原发性肝细胞癌基因表达谱和全基因组DNA高分辨率图谱的构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞癌(Hepatocellular carcinoma, HCC)是全球最常见的恶性肿瘤之一,在中国更是位居肿瘤致死性疾病的第二位,严重危害了我国人民健康。多年来科学家们在HCC的基础和临床研究中取得了显著成就,但由于HCC的高度异质性,还需要更多的研究来进一步加深对其致病分子机理的认识和理解。本研究中,我们从寻找HCC差异表达基因和基因组DNA水平异常改变两方面入手,对HCC发生发展的分子机制进行了探讨。
     在第一部分研究工作中,我们应用SAGE和LongSAGE技术构建了正常肝组织、HepG2细胞和HCC的基因表达谱,其中用于构建HCC的SAGE文库和LongSAGE文库的组织标本来自于同一个病人。通过对HepG2细胞与正常肝组织的基因表达谱的比较分析,我们发现在HepG2细胞中差异表达的基因主要涉及编码核糖体蛋白的基因、MAPK信号传导通路基因、细胞周期相关基因、细胞粘附相关基因、钙离子信号传导通路基因、凝血和补体功能相关的基因以及烟酸/烟酰胺代谢相关的基因。比较HCC与正常肝组织的基因表达谱的差异,我们发现在HCC中差异表达的基因主要包括细胞合成、细胞增殖与死亡、信号传导、物质转运、凝血功能、细胞代谢以及细胞对外界刺激发生反应等生物过程相关的基因。选取部分差异表达基因进行验证,结果表明,PEG10、SGCE、ZNF83、PTPN12和TM4SF1基因等12个基因在肝癌组织中的表达高于相应的癌旁组织,差异具有显著性(p<0.05)。值得注意的是,SGCE和PEG10基因共同位于7q21区域,两基因的5’端仅相距115bp,并且两基因在75%的HCC病例中同时发生表达上调或下调,以上调为主。
     在第二部分研究工作中,我们借助Digital karyotyping技术和Genome Sequencer FLX超高通量第二代测序系统,绘制了HCC全基因组DNA异常改变的高分辨率图谱。我们将Genome Sequencer FLX测序系统自备的平端接头改造为粘端接头,从而保留了基因组序列标签串联体的粘性末端所携带的信息,提高了测序效率。Digital karyotyping文库总共测序111,585条,得到358,931个有效序列标签。通过对序列标签数据的分析,发现在HCC中发生扩增的染色体主要有1、4、6、7、8、9、12、15、17、19、21、X和Y染色体,发生扩增的染色体区域内包含了BAGE、UTRN、DYNC1I1、SLC25A13、POTEB和CEACAM21等多个基因。其中DYNC1I1和SLC25A13基因在染色体上的位置邻近PEG1O和SGCE基因,也位于7q21区域。进一步的研究发现,DYNC1I1、SLC25A13、POTEB、CEACAM21、PEG10和SGCE基因分别在36%、52%、50%、36%、23%和32%的HCC病例中出现基因组DNA的扩增,且PEG10、SGCE、DYNC1I1和SLC25A13基因在HCC中的表达显著高于相应的癌旁组织(p<0.05)。在55-69%的HCC病例中,PEG10、SGCE、DYNC1I1和SLC25A13基因组DNA的扩增同时伴有基因表达水平的上调。这些结果提示,位于7q21区域的4个基因—PEG10、SGCE、DYNC1I1和SLC25A13可能共同参与了HCC发生发展的分子机制,而基因组DNA的扩增可能是这些基因表达上调的原因之一
     酪氨酸磷酸酶的异常失活或激活,导致蛋白质分子中酪氨酸残基的磷酸化水平异常升高或降低,是HCC的重要生物学特征之一。在第三部分研究工作中,我们应用酵母双杂交技术,对受体型酪氨酸磷酸酶PCP-2相互作用蛋白进行了初步研究。通过筛选人脑组织酵母cDNA文库,找到可能与PCP-2发生相互作用的蛋白质—衔接蛋白3(adaptor protein-3, AP-3)的p3A亚基,并在哺乳动物细胞中进一步验证了两者之间的相互作用。AP-3的β3A亚基可能通过识别PCP-2胞浆区的YXXΦ模体和/或LL模体与PCP-2结合,从而参与PCP-2细胞内转运、定位、以及受体的循环再利用等过程。
     我们通过对HCC基因转录水平和基因组DNA水平异常改变的研究,进一步加深了对HCC致病分子机制的认识,为今后选择可用于HCC诊断、病程预测、转归和预后判断的分子标记物,以及分子靶向药物治疗的作用靶点提供了新的理论依据。
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and the second cancer killer in China, threatening Chinese people's health severely. Significant achievements have been made in basic and clinical research of HCC. However, as HCC is a kind of highly hetero-geneous disease, more studies are needed to deepen the cognition and un-derstanding of molecular mechanism of hepatocarcinogenesis. In this study, we try to elucidate the molecular mechanism more clearly by searching for genes differentially expressed in HCC as well as the abnormal alterations in HCC genomic DNA.
