水稻育性及光合作用温度稳定性相关生理基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度条件是影响植物生长发育的主要生态因子之一,温度的变化引起植物产生复杂的生理响应。探讨水稻对高温适应性的遗传生理基础和全球气温升高的克服对策是当前水稻研究的重要热点之一。此外,光温敏核不育水稻的育性受到温度变化的精确调控,研究温度对育性的调控中的基因表达对阐明光温敏不育水稻的育性稳定性基础、丰富我国两系杂交水稻的理论基础有重要意义。本研究针对上述两方面的内容进行了初步探讨。
     1.光合作用高温稳定性生理基础研究
     植物感受温度变化的主要器官是叶片,光合作用是叶片的基本功能,叶片光合作用的高温度稳定性是评价高温适应性的重要指标。本研究在已对几十份不同水稻品种材料进行光合作用高温稳定性鉴定并获得高温稳定的代表品种蜀恢527和高温敏感型品种特籼占的基础上,对这两个材料进行了高温反应下的系列生理差异分析。在对维管束显微结构与气孔特性观察、功能叶片蛋白质表达差异、光合作用关键酶Rubisco大、小亚基和蛋白含量热稳定性与生理指标变化等方面的比较生理学分析后获得初步结果,为分析水稻在高温胁迫下的生理和表达差异特征并进一步研究抗(耐)高温机理积累了基础。主要结果如下:
     (1)光合作用高温稳定型品种蜀恢527表现出稳定的生理特性,高温下,能维持较稳定的细胞膜结构和较高的脯氨酸水平,增强光合器官耐受高温逆境的能力,以维持相对稳定的光合作用。
     (2)经双向电泳分析,高温胁迫下产生的热激蛋白(HSP)种类不同,光合作用高温敏感型品种特籼占产生4种HSP,且都为大分子热激蛋白laHSP,分子量和等电点主要分布于63.5-76.8 kD和PI 4.74-5.31之间。高温稳定型品种蜀恢527也产生了4种HSP,但都为小分子热激蛋白smHSP,分子量和等电点主要分布于16.3-23.3kD和PI 4.80-5.91之间,并且除组成型热激蛋白,还产生了1种诱导型热激蛋白。
     (3)光合作用高温稳定型品种蜀恢527剑叶的Rubisco大、小亚基和蛋白含量的50℃热稳定性均高于敏感型品种特籼占。
     (4)与敏感型品种特籼占相比,光合作用高温稳定型品种蜀恢527剑叶中脉和第2节间茎秆维管束发达,剑叶表皮气孔密度大,并表现出独特的气孔特性。
     2.光温敏核不育水稻育性温度敏感性差异分子机理研究
     在影响光温敏不育水稻育性的光照和温度两个重要因子中,自然光照长度是有规律变化的生态因子,而自然温度的变化则较复杂。不育系的不育临界温度是反映不育系不育性稳定性的关键指标。目前生产上的一个突出问题是经过鉴定的不育系临界温度值存在不稳定性,会逐代升高,从而使该不育系逐渐丧失实用性能。临界不育温度升高后,在遇到低于临界温度的自然条件下造成可育,这是两系杂交稻发展过程中存在的关键技术障碍。
     本研究以不育临界温度值分别为23℃和28℃的培矮64S近等基因不育系P2364S和P2864S为材料,对在相同温度下处于育性转换温度敏感期的幼穗进行表达谱基因芯片分析,在转录水平上比较近等基因不育系间的生理遗传表达差异,探讨光温敏核不育水稻育性温度敏感性差异的分子机理。所用基因表达芯片为GeneChip Rice Genome Array,包括57381个水稻籼粳亚种的表达序列探针组。结果表明:得到差异表达2倍以上的探针组1334个,为总探针组数的2.32%,对其中差异表达16倍以上的73个探针组进行生物信息学分析,其中54个有推测功能,主要为涉及电子和质子传递、蛋白翻译、细胞生长发育、抗性、信号传导、物质代谢、转座和转录等相关功能的基因。经分析后认为,抗性相关基因、信号传导相关基因和转座相关基因可能与光温敏核不育水稻的育性温度敏感性有关,其中主要功能基因分析与验证有待深入研究。
Temperature is one of the main ecological factors that effect plant growth and development, the change of which will arose the plant complicated physiological responses. At present, discussion on rice genetic and physiological basis in high temperature adaptation and the countermeasures of the global temperature rising is one of the important hotspots that research rice. Moreover, fertility of photo-thermo-sensitive genic male sterile (PTGMS) rice is accurately regulated by temperature changes. So, research on the gene expression that regulates fertility by temperature has an important meaning to illustrate the basis in fertility stability of PTGMS rice and enrich the theoretical foundation of two line hybrid rice in China. Two aspects mentioned above were discussed in this paper.
     1. Study on the physiological basis of high temperature stability of photosynthesis (HTSP)
     The leaves are the major organ that accepts temperature changes, the basic function of which is photosynthesis. And HTSP of leaves is the important index that evaluates high temperature stability. In this study, Shuhui527-high temperature tolerant representative and Texianzhan-high temperature susceptible representative were screened on the basis of identification of HTSP in tens of different rice varieties, were used, and a series of physiological differences under high temperature were analyzed. The vascular bundle's microstructure and stomata characteristics investigated, temperature response of differential proteins expression, stability of synthetic contents of protein in enzyme-extracting solution and large and small subunit of Rubisco, physiological indexes determinated were analyzed by comparative physiological methods, and some primary results were obtained. These could accumulate foundation for physiological and differently expressed characteristics under high temperature stress and further study on the resistant/tolerant mechanism to high temperature. The results were as follows:
     (1) High temperature tolerant cultivar of photosynthesis-Shuhui527 (T- Shuhui527) has the stable physiological characteristics. Because it could maintain the more stable cell membrane structure and higher proline level, resulting in photosynthetic organs' better suitable ability of high temperature stress, as a result, T-Shuhui527 could keep more stable photosynthesis.
     (2) T-Shuhui527 and high temperature susceptible cultivar of photosynthesis-Texianzhan (S-Texianzhan) expressed the different kinds of heat shock proteins (HSP) under high temperature stress by two-dimensional gel electrophoresis method. S-Texianzhan expressed four kins of HSP, all classified to large HSP (laHSP), with molecular weights (MW) ranging from 63.5 kD to 76.8 kD and isoelectric points (pI) from 4.74 to 5.31. And T-Shuhui527 also expressed four kins of HSP, but all classified to small HSP (smHSP), with molecular weights (MW) ranging from 16.3 kD to 23.3 kD and isoelectric points (pI) from 4.80 to 5.91. It is remarkable that only one kind of HSP was induced completely in T-Shuhui527, others were the heat shock cognate proteins (HSC) with the differentially expressed levels.
     (3) The contents of protein in enzyme-extracting solution and large and small subunit of Rubisco in flag leaves of T-Shuhui527 indicated much higher thermal stability when compared to S-Texianzhan.
     (4) Compared to S-Texianzhan, more developed vascular bundles of main vein of flag leaf and the second internode, and higher stomatal density on epidermis and particular stomatal character of flag leaf were observed in T-Shuhui527.
     2. Research on molecular mechanism of different temperature sensitivity of male fertility of PTGMS rice
     The natural illumination and temperature are two important factors that influced the male fertility of PTGMS rice. The former variation is well-regulated, but the latter is untraceable. The critical sterility temperature point (CSTP) of PTGMS lines is the crucial index that evaluates the stability of male sterility. Badly, CSTP of almost all PTGMS lines identified presents unstability, which seem to have the tendency to gradually increase their CSTP and thus producing fertile pollens under the previous sterile conditions. Some originally qualified PTGMS lines therefore have gradually become ineligible after several generations of propagation. This is the key technical obstacle present in two- line hybrid rice development.
     In this study, P2364S and P2864S with CSTP of 23℃and 28℃respectively, near isogenic lines of PTGMS rice Peiai 64S were used. The gene expression of spikelet during thermo-sensitive period of fertility transition was analyzed using expression profile genechip technology. The physiology and differential genetic expression at transcriptional level were compared between P2364S and P2864S, and, molecular mechanism of temperature sensitivity of male fertility of PTGMS rice was discussed. GeneChip Rice Genome Array was used, which contained 57381 probe sets representing the expressed sequences of rice japonica and indica cultivars. The results showed that: 1334 probe sets were up- or down-regulated at least 2 fold, accounted for 2.32% of overall probe sets numbers. 73 probe sets up- or down-regulated at least 16 fold expressed differentially were analyzed using bioinformatic methods through the public databases. Among these, there were 55 probe sets having putative functions, which related to electron and proton transport, translation, cell growth and development, resistance, signal transduction, material metabolism, transposon and transcription. After analyzed, the genes related to resistance, signal transduction and transposon may have the relationship with temperature sensitivity of male fertility of PTGMS rice. The analysis and validation of major functional genes need further study.
引文
1.陈静,吕金海.水稻雄性不育机理的研究进展.中国农学通报,2001,17(3):69-70
    2.陈良碧,周广洽,黄玉祥.温敏不育水稻幼穗发育过程中ATP含量呼吸速率动态变化研究.见:周广洽编,温敏不育水稻生态生理学.长沙:湖南师范大学出版社,1996,164-168
    3.陈良碧,周广洽.热激对光温敏核不育水稻几种酶活力的影响.湖南师范大学学报,1997,20:79-81
    4.陈能,沈波.灌浆期温度对早籼米质的影响.浙江农业学报,1996,8(4):251-252
    5.陈为钧,赵贵文,顾月华.Rubisco的研究进展.生物化学与生物物理进展,1999,26(5):433-436
    6.陈员,梁承邺.湖北光敏感核不育水稻花药能量和活性氧代谢.植物学报,1992,34(6):416-425
    7.陈忠,苏维埃,汤章城.豌豆热激蛋白Hsp60对酶的高温保护功能及其机理.科学通报,1999,44(20):2171-2174
    8.陈忠,苏维埃,汤章城.植物热激蛋白.植物生理学通讯,2000,36(4):289-296
    9.程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响.西北农业学报,1996,5(2):31-34
    10.褚良银.中杂Ⅱ优63的高温伤害与播期调整.湖南农业科学,1995,2:16-17
    11.代尧仁,孙振荣,徐月荣,赵妙珍,宗建海,凌征柱.水稻二九南雄性不育系及其相应保持系花药中某些呼吸酶和游离组蛋白的比较研究.遗传学报,1978,5(3):227-233
    12.戴君惕,何觉民,邹应斌.生态遗传雄性不育理论与两系杂交植物Ⅳ.雄性不育的遗传分析方法.湖南农业大学学报,1996,22(4):315-320
    13.邓家术,段杉江,刘中来.植物热激蛋白的研究进展及其应用.生命化学,2003,23(3):226-228
    14.邓启云,符习勤.光温敏核不育水稻育性稳定性研究Ⅲ.不育起点温度漂移及其控制技术.湖南农业大学学报,1998a,24(1):8-13
    15.邓启云,袁隆平.光温敏核不育水稻育性稳定性及其鉴定技术.中国水稻学,1998b,12(4):200-206
    16.段咏新,宋松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻,1997,12(6):23-25
    17.高亮之,李林.水稻气象生态.北京:农业出版社,1992,446-461
    18.郭培国,李明启.杂交水稻及亲本光合特性的研究Ⅰ.功能叶片叶绿素含量,叶绿索-蛋白复合物及诱导荧光动力学.热带亚热带植物学报,1996,12(4):60-65
    19.郭培国,李荣华.提高环境CO_2浓度和环境温度对植物光合作用的影响.广州师院学报,1998,20(5):51-54
    20.郭文善,施劲松,彭永欣,封超年,葛才林,朱新开.灌浆期高温对小麦光合产物运转的影响.核农学报,1998,12(1):21-27
    21.韩笑冰,利容千,王建波.热胁迫下萝卜不同耐热性品种细胞组织结构比较.武汉植物学研究,1997,15(2):173-178
    22.何飞.RiceDB:基于Web界面的水稻基因芯片注释整合数据库.[硕士学位论文].杭州:浙江大学图书馆,2006
    23.何晓明,林毓娥,陈清华,邓江明.高温对黄瓜幼苗生长、脯氨酸含量及SOD酶活性的影响.上海交通大学学报,2002,20(1):30-33
    24.黄厚哲,楼士林,王侯聪,陈如铭.植物生长素亏损与雄性不育的发生.厦门大学学报,1984,23(1):82-86
    25.黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控.植物学通报,1999,16(5):530-536
    26.黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210
    27.康健,陈凡,吴乃虎.光敏核不育水稻育性相关基因片段的分离.科学通报,1998,43(19):2078-2082
    28.赖学华.Rubisco纯化、大小亚基片段克隆与小麦灌浆期蛋白质周转研究.[硕士学位论文].杨陵:西北农林科技大学,2005
    29.李冰,刘宏涛,孙大业,周人纲.植物热激反应的信号转导机理.植物生理与分子生物学学报,2002,28(1):1-10
    30.李德红,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换.植物生理学报,1996,22(3):320-326
    31.李合生主编.现代植物生理学.北京:高等教育出版社,2002,397,433
    32.李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000,258-262
    33.李继开,姚振广.光温敏基因雄性不育水稻遗传规律研究.垦殖与稻作,2002,4:3-6
    34.李建国,丁金海,陈再高.中稻高温热害与避灾技术探讨.安徽农业科学,2004,32(2):240-241
    35.李金泉,徐正进,荆彦辉,姜健,陈温福.水稻穗颈及第2节间维管束数的遗传分析.华南农业大学学报,2002,23(3):5-8
    36.李太贵,沈波.水稻品种开花期抗热性鉴定研究.作物品种资源,1995,1:35-36
    37.李太贵,沈波,陈能,罗玉坤.Q酶在水稻籽粒垩白形成中作用的研究.作物学报,1997,23(3):338-344
    38.李祥洲,任昌福,陈晓玲.水稻亚种间杂种一代籽粒充实的气温条件研究.作物学报,1996,22(2):247-250
    39.李志新,郑卓,马来运,戴绍钧.光敏核不育水稻研究利用中存在的若干问题.湖北农学院学报,1999,19(1):74-78
    40.廖亦龙,万邦惠.四种温敏核不育水稻不育性的遗传分析.福建稻麦科技,1998,16(3):1-4
    41.廖亦龙,万邦惠.籼型光温敏核不育水稻不育性的遗传研究.华南农大学报,1999,20(4):38-43
    42.刘东焕,赵世伟,高荣孚,张佐双,姜闯道,刘玉军.植物光合作用对高温的响应.植物研究,2002,22(2):205-212
    43.刘家琼,黎志坚,蒲锦春,刘新民,曾泗弟.我国沙漠中部地区主要不同生态类型植物脯氨酸的累积、光合、呼吸和叶绿素含量.植物学报,1988,30(1):85-95
    44.刘立军,薛光行.水稻光敏核不育基因相关产物的初步研究.作物学报,1995,21(2):251-254
    45.卢兴桂主编.中国光、温敏雄性不育水稻育性生态.北京:科学出版社,2003,52
    46.骆炳山,李文斌,屈映兰,刘道宏,李合生.湖北光敏感核不育水稻育性转换机理初探.华中农业大学学报,1990,9(1):7-12
    47.马霓.短光敏感雄性不育水稻的育性光温反应特性及遗传研究.[硕士学位论文].武汉:华中农业大学图书馆,2003
    48.马文波,马均,明东风,许凤英,严志彬,孙晓辉.不同穗重型水稻品种剑叶光合特性的研究.作物学报,2003,29(2):236-240
    49.马晓娣,王丽,汪矛,彭惠茹.不同耐热性小麦品种在热锻炼和热胁迫下叶片相对电导率及超微结构的差异.中国农业大学学报,2003,8(5):4-8
    50.马旭俊,朱大海.植物超氧化酶SOD的研究进展.遗传,2003,25(2):225-231
    51.毛伟华,蒋德安,翁晓燕,陆庆,朱卫东.水稻不同品种光合作用与Rubisco的关系.浙江农业学报,1999,11(3):114-118
    52.梅明华,陈亮,章志宏,李子银,张启发,徐才国.农垦58S光敏核不育基因突变位点的确定及pms3区间的进一步作图.中国科学C辑,1999,29(3):310-315
    53.米志勇,王树生,吴乃虎.水稻低分子量GTP结合蛋白基因OsRACD的分离.科学通报,2000,45(19):2047-2055
    54.苗琛,利容千,王建波.热胁迫下不结球白菜和甘蓝叶片组织结构的变化.武汉植物学研究,1994a,12(3):207-214
    55.苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,1994b,36(9):730-732
    56.缪有刚,李立人.水稻和烟草核酮糖1,5-二磷酸羧化酶/加氧酶大小亚基之间的分子杂交.植物生理学报,1996,22(1):40-44
    57.欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应.中国水稻科学,2005,19(3):249-254
    58.彭佶松,郑志仁,刘涤,胡之璧.淀粉的生物合成及其关键酶.植物生理学通讯,1997,33(4):297-303
    59.邱芳,金德敏,伏健民,张超良,谢纬武,杨仁崔,张洪斌,王斌.温敏核不育水稻5460S的细菌人工染色体文库的构建和鉴定.中国科学C辑,1999,29(5):518-524
    60.曲雪萍,伏健民,李传友,贾建航,金德敏,王倩,杨仁崔,王斌.水稻5460F的细菌人工染色体文库的构建和鉴定.科学通报,1999,44(14):1532-1536
    61.任昌福,陈安和,刘保国.高温影响杂交水稻开花结实的生理生化基础.西南农业大学学报,1990,12(5):440-443
    62.邵玲,陈向荣.热激蛋白与植物的抗逆性.北方园艺,2005,3:73-74
    63.石明松,邓景杨.湖北光敏核不育水稻的发现鉴定及利用途径.遗传学报,1986,13:107-112
    64.舒孝顺,陈良碧.高温不育水稻育性敏感期可溶性蛋白质的含量.湖南教育学院学报,1999,17(2):69-72
    65.舒孝顺,陈良碧,吕金海.温敏感核不育水稻育性敏感期核糖核酸的变化.作物学报,2000,26(3):381-384
    66.寺岛一男,酒井长雄.1999年夏季高温对水稻成熟和稻米品质的影响.国外作物育种,2002,21(3):6
    67.孙玉,陈珈.植物细胞质膜氧化系统与信号转导.植物生理学通讯,1997,33(3):161-167
    68.汤章城.逆境条件下植物脯氨酸积累及其可能的意义.植物生理学通讯,1984,1:15-21
    69.汤章城.植物抗逆性生理生化研究的某些进展.植物生理学通讯,1991,27(2):146-148
    70.陶爱林.光温敏不育水稻不育临界温度的遗传及分子机理研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    71.汪堃仁,薛绍白,柳惠图主编.细胞生物学(第二版).北京:北京师范大学出版社,2001,698-702
    72.王斌,伏建民,邱方,谢纬武,王京兆,金德敏,李敬玲,杨蜀岚,杨仁崔.TGMS水稻BAC文库的构建及与TGMS基因连锁的BAC克隆的筛选.遗传,1998,20(增刊):115
    73.王才林,仲维功.高温对水稻结实率的影响及其防御对策.江苏农业科学,2004,1:15-18
    74.王光耀,刘俊梅,张仪,余炳生,沈征言.热锻炼和热胁迫过程中菜豆叶肉细胞超微结构的变化.农业生物技术学报,1999,7(2):151-156
    75.王洪春.植物抗逆性与生物膜结构功能研究进展.植物生理学通讯,1985,2:60-66
    76.王明全,徐振平.RNA合成抑制剂对光敏感核不育水稻花粉育性的影响.植物生理学通讯,1994,30(6):426-428
    77.王培田.中国遗传学会第二次代表暨学术讨论会论文摘要汇编,1983,236-237
    78.王熹,阙瑞芬,蒋志荣,徐马福.乙烯利诱导水稻雄性不育的生理效应.植物生理与分子生物学学报,1981,7(1):11-17
    79.王玉忠,邵继荣,刘永胜,余金洪,谢戎,孙敬三.温敏失绿突变体水稻1103s在失绿过程中全叶蛋白的变化.植物学报,1999,41(5):519-523
    80.王忠.植物生理学.北京:中国农业出版社,2000,221-256
    81.魏锦城,王仁雷,程光宇.杂交稻核酮糖二磷酸羧化酶的动力学性质.植物生理学报,1994,20(1):55-60
    82.翁晓燕,蒋德安,毛伟华.Rubisco活化酶及其对Rubisco的调节作用.植物生理学通报,1998,34:69-73
    83.翁晓燕,毛伟华.水稻叶片生育过程中Rubisco活化酶及其与Rubisco和光合速率的关系.浙江农业学报,2000,12(3):121-125
    84.吴艳洪.水稻光合能力的高温稳定性评价指标研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    85.夏快飞,陈良碧.光温敏两用核不育水稻特异蛋白质研究进展.湖南师范大学自然科学学报,200l,24(4):81-84
    86.肖辉海,陈良碧.温敏雄性不育水稻几种同工酶的热激反应..常德师范学报,1999,11(3):64-66
    87.肖翊华,陈平,刘文芳.光敏感核不育水稻花药败育过程中有利氨基酸的比较分析.武汉大学学报,1987(HPGMR专刊):95-100
    88.徐孟亮,刘文芳,肖翊华.湖北光敏核不育水稻幼穗发育中IAA的变化.华中农业大学学报,1990,9(4):381-386
    89.许长成,邹琦.大豆叶片旱促衰老及其膜脂过氧化的关系.作物学报,1993,19(4):361-363
    90.薛光行,邓景杨,赵建宗.水稻光周期敏感雄性不育性的遗传研究-F_2分离群体育性分布的多样性.中国农业科学,1995,28(1):33-41
    91.杨纯明,James L,Heilman.短期高温对水稻生长发育和产量的影响.谢国禄译.国外作物育种,1994,2:4-5
    92.于青.光敏感核不育水稻光周期及其生理学.武汉:武汉大学出版社,1993,205-211
    93.俞美玉,王熹,陶龙兴,姚福德.CRMS诱导水稻雄性不育的研究Ⅲ.CRMS对水稻花药游离脯氨酸含量的影响及其与花药败育的关系.中国水稻科学,1991,5(4):169-174
    94.袁隆平.水稻光、温敏不育系的提纯和原种生产.杂交水稻,1994,9(6):1-3
    95.宰学明,吴国荣,孙丽娟.植物对高温逆境适应机理的研究进展.南京农专学报,2002,18(4):20-22
    96.曾汉来.温度导致的水稻雄性不育现象研究概述.水稻文摘(综述),1993,12(5):1-6
    97.曾汉来,张自国,卢兴桂,李合生,杨静.W6154S类型水稻在光敏、温敏分类问题上的商讨.华中农业大学学报,1995,14(2):105-110
    98.曾汉来,张端品,张自国,张志钰,杨静.W6154S×农垦58杂交后代育性转换株的发育感光性与育性转换特性.作物学报,1997,23(6):693-698
    99.曾汉来,卢开阳,贺道华,潘雪祥,张端品.中籼杂交水稻新组合结实性的高温适应性鉴定.华中农业大学学报,2000,19(1):1-4
    100.曾汉来,张端品.不育临界温度值不同的培矮64S近等基因系选育.作物学报,2001,27(3):351-355
    101.曾汉来,卢兴桂.温度对光、温敏雄性不育水稻育性转换的影响.见:卢兴桂主编.中国光、温敏雄性不育水稻育性生态(第三章).北京:科学出版社,2003,57
    102.曾汉来,张端品,谢国生.两系杂交水稻不育系应用的安全性对策探讨.华中农业大学学报,2004(增刊),34:29-34
    103.张桂莲.两个早稻品种耐热性生理及分子遗传基础的研究.[博士学位论文].长沙:湖南农业大学图书馆,2006
    104.张骁,董发才,宋纯鹏,高俊凤.植物细胞的氧化猝发和H_2O_2的信号转导.植物生理学通讯,2000,36(4):376-383
    105.张玉良.作物品种资源的抗逆性鉴定.见:王洪春主编,作物抗逆性鉴定的原理与技术.北京:北京农业大学出版社,1989,21-36
    106.张再君,梁承邺,戴绍均.水稻光敏核不育系HN5s不育性的遗传分析.作物学报,2002,28(1):131-135
    107.张自国,曾汉来,杨静,元生朝.光敏核不育水稻育性转换条件及其生态适应性研究.中国水稻科学,1993,7(2):123-128
    108.张自国,曾汉来,杨静,卢开阳,熊凤鸣,喻法金,朱祖德.水稻光温敏核不育系育性转换的光温稳定性研究.杂交水稻,1994,1:4-8
    109.赵军,王以柔,李美茹,刘鸿先.低温锻炼对水稻幼苗叶片中Rubisco的影响.植物生理学报,1997,23(2):123-129
    110.郑小林,董任瑞.水稻热激反应的研究Ⅰ.幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报,1997,23(2):109-112
    111.朱英国.水稻雄性不育生物学.武昌:武汉大学出版社,2000,205-208
    112.卓敏.水稻叶片Rubisco纯化、抗体制备及火箭免疫电泳定量分析方法研究.[硕士学位论文].长沙:湖南农业大学图书馆,2001
    113. Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tosl7 insertion: tagging of a Zeaxanthin Epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248-1257
    114. Aharoni A, Keizer LC P, Bouwmeester H J. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell, 2000, 12: 647-661
    115. Al-Khatib K, Paulsen G M. Photosynthesis and productivity during high-temperature stress of wheat genotypes from mafor world regions. Crop Sci, 1990, 30: 1127-1132
    116. Alvarez Me, Pennell RI, Meiker PJ. Reactive oxygen intermedates mediate a systemic signal network in the establishment of plant immunity. Cell, 1998, 92: 773-784
    117. Badu A B, Hunter RB, Tollenaar M. Effect of temperature during grain filling on whole plant and grain in maize(Zea. Mays. L). Can J Plant Sci, 1983, 63: 35-36
    118. Baker N R. Possible role ofphotosystem Ⅱ in environmental perturbations of photosynthesis. Plant Physiol, 1991, 81: 563-570
    119. Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491-543
    120. Bjellqvist B, Righetti P G. Isoelectric focusing in immobilized pH gradient: principle, methodology and some applications. J Biochem Biophys Methods, 1982, 6: 317-339
    121. Blum H, Beier H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1987, 8: 93-99
    122. Boucher N, Harnois J, Carpentier R. Heat-stimulation of electron flow in a photosystem I submembrane. Biochem Cell Biol, 1990, 68: 1000-1004
    123. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bingding. Anal Biochem, 1976, 72: 248
    124. Brody E, Abelson J. The "spliceosome": yeast pre-messenger RNA associates with a 40S complex in a splicing dependent reaction. Science, 1985, 228: 963-967
    125. Brown P O, Botstein D. Exploring the new word of the genome with DNA microarray. Nature Genetics(Supplement), 1999, 21: 33-37
    126. Buhl M B, Stewart C R. Effect of NaCl on proline synthesis and utilization in excised barley leaves. Plant Physiol, 1983,22:664-667
    
    127. Crafts-Brandner S J, Salvucci M E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO_2. Proc Natl Acad Sci USA, 2000, 97: 13430-13435
    
    128. Czarnecka-Verner E, Yuan C X, Fox P C. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean. Plant Mol Biol, 1995,29: 37-51
    
    129. Feller U, Crafts-brandner S J, Salvucci M E. Moderately high temperature inhibit ribulose-l,5-bisphosphate carhoxylaxe/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol, 1998, 116:539- 546
    
    130. Guterman A, Shslit M, Menda N. Rose scent: genomics approach to discovering movel floral fragrance-related genes. Plant Cell, 2002, 14:2325-2338
    
    131. Gygi S P, Corthals G L, Zhang Y. Evaluation of two-dimensional gel electrophoresis based proteome analysis technology. PNAS, 2000,97: 9390-9395
    
    132. Haiti F U. Molecular chaperones in cellular protein folding. Nature,1996, 381: 571-580
    
    133. Havaux M. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci, 1993, 94:19-33
    
    134. Havaux M. Short-term responses of PS I to heat stress. Photosyn Res, 1996, 47:85-87
    
    135. Hennig L, Gruissem W, Grossniklaus U. Transcriptional programs of early stages of plant reproduction. Plant Physiol, 2004, 132: 640-652
    
    136. Jensen R G, Bahr J T. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Plant Physiol, 1977,28:379
    
    137. Kim H, Snesrud E C, Haas B. Gene expression analyses of Arabidopsis chromosome2 using a genomic DNA amplicon microarray. Cold Spring Harbor Laboratory PressISSN, 2003,13:327-340
    
    138. Laemmli D K. Method of electrophoresis analysis of protein. Nature, 1970:277-281
    
    139. Makino A, Mac T, Chira K. Enzymis properties of ribulosel,5-bisphosphate carboxylase-oxygenase purified from rice leaves. Plant Physiol, 1985, 79:57-61
    
    140. Makino A, Mae T, Chira K. Colorimetric measurement of protein stained with coomassiie brilliant blue R on sodium dedocyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide. Agric Biol Chem, 1986, 50:1911-1912
    141. Makino A, Mae T, Chira K. Variations in the contents and kinetic properties of Ribulose-1,5-bisphosphate carboxylases among rice species. Plant Cell Physiol, 1987,28(5):799-804
    
    142. Martinez B E, Molina G J, Sanchez J E. Regulation of Rubisco activity during grain-fill in maize: possible of role Rubisco activase. J Agri Sci, 1997, 128:155-160
    
    143. McCain D C, Croxdale J, Markley J L. Thermal damage to chloroplast envelope membranes. Plant Physiol, 1989, 90:606-609
    
    144. Morimoto R, Tissieres A, Georgopolous C. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Habor, NY, 1994
    
    145. Murchie E, Nubbart S, Chen Y, Peng S, Horton P. Acclimation of rice photosynthesis to irradiance under field condition. Plant Physiol. 2002,130:1999-2010
    
    146. Nover L, Neumann D. Formation of cytoplasmic heat shock granules in tomato cells cultures and leaves. Mol Cell Biol, 1983,3:1648-1655
    
    147. Nover L. The heat stress response as part of the plant stress network: An overview with six tables. In: Cherry J H (ed). NATO-ASI series on biochemical and cellular mechanisms of stress tolerance in plants. Springer, Berlin-New York, 1994:3-45
    
    148. O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250:4007-4021
    
    149. Portis AR J. The regulation of Rubisco activase. J Exp Bot,1995, 46:1285-1291
    
    150. Quarrie S A. Jones H G. Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot,1977, 28:192-203
    
    151. Ristic Z, David D C. Leaf anatomy of Zea mays L. in response to water shortage and high temperature: a comparison of drought-resistant and drought-sensitive lines. Bot Gαz.1991,152(2):173-185
    
    152. Ristic Z, David D C. Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. Int J Plant Sci, 1992,153:186-196
    
    153. Saka B. Variations in the activities of several photosynthetic enzymes during the growth stages in several genotypes and species of genes Oryza. Bull Natl Inst Agri Sci, Japan, 1985, D36:247- 282
    
    154. Satake T, Yoshida S. High temperature induced sterility in indica at flowering. JeapenJ. Crop Sci, 1978, 47:6-17
    
    155. Scandalios J G. Oxygen stress and superoxide dismutase. Plant Physiol, 1993, 10:7-12
    156. Schoffl F, Prandl R, Reindl A. Regulation of the heat-shock response. Plant Physiol, 1998,117:1135-1141
    
    157. Seki M, Narusaka M, Abe H. Monitoring the expression pattern of 1300 Arabidopsis genes under draught and cold stress by using a full-length cDNA microarray. Plant Cell, 2001, 13:61-72
    
    158. Suss K H, Sainis J. Supramolecular organisation of vatersoluble photosynthetic enzymes in chlotoplasts. In: Handbook of Photosynthesis, Ed. M. Pessarakli, Marcel Delker, Inc, New York Basel Hong Kong, 1996,305-314
    
    159. Thebud R, Santarius K A. Effects of high-temperature stress on various biomembranes of leaf cell in sita and in vitro. Plant Physiol, 1982, 70:200-205
    
    160. Velazquez J M, Lindquist S. HSP70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell, 1984, 36:655-662
    
    161. Walia H, Wilson C, Cindamine P. Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage. Plant Physiol, 2005, 139:822-835
    
    162. Wang R,Mamoru O,Xing X. Microarry analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 2003, 132:556-567
    
    163. Wang Y H. Garvin D F. Kochian L V. Nitrate-induced genes in tomato roots array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol, 2001, 127:345-359
    
    164. Yu J, Hu S, Wang J, Wong G Ka-Shu, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp.indica). Science, 2002, 296:79-92
    
    165. Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994,91:8675-8679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700