稻瘟菌定殖与扩展过程中特异表达基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌与水稻互作系统,是理想的病原菌与植物互作的模式系统,也是病害生态控制的理想模式。为了探索稻瘟病菌与水稻互作的分子机理,本文采用基因芯片的方法筛选了稻瘟病菌在定殖与扩展过程中与水稻互作的特异表达基因,并对这些基因进行初步的分析和部分基因RT-PCR验证。
     基因芯片结果显示,若以两倍的变化作为标准,在稻瘟病菌定殖和扩展过程中,稻瘟病菌共有3309个基因发生上调,3453个基因发生下调;水稻有974个基因上调,1134个基因下调。参照NCBI数据库、稻瘟病菌数据库水稻基因数据库结合ProtComp 8.0软件,对基因芯片结果中稻瘟病菌中上调最大的122个基因,下调最大的67个基因;水稻上调最大的62个基因,下调最大的7个基因,进行基因表达产物的分析和亚细胞定位。并对基因芯片中稻瘟病菌上调最大的20个基因进行RT-PCR的验证,结果发现其中有18个基因与基因芯片结果一致,有2个基因未能扩增得到产物。
The system of rice- Magnaporthe grisea, is an ideal model system of the plants interaction with their pathogens and the ecological control of plant disease. In order to understand the interaction molecular mechanism between Magnaporthe grisea and rice, the specific expression genes during the pathogen infection were screened out by the technology of gene chip and some of them were verified by RT-PCR.
     The result of gene chip experiment showed that, for more than 2-fold change, there were 3309 up-regulated genes and 3453 down-regulated genes from Magnaporthe grisea; and 974 up-regulated genes and 1134 down-regulated genes from rice. The NCBI, Magnaporthe grisea genome and Rice Genome Annotation Project databases, and ProtComp 8.0 software were used to annotate the proteins and their subcellular localizations of the most obviously changed genes, in which122 up-regulated and 66 down-regulated genes from M. grisea, and 62 up-regulated and 66 down-regulated genes from rice. Finally, the top 20 up-regulated genes were selected from Magnaporthe grisea and verified by RT-PCR analysis.
引文
[1] Ou SH. Pathogen variability and host resistance in rice blast disease[J].Annual Review of Phytopathology,1980,18:167-187.
    [2] Zeigler RS, Leong SA, Teng PS. Rice blast disease. CAB International. Wallingford. United Kingdom. 1994.
    [3] Jia,Y., McAdams,SA, Bryan,GT, Hershey,HP, Valent,B. EMBO J, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. 2000. 19, 4004-4014
    [4] Sesma A,Osbourn AE. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature. 2004 Sep 30;431(7008):582-6.
    [5]Valent B. Plant disease: underground life for rice foe[J].Nature. 2004 Sep 30;431(7008):516-7.
    [6] Talbot NJ. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003. 57:177-202.
    [7] Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol, 1991. 29:443-467.
    [8] Valent B. Rice blast as a model system for plant pathology. Phytopathology, 1990. 80:33-36
    [9] Talbot NJ, Foster AJ. Genetice and genomics of the rice blast fungus Magnaporthe grisea: development an experimental model for understanding fungal diseases of cereals. In: Advances in Botanical Research Incorporating Advances in Plant Pathology, 2000. 34: 263-287
    [10] Zhu Y,Chen H,Fan J, et al. Genetic diversity and disease control in rice. Nature. 2000.406(6797):718-22.
    [11] Hamer JE, Howard RJ, Chumley FG et al. A mechanism for surface attachment in spores of a plant pathogenic fungus[J]. Science,1988,239:288-290.
    [12] Howard RJ.Cell biology of pathogenesis[M].1994.pages3-22 in: Rice Blast Disease, R.S.Zeigler, S. A. Leong, and P. S.Teng,eds. CAB Inter., Wallingford, UK.
    [13]Howard RJ and Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J].nnual Review of Microbiology,1996,50:491-512
    [14]Talbot NJ. Forcible entry. Science, 1999.285:1860-1861
    [15]Howard RJ, Ferrari MA, Roach DH, and Money NP, Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci.USA, 1991;88:11281-11284.
    [16]De Jong JC, Mccormack J, Sminoff N,Talbot N J. Glycerol generates turgor in rice blast. Nature, 1997; 389:244-255.
    [17]Talbot NJ. Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993;5:1575-1590.
    [18]Talbo NJ. Having a blast: exploring the pathogenicity of Magnaporthe grisea.Trends in Microbiology, 1995; 3:9-16.
    [19]Zeigler RS. Recombination in Magnaporthe grisea, Annual Rview of Phytopathology, 1998; 36: 9-275.
    [20]Hamer JE, Talbot NJ. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol, 1998. 1: 693-697
    [21]Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J, 1999. 18(3): 512-21
    [22]Kim S, Ahn IP, Rho HS, Lee YH. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol, 2005. 57(5): 1224-37
    [23]Zhao X, Kim Y, Park G, Xu JR. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell, 2005.17(4):1317-29
    [24]Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993. 5(11): 1575-90
    [25]Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev, 1996. 10(21):2696-2706
    [26]Kershaw MJ, Wakley G, Talbot NJ. Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J, 1998. 17(14): 3838-49
    [27]Park G, Bruno KS, Staiger CJ, Talbot NJ, and Xu JR. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Molecular Microbiology, 2004.53 (6), 1695–1707
    [28]Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J, 2003. 22(2):225-35
    [29]Balhadere PV, Talbot NJ. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001.13(9):1987-2004
    [30]Li L, Xue C, Bruno K, Nishimura M, Xu JR. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol Plant Microbe Interact, 2004. 17(5): 547-56
    [31]Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrun MH. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant Microbe Interact, 2000. 13(2): 217-27
    [32]Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995. 7:1221-1233
    [33]Farman ML and Leong SA. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics, 1998. 150:1049-1058
    [34]Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000.12(11):2019-32
    [35]Bohnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 2004.16:2499-2513
    [36]Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000.12(11): 2033-46
    [37]Balhadere PV, Foster AJ, Talbot NJ. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant Microbe Interact, 1999.12:129–42
    [38]Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell, 2004.16(6):1575-88
    [39]Kim CY, Lee SH, Park HC, Bae CG, Cheong YH, Choi YJ, Han C, Lee SY, Lim CO, Cho MJ. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant Microbe Interact, 2000.13:470-474
    [40]Xiong L, Lee MW, Qi M, Yang Y. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact, 2001. 14:685-692
    [41]Kim S, Ahn IP, Lee YH. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol Plant Microbe Interact, 2001.14:1340-1346
    [42]Zhou B, Peng K, Chu Z, Wang S, Zhang Q. The defenseresponsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.). Science in China (Series C), 2002. 45: 450–467
    [43]Irie T, Matsumura H., Terauchi R, Saitoh H. Serial analysis of gene expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Gen Genomics, 2003.270:181– 189
    [44]Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. 2003. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA, 100:15718-15723
    [45]Takano Y, Choi W, Mitchell TK, Okuno T, Dean RA. 2003. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Molecular Plant Pathology, 4 (5), 337-346
    [46]Lu G, Jantasuriyarat C, Zhou B, Wang GL. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theor Appl Genet, 2004. 108:525-34.
    [47]Gowda M, Jantasuriyarat C, Dean RA, Wang GL. Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol, 2004. 134:890-897
    [48]Ebbole DJ, Jin Y, Thon M, Pan H, Bhattarai E, Thomas T, Dean R. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressedsequence tags. Mol Plant Microbe Interact, 2004. 17:1337-1347
    [49]Hammond-Kosack K E, Jones J D. Resistance gene-dependent plant defense responses. Plant cell, 1996, 8:1773-1791
    [50]Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol, 2004, 7:391-399
    [51]Van der Biezen E A, Jones J D G. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci, 1998,23:454-456
    [52]董丽英,徐兴芬.水稻抗稻瘟病基因研究进展[J].云南农业科技,2007,3:25-26.
    [53]Yu Z H, Mackill D J,Bonman J M,et al.Molecular mapping of genes for resistance to rice blast(Pyricularia grisea Sacc.).Theor Appl Genet,1996,93:859-863.
    [54]Yu Z H, Mackill D J, Bonman J M, et al. Tagging genes for blast resisfance in rice viu linkage to RFLP markers. Theor Appl Genet, 1991, 81: 471-476.
    [53]Imbe T, Ora S,Yanoria M J T, et al. A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl,1997,14:60-61.
    [55]Imbe T, Oba S, Yanoria M J T and Tsunematsu H. A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl, 1997, 14: 60-62
    [56]Naqvi N I, Chattoo B B. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome, 1996, 39: 26-30
    [57]朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑), 1994, 24(10): 1048-1052
    [58]Wang G L, Mackill D J, Bonman M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar.Genetics, 1994, 136:1421-1434
    [59]郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因.植物病理学报, 1995, 25(4): 307-303
    [60]Miyamoto M, Ando I, Rybka K, et al. High resolution mapping of the indica-derived rice blast resistance gene I. Pi-b. Mol Plant-Microbe Interact,1996, 9: 6-13
    [61]Rybka K, Miyamoto M, Ando I, et al. High resolution mapping of the indica-derived rice blast resistance gene II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol Plant-Microbe Interact, 1997, 10: 517-524
    [62]Wu K S, Martinez C, Lentini Z, et al. Cloning a blast resistance gene by chromosome walking[A]. In: Khush G S. Rice Genetics III[C]. Proceedings of the 3rd International Rice Genetics Symposium, Oct.16-20 1995, Manila, Philippines: International Rice Research Institute, 1995. 669-674
    [63]Pan Q.H., Wang L., Ikehashi H., Yamagata H., and Tanisaka T., Identification of two new genes conferring resistance to rice blast in Chinese native cultivar‘Maowangu’, Plant Breed. 1998a. 117: 27-31
    [64]Pan Q.H., Wang L., Tanisaka T., and Ikehashi H. Allelism of rice blast resistance genes in two Chinese rice cultivars and identification of two new resistance genes, Plant Pathol., 1998b 47: 165-170
    [65]Berruyer R;Adreit H;Milazzo J, et al.Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1[J]. Theoretical and Applied Genetics ,2003 ,107:1139-1147.
    [66]Chen X W, Li S G, Xu C J, Zhai W X, Ling Z Z, Ma B T, Wang Y P, Wang W M, Gao G , Ma Y Q, Shang J J, Zhao X F,Zhou K D, Zhu L H. Identification of Two Blast Resistance Genes in a Rice Variety, Digu. Phytopathology, 2004, 152: 77–85
    [67]Chen X W, Shang J J, Chen D X, Lei C L, Zhou Y, Zhai W X, Liu G Z, Xu J C, Ling ZH ZH, Cao G, Ma B T, Wang Y B, Zhao X F, Li SH G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46:794–804
    [68]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19:55-64
    [69]Nakamura S, Asakawa S, Ohmido N, Fukui K, Schimizu N, Kawasaki S. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet, 1997, 214:611-620
    [70]Bryan G, Wu K SH, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K,Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2045
    [71]Jia Y L, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene andavirulence products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014
    [72]Mackill D J, Bonman J M. Inheritance of near-isogenic lines of rice. Phytopathology, 1992, 82:746-749
    [73]Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. Development of a PCR-based marker to identify rice blast resistance gene Pi-2(t) in a segregating population. Theor Appl Genet, 1995, 91: 9-14
    [74]Chen D H, Zeigler R S, Aha S W and Nelson R J.Phenotypic characterization of the rice blast resistance gene Pi2-(t). Plant Dis, 1996, 80(1):52-56
    [75]Liu G, Lu G, Zeng L, Wang G L. Two broad-spectrum blast resistance genes, Pi9 (t ) and Pi2 (t ), are physically linked on rice chromosome 6. Mol Gen Genet, 2002, 267: 472–480
    [76]Zhou B,Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the Resistance Specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19:1216-1228
    [77]Zhou B, Dolan M, Sakai H, Wang G L. The Genomic Dynamics and Evolutionary Mechanism of the Pi2/9 Locus in Rice. Mol Plant-Microbe Interact, 2007, 20:63-71
    [78]Qu S H, LiuG. F, Zhou B, Bellizzi M, Zeng L, Dai L Y, Han B, Wang G. L. The broad-spectrum blast resistance gene Pi9 encodes an Nucleotide-Binding Site–Leucine-Rich Repeat protein and is a member of the multiple family in rice. Genetics, 2006, 172: 1901-1914
    [79]李瑶.基因芯片技术:解码生命[M].北京:化学工业出版社,2004:41-100.
    [80]李瑶.基因芯片与功能基因组[M].北京:化学工业出版社,2004:31-115.
    [81]SehenaM,HellerR.Parallel human genome analysis: Mieroarray-based expression monitoring of 1000 genes[J].Proc Natl Aead Sci USA,1996,93:10614-10619.
    [82]付旭平.基因芯片数据分析[博士学位论文].上海:复旦大学,2005.
    [83]Watson MA,Perry A,Budhjara V,et al.Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Research,2001,61(5):1825-1829.
    [84]Reilly T P,Bourdi M,Brady J N,et al.Expression profiling of acetaminophen liver toxicity in mice using microarray technology.Biochemical and Biophysical ResearchCommunications,2001, 282(1):321-328.
    [85]Fodor S P A,Read J L,Pirung M C,et al.Light-directed,spatially addressable parallel chemical synthesis.Science,1991,251(4995):767-773.
    [86]Fodor S P A,Rava R P,Huang X C,et al.Multiplexed biochemical assays with biological chips. Nature,1993,364(6437):555-556.
    [87]Schena M,Shalon D,Davis R,et al.Quantitative monitoring of gene expression patterns with acomplementary DNA microarray.Science,1995,270(5235):467-470.
    [88]Shinji Kawasaki,Chris Borchert,Michael Deyholos,et al.Gene expression profiles during the initial phase of salt stress in rice. Plant Cell,2001,13:889-905.
    [89]Jaccoud D,Peng K,Feinstein D,Kilian A.Diversity arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Research,2001,29(4):E25.
    [90]Ruuska SA, Grike T, Benning C, ohlrogge JB. 2002 Contra Puntal networks of geneex Pression during Arabldo Psisseedfilling. Plant Cell. 2002, 14(6):1191-206
    [91] Lu G,Jantasuriyarat C,Zhou B,et al.An intergrated approach to medicago functional genomics. Theoretical and Applied Genetics,2003,11:207-212.
    [92] Misson J,Raghothama KG,Jain A,Jouhet J,Block MA,Bligny R,Orter P,Creff A,Somerville S,Rolland N,Doumas P,Naery P,Herrerra-Estrella L,Nussaume L,Thibaud MC. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation, Proc Natl Acad Sci USA. 2005, 102(33):11934一11939.
    [93] Casu RE, Jamey JM, Bonnett GD, Manners JM. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics. 2007, 7(2):153-167.
    [94] Kloosterman B, Vorst O, Hall RD, Visser RGF, Bachem CWB. Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J. 2005,3(5):505-519.
    [95] Carlsson J, Lagercrantz U, Sundstrom J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J, 2007,49:452-462.
    [96]Cercos M, Soler G, lglesias DJ, Gadea J, Forment J, Talon M. Global analysis of gene expression during development and ripening of citrus fruit flesh, a proposed mechanism for citric acid utilization. Plant Mol Biol. 2006,62(4-5):513-527.
    [97]Puthoff DP, Nettleton D, Rodermel SR, Baum TJ. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 2003,33(5):911-921.
    [98] Maraschin SF, Caspers M, Potokinad E, Wulfert F, Granerd A, Spaink HP, Wang M. cDNA array analysis of stress–induced gene expression in barley androgenesis. Physiol Plantarum. 2006,127:535-550.
    [99] Yin H, Li S, Zhao X, Du Y, Ma X.cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem. 2006, 44:910-916.
    [100] Negishi T,Nakanishi H,Yazaki J,et al.cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots.Journal of Plant,2002,30(1):83-94.
    [101]饶志明,董海涛,庄杰云,等.水稻抗稻瘟病近等基因系的cDNA微阵列分析遗传学报,2002.9(10):887-893.
    [102]Haroni A,Keizer LCP.Metabolic profiling:pathways in drug discovery.Plant Cell,2000,12:647-661.
    [103]Rauyaree P,Choi W, Fang E, et al.Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea [J].Molecular plant pathology, 2001, 2(6):347-354
    [104]Lu G, Jantasuriyarat C, Zhou B, et al. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea [J]. Theor Appl Genet, 2004, 108:525-534.
    [105] Wei Li, Baohua Wang, et al. The Magnaporthe oryzae Avirulence Gene AvrPiz-t Encodes a Predicted Secreted Protein That Triggers the Immunity in Rice Mediated by the Blast Resistance Gene Piz-t[J]. The American Phytopathological Society, 2009, Vol. 22(4): 411–420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700