     In the first part, we applied SAGE and LongSAGE to obtain the gene ex-pression files of normal liver, HepG2 and HCC. The same HCC sample was further analyzed simultaneously using LongSAGE. By comparing gene ex-pression profiles of HepG2 and normal liver, we found that genes differentially expressed in HepG2 included those encoding ribosomal protein, blood coa-gulation factors, complement factors, as well as those involved in MAPK sig-naling pathway, cell cycles regulation, cell adhesion, calcium signaling pathway, and nicotinic acid/nicotinamide metabolism. Comparison of gene expression profiles of HCC and normal liver leaded to the identification of genes differen-tially expressed in HCC, which participated in biological processes of biosyn-thesis, cell proliferation, cell death, signal transduction, transport, blood coa-gulation, response to external stimulus, and cellular metabolism. Totally 12 genes (including PEG10, SGCE, ZNF83, PTPN12, TM4SF1 et al) differently expressed in HCC identified by SAGE were confirmed to be up-regulated in HCC compared to the corresponding nontumorous liver (p< 0.05). Among these 12 genes, it was worth mentioning that SGCE and PEG10 locate to-gether within 7q21, separated by only 115bp base pairs between the 5' ends of these two genes. Furthermore, similar expression patterns (up-or down-regulated simultaneously) of these two genes were observed in 75% of HCC cases detected, being up-regulated together in most cases.
     In the second part, we obtain a comprehensive and high resolution map of abnormal alterations in HCC genomic DNA with the help of Digital karyotyping technology and ultrahigh-throughput second generation sequencing system of Genome Sequencer FLX. The blunt-ended adaptors provided by Genome Sequencer FLX was modified to keep critical information contained in the ad-hesive ends of genomic tag concatemers, which in turn improved sequencing efficiency. Totally 111,585 reads were sequenced and 358,931 filtered tags were obtained from the Digital karyotyping library. By analyzing distribution of these filtered tags on each chromosomes, we found that genomic DNA ampli-fication in HCC were mainly occurred on chromosome 1,4,6,7,8,9,12,15, 17,19,21, X and Y. Genes involved in the amplified regions included BAGE, UTRN, DYNC1I1, SLC25A13, POTEB and CEACAM21 et al. The DYNC1I1 and SLC25A13 genes also locate on 7q21, very close to PEG10 and SGCE. Genomic DNA of DYNC1I1, SLC25A13, POTEB, CEACAM21, PEG10 and SGCE were detected to be amplified in 36%,52%,50%,36%,23%and 32% of HCC cases respectively. Gene expression level of DYNC1I1, SLC25A13, PEG10 and SGCE were also found to be increased in HCC compared to the corresponding nontumorous liver (p< 0.05). For DYNC1I1, SLC25A13, PEG10 and SGCE genes, amplification of genomic DNA accompanied by up-regulation of corresponding genes were observed in 55-69% of HCC cases. These results indicated that DYNC1I1, SLC25A13, PEG10 and SGCE genes located together within 7q21 may be involved in molecular mechanisms of development and progression of HCC, and genomic DNA amplification may play a role in their up-regulation in HCC.
     One of the most important biological characters of HCC is the improper activation and inactivation of protein tyrosine phosphatases which leads to abnormal alteration in the phosphorylation level of tyrosine amino acid. In the third part, we performed preliminary study on finding potential proteins inte-racted with PCP-2, a member of protein tyrosine phosphatases, using yeast two-hybrid technology. By screening the pre-transformed yeast library of human brain cDNA, the interaction between PCP-2 and theβ3A subunit of adaptor protein (AP)-3 was detected in yeast and further confirmed in mam-malian cells. Theβ3A subunit of AP-3 may interact with PCP-2 through rec-ognition of YXXΦand/or LL motifs contained within cytoplasmic domain of PCP-2, thus participating in biological processes of intracellular trafficking, lo-calization or recruitment of PCP-2.
     Our study on the transcriptome and genomic DNA abnormalities in HCC may lead to better understanding of molecular mechanism of hepatocarcino-genesis, providing more potential molecular markers for diagnosis, progres-sion, metastasis and prognosis of HCC, as well as more potential targeted genes for designing molecular drugs for HCC therapy.
引文
1) Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular car-cinoma[J]. Clin Liver Dis,2005,9(2):191-211.
    2) Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics[J]. CA Cancer J Clin 2005,55(2):74-108.
    3) Llovet JM, Lok A. Hepatitis B virus genotype and mutants:risk factors for hepatocellular carcinoma[J]. J Natl Cancer Inst,2008,100(16): 1121-1123.
    4) Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma[J]. J Natl Cancer Inst,2008,100(16):1134-1143.
    5) Raimondi S, Bruno S, Mondelli MU, et al. Hepatitis C virus genotype 1 b as a risk factor for hepatocellular carcinoma development:a meta-analysis[J]. J Hepatol,2009,50(6):1142-1154.
    6) Tanabe KK, Lemoine A, Finkelstein DM, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis[J]. JAMA,2008,299(1):53-60.
    7) Inagaki Y, Yasui K, Endo M, et al. CREB3L4, INTS3, and SNAPAP are targets for the 1q21 amplicon frequently detected in hepatocellular car-cinoma[J]. Cancer Genet Cytogenet,2008,180(1):30-36.
    8) Kittaka N, Takemasa I, Takeda Y, et al. Molecular mapping of human he-patocellular carcinoma provides deeper biological insight from genomic data[J]. Eur J Cancer,2008,44(6):885-897.
    9) Xu XR, Huang J, Xu ZG, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepato-cellular carcinoma with those of corresponding noncancerous liver[J]. Proc Natl Acad Sci USA,2001,98(26):15089-15094.
    10) Huang J, Sheng HH, Shen T, et al. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B vi-rus-associated hepatocellular carcinoma[J]. FEBS Lett,2006,580(15): 3571-3581.
    11) Huang J, Zhang X, Zhang M, et al. Up-regulation of DLK1 as an imprinted gene could contribute to human hepatocellular carcinoma. Carcinogene-sis[J].2007,28(5):1094-1103.
    12) Dong H, Ge X, Shen Y, et al. Gene expression profile analysis of human hepatocellular carcinoma using SAGE and LongSAGE[J]. BMC Med Genomics,2009,2:5.
    13) Wu TT, Hsieh YH, Wu CC, et al. Overexpression of anion exchanger 2 in human hepatocellular carcinoma[J]. Chin J Physiol,2006,49(4):192-198.
    14) Liu BH, Goh CH, Ooi LL, et al. Identification of unique and common low abundance tumour-specific transcripts by suppression subtractive hybri-dization and oligonucleotide probe array analysis[J]. Oncogene,2008, 27(29):4128-4136.
    15) Yoon SY, Kim JM, Oh JH, et al. Gene expression profiling of human HBV-and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags[J]. Int J Oncol,2006,29(2):315-327.
    16) Yu GR, Kim SH, Park SH, et al. Identification of molecular markers for the oncogenic differentiation of hepatocellular carcinoma[J]. Exp Mol Med, 2007,39(5):641-652.
    17) Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene ex-pression[J]. Science,1995,270(5235):484-487.
    18) Saha S, Sparks AB, Rago C, et al. Using the transcriptome to annotate the genome[J]. Nat Biotechnol,2002,20(5):508-512.
    19) Lash AE, Tolstoshev CM, Wagner L, et al. SAGEmap:a public gene ex-pression resource[J]. Genome Res,2000,10(7):1051-1060.
    20) Romualdi C, Bortoluzzi S, D'Alessi F, et al. IDEG6:a web tool for detec-tion of differentially expressed genes in multiple tag sampling experi-ments[J]. Physiol Genomics,2003,12(2):159-162.
    21) Audic S, Claverie JM. The significance of digital gene expression pro-files[J]. Genome Res,1997,7(10):986-995.
    22) Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci USA,1998, 95(25):14863-14868.
    23) Livak K J, Schmittgen T D. Analysis of relative gene expression data us-ing real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Method,2001,25(4):402-408.
    24) Bishop JO, Morton JG, Rosbash M, et al. Three abundance classes in HeLa cell messenger RNA[J]. Nature,1974,250(463):199-204.
    25) Patil MA, Chua MS, Pan KH, et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma[J]. Oncogene,2005,24(23):3737-3747.
    26) Man X B, Tang L, Zhang B H, et al. Upregulation of Glypican-3 expression in hepatocellular carcinoma but downregulation in cholangiocarcinoma indicates its differential diagnosis value in primary liver cancers[J]. Liver Int,2005,25 (5):962-966.
    27) Kondoh N, Shuda M, Tanaka K, et al. Enhanced expression of S8, L12,
    L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma[J]. Anticancer Res,2001,21 (4A):2429-2433.
    28) Shuda M, Kondoh N, Tanaka K, et al. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma[J]. Anticancer Res,2000,20(4): 2489-2494.
    29) lizuka N, Tsunedomi R, Tamesa, T et al. Involvement of c-myc-regulated genes in hepatocellular carcinoma related to genotype-C hepatitis B vi-rus[J]. J Cancer Res Clin Oncol,2006,132(7):473-481.
    30) Kondoh N, Wakatsuki T, Ryo A, et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis[J]. Cancer Res 1999,59(19):4990-4996.
    31) Wurmbach E, Chen YB, Khitrov G, et al. Genome-wide molecular profiles of HCVinduced dysplasia and hepatocellular carcinoma[J]. Hepatology, 2007,45(4):938-947.
    32) Chen X, Cheung ST, So S, et al. Gene expression patterns in human liver cancers[J]. Mol Biol Cell,2002,13(6):1929-1939.
    33) Huynh H, Nguyen TT, Chow KH,et al. Over-expression of the mito-gen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocel-lular carcinoma:its role in tumor progression and apoptosis[J]. BMC Ga-stroenterol,2003,3:19.
    34) Coulouarn C, Gomez-Quiroz LE, Lee JS, et al. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct me-chanisms of hepatocarcinogenesis[J]. Hepatology,2006,44(4): 1003-1011.
    35) Rubie C, Frick VO, Wagner M, et al. Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma[J]. Scand J Immunol,2006,63(6):468-477.
    36) Ip WK, Lai PB, Wong NL, et al. Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma[J]. Cancer Lett,2007, 250(2):284-291.
    37) Kainz B, Shehata M, Bilban M, et al. Overexpression of the paternally expressed gene 10 (PEG 10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia[J]. Int J Cancer 2007,121(9):1984-1993.
    38) Diederichs S, Bulk E, Steffen B, et al. S100 family members and trypsi-nogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer[J]. Cancer Res,2004,64(16):5564-5569.
    39) Arumugam T, Simeone DM, Van Golen K, et al. S100P promotes pan-creatic cancer growth, survival, and invasion[J]. Clin Cancer Res,2005, 11(15):5356-5364.
    40) Suhr ML, Dysvik B, Bruland O, et al. Gene expression profile of oral squamous cell carcinomas from Sri Lankan betel quid users[J]. Oncol Rep,2007,18(5):1061-1075.
    41) Kaneko R, Tsuji N, Kamagata C, et al. Amount of expression of the tu-morassociated antigen L6 gene and transmembrane 4 superfamily member 5 gene in gastric cancers and gastric mucosa[J]. Am J Ga-stroenterol,2001,96(12):3457-3458.
    42) Egland KA, Kumar V, Duray P, et al. Characterization of overlapping XAGE-1 transcripts encoding a cancer testis antigen expressed in lung, breast, and other types of cancers[J]. Mol Cancer Ther 2002,1(7): 441-450.
    43) Hammer NA, Hansen TO, Byskov AG, et al. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer[J]. Re-production,2005,130(2):203-212.
    44) Feng W, Marquez R T, Lu Z, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ova-rian cancers by loss of heterozygosity and promoter methylation[J]. Cancer,2008,112(7):1489-1502.
    45) Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes[J]. Blood,2007, 109(5):2156-2164.
    46) Chen B, Athanasiou M, Gu Q, et al. Drm/Gremlin transcriptionally acti-vates p21(Cip1) via a novel mechanism and inhibits neoplastic transfor-mation[J]. Biochem Biophys Res Commun,2002,295(5):1135-1141.
    47) Johnson PJ. Role of alpha-fetoprotein in the diagnosis and management of hepatocellular carcinoma[J]. J Gastroenterol Hepatol,1999,14 Suppl: S32-36.
    1) Marchio A, Meddeb M, Pineau P, et al. Recurrent chromosomal abnor-malities in hepatocellular carcinoma detected by comparative genomic hybridization[J]. Genes Chromosomes Cancer,1997,18(1):59-65.
    2) Wong N, Lai P, Lee S, et al. Assessment of genetic changes in hepato-cellular carcinoma by comparative genomic hybridization analysis; Rela-tionship to disease stage, tumor size, and cirrhosis[J]. Am J Pathol,1999, 154(1):37-43.
    3) Rao UN, Gollin SM, Beaves S, et al. Comparative genomic hybridization of hepatocellular carcinoma:correlation with fluorescence in situ hybridi-zation in paraffin-embedded tissue[J]. Mol Diagn,2001,6(1):27-37.
    4) Zimmermann U, Feneux D, Mathey G, et al. Chromosomal aberrations in hepatocellular carcinomas:relationship with pathological features. Hepa-tology,1997,26(6):1492-1498.
    5) Buckley AF, Burgart LJ, Kakar S. Epidermal growth factor receptor ex-pression and gene copy number in fibrolamellar hepatocellular carcinoma. Hum Pathol,2006,37(4):410-414.
    6) Tsiambas E, Manaios L, Papanikolopoulos C, et al. Chromogenic in situ hybridization analysis of Epidermal Growth Factor Receptor gene/chromosome 7 numerical aberrations in hepatocellular carcinoma based on tissue microarrays[J]. Pathol Oncol Res,2009,15(3):511-520.
    7) Mori T, Nomoto S, Koshikawa K, et al. Decreased expression and fre-quent allelic inactivation of the RUNX3 gene at 1p36 in human hepato-cellular carcinoma[J]. Liver Int,2005,25(2):380-388.
    8) Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray[J]. Cancer,2002,95(11):2346-2352.
    9) Okamoto H, Yasui K, Zhao C, et al. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepato-cellular carcinomas. Hepatology,2003,38(5):1242-1249.
    10) Wong N, Lai P, Pang E, et al. A comprehensive karyotypic study on hu-man hepatocellular carcinoma by spectral karyotyping[J]. Hepatology, 2000,32(5):1060-1068.
    11) Yang J, Qin LX, Li Y, et al. Molecular cytogenetic characteristics of the human hepatocellular carcinoma cell line HCCLM3 with high metastatic potential:comparative genomic hybridization and multiplex fluorescence in situ hybridization[J]. Cancer Genet Cytogenet,2005,158(2):180-183.
    12) Huang R, Xing Z, Luan Z, et al. A specific splicing variant of SVH, a novel human armadillo repeat protein, is up-regulated in hepatocellular carci-nomas[J]. Cancer Res,2003,63(13):3775-3782.
    13) Park SJ, Jeong SY, Kim HJ. Y chromosome loss and other genomic al-terations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array[J[. Cancer Genet Cytogenet,2006,166(1):56-64.
    14) Steinemann D, Skawran B, Becker T, et al. Assessment of differentiation and progression of hepatic tumors using array-based comparative ge-nomic hybridization[J]. Clin Gastroenterol Hepatol,2006,4(10): 1283-1291.
    15) Wang TL, Maierhofer C, Speicher MR, et al. Digital karyotyping[J]. Proc Natl Acad Sci USA,2002,99(25):16156-16161.
    16) Shih leM, Wang TL. Apply innovative technologies to explore cancer ge-nome[J]. Curr Opin Oncol,2005,17(1):33-38.
    17) Wang TL, Diaz LA Jr, Romans K, et al. Digital karyotyping identifies thy-midylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients[J]. Proc Natl Acad Sci USA,2004,101(9):3089-3094.
    18) Shih leM, Sheu JