMBO J 27 (2008) 168-178.
    [74]F. Sleutels, R. Zwart, D.P. Barlow, The non-coding Air RNA is required for silencing autosomal imprinted genes, Nature 415 (2002) 810-813.
    [75]T. Nagano, J.A. Mitchell, L.A. Sanz, et al., The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin, Science 322 (2008) 1717-1720.
    [76]K. Regha, M.A. Sloane, R. Huang, et al., Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome, Mol Cell 27 (2007) 353-366.
    [77]T.B. Nesterova, B.C. Popova, B.S. Cobb, et al., Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a, Epigenetics Chromatin 1 (2008) 2.
    [78]Y. Ogawa, B.K. Sun, J.T. Lee, Intersection of the RNA interference and X-inactivation pathways, Science 320 (2008) 1336-1341.
    [79]F.M. Pauler, M.V. Koerner, D.P. Barlow, Silencing by imprinted noncoding RNAs:is transcription the answer?, Trends Genet 23 (2007) 284-292.
    [80]R. Terranova, S. Yokobayashi, M.B. Stadler, et al., Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos, Dev Cell 15 (2008) 668-679.
    [81]J.L. Rinn, M. Kertesz, J.K. Wang, et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell 129 (2007)1311-1323.
    [82]M. Chotalia, S.A. Smallwood, N. Ruf, C. Dawson, et al., Transcription is required for establishment of germline methylation marks at imprinted genes, Genes Dev 23 (2009) 105-117.
    [83]I. Okamoto, A.P. Otte, C.D. Allis, et al., Epigenetic dynamics of imprinted X inactivation during early mouse development, Science 303 (2004) 644-649.
    [84]J.L. Deuve, P. Avner, The coupling of X-chromosome inactivation to pluripotency, Annu Rev Cell Dev Biol 27 (2011) 611-629.
    [85]P. Navarro, I. Chambers, V. Karwacki-Neisius, et al., Molecular coupling of Xist regulation and pluripotency, Science 321 (2008) 1693-1695.
    [86]M.E. Donohoe, S.S. Silva, S.F. Pinter, et al., The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting, Nature 460 (2009) 128-132.
    [87]T.B. Nesterova, C.E. Senner, J. Schneider, et al., Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells, Epigenetics Chromatin 4 (2011) 17.
    [88]P.G Hawkins, K.V. Morris, Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5, Transcription 1 (2010) 165-175.
    [89]J.C. Pearson, D. Lemons, W. McGinnis, Modulating Hox gene functions during animal body patterning, Nat Rev Genet 6 (2005) 893-904.
    [90]S. Bertani, S. Sauer, E. Bolotin, et al., The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin, Mol Cell 43 (2011) 1040-1046.
    [91]K.C. Wang, Y.W. Yang, B. Liu, et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression, Nature 472 (2011) 120-124.
    [92]A.M. Bond, M.J. Vangompel, E.A. Sametsky, et al., Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GAB A circuitry, Nat Neurosci 12(2009) 1020-1027.
    [93]S.Y. Ng, R. Johnson, L.W. Stanton, Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors, EMBO J 31 (2012) 522-533.
    [94]M. Szymanski, M.Z. Barciszewska, V.A. Erdmann, et al., A new frontier for molecular medicine:noncoding RNAs, Biochim Biophys Acta 1756 (2005) 65-75.
    [95]D. Beysen, J. Raes, B.P. Leroy, et al., Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome, Am J Hum Genet 77 (2005)205-218.
    [96]B. D'Haene, C. Attanasio, D. Beysen, et al., Disease-causing 7.4 kb cis-regulatory deletion disrupting conserved non-coding sequences and their interaction with the FOXL2 promotor:implications for mutation screening, PLoS Genet 5 (2009) e1000522.
    [97]M.A. Faghihi, F. Modarresi, A.M. Khalil, et al., Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase, Nat Med 14 (2008) 723-730.
    [98]E. Mus, P.R. Hof, H. Tiedge, Dendritic BC200 RNA in aging and in Alzheimer's disease, Proc Natl Acad Sci U S A 104 (2007) 10679-10684.
    [99]T. Gutschner, S. Diederichs, The hallmarks of cancer:a long non-coding RNA point of view, RNA Biol 9 (2012) 703-719.
    [100]L. Han, K. Zhang, Z. Shi, et al., LncRNA pro fi le of glioblastoma reveals the potential role of 1ncRNAs in contributing to glioblastoma pathogenesis, Int J Oncol 40 (2012) 2004-2012.
    [101]F. Yang, L. Zhang, X.S. Huo, et al., Long non-coding RNA high expressed in hepatocellular carcinoma (lncRNA-HEIH) facilitates tumor growth through enhancer of zeste homolog 2, Hepatology (2011).
    [102]A.C. Tahira, M.S. Kubrusly, M.F. Faria, et al., Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer, Mol Cancer 10 (2011) 141.
    [103]J.R. Prensner, M.K. Iyer, O.A. Balbin, et al., Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression, Nat Biotechnol 29 (2011) 742-749.
    [104]L. Pibouin, J. Villaudy, D. Ferbus, et al., Cloning of the mRNA of overexpression in colon carcinoma-1:a sequence overexpressed in a subset of colon carcinomas, Cancer Genet Cytogenet 133 (2002) 55-60.
    [105]P. Ji, S. Diederichs, W. Wang, et al., MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer, Oncogene 22 (2003) 8031-8041.
    [106]R. Lin, M. Roychowdhury-Saha, C. Black, et al., Control of RNA processing by a large non-coding RNA over-expressed in carcinomas, FEBS Lett 585 (2011) 671-676.
    [107]K. Tano, R. Mizuno, T. Okada, et al., MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes, FEBS Lett 584 (2010) 4575-4580.
    [108]K.L. Yap, S. Li, A.M. Munoz-Cabello, S. Raguz, et al., Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a, Mol Cell 38 (2010) 662-674.
    [109]Y. Kotake, T. Nakagawa, K. Kitagawa, et al., Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene, Oncogene 30 (2011) 1956-1962.
    [110]R.A. Gupta, N. Shah, K.C. Wang, et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature 464 (2010) 1071-1076.
    [111]Z. Yang, L. Zhou, L.M. Wu, et al., Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation, Ann Surg Oncol 18 (2011) 1243-1250.
    [112]R. Kogo, T. Shimamura, K. Mimori, et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers, Cancer Res 71 (2011) 6320-6326.
    [113]T. Niinuma, H. Suzuki, M. Nojima, et al., Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors, Cancer Res 72 (2012) 1126-1136.
    [114]K. Kim, I. Jutooru, G Chadalapaka, et al., HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer, Oncogene 32 (2013)1616-1625.
    [115]M. Hnarte, M. Guttman, D. Feldser, et al., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response, Cell 142 (2010)409-419.
    [116]T. Hung, Y. Wang, M.F. Lin, et al., Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters, Nat Genet 43 (2011) 621-629.
    [117]T. Hung, H.Y. Chang, Long noncoding RNA in genome regulation:prospects and mechanisms, RNA Biol 7 (2010) 582-585.
    [118]N. Brockdorff, A. Ashworth, GF. Kay, et al., The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus, Cell 71 (1992) 515-526.
    [119]C.I. Brannan, E.C. Dees, R.S. Ingram, et al., The product of the H19 gene may function as an RNA, Mol Cell Biol 10 (1990) 28-36.
    [120]F. Niazi, S. Valadkhan, Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3'UTRs, RNA 18(2012)825-843.
    [121]M.I. Galindo, J.I. Pueyo, S. Fouix, et al., Peptides encoded by short ORFs control development and define a new eukaryotic gene family, PLoS Biol 5 (2007) el 06.
    [122]T. Kondo, Y. Hashimoto, K. Kato, et al., Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA, Nat Cell Biol 9 (2007) 660-665.
    [123]N.T. Ingolia, L.F. Lareau, J.S. Weissman, Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell 147 (2011) 789-802.
    [124]H. Kawashima, H. Takano, S. Sugita, et al., A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene:expression in prostate cancer cells and enhancement of androgen receptor activity, Biochem J 369 (2003) 163-171.
    [125]S. Chooniedass-Kothari, E. Emberley, M.K. Hamedani, et al., The steroid receptor RNA activator is the first functional RNA encoding a protein, FEBS Lett 566 (2004) 43-47.
    [126]D. Tautz, T. Domazet-Loso, The evolutionary origin of orphan genes, Nat Rev Genet 12 (2011) 692-702.
    [127]A.R. Carvunis, T. Rolland, I. Wapinski, et al., Proto-genes and de novo gene birth, Nature 487 (2012) 370-374.
    [128]J.T. Kung, D. Colognori, J.T. Lee, Long Noncoding RNAs:Past, Present, and Future, Genetics 193 (2013) 651-669.
    [129]M.B. Clark, R.L. Johnston, M. Inostroza-Ponta, et al., Genome-wide analysis of long noncoding RNA stability, Genome Res 22 (2012) 885-898.
    [130]L.S. Davidow, M. Breen, S.E. Duke, et al., The search for a marsupial XIC reveals a break with vertebrate synteny, Chromosome Res 15 (2007) 137-146.
    [131]C.P. Ponting, T.G. Belgard, Transcribed dark matter:meaning or myth?, Hum Mol Genet 19 (2010) R162-168.
    [132]H. van Bakel, C. Nislow, B.J. Blencowe, et al., Most "dark matter" transcripts are associated with known genes, PLoS Biol 8 (2010) e1000371.
    [133]P. Schorderet, D. Duboule, Structural and functional differences in the long non-coding RNA hotair in mouse and human, PLoS Genet 7 (2011)e1002071.
    [134]M. Lynch, The evolution of genetic networks by non-adaptive processes, Nat Rev Genet 8 (2007) 803-813.
    [135]E.V. Koonin, Y.I. Wolf, Constraints and plasticity in genome and molecular-phenome evolution, Nat Rev Genet 11 (2010) 487-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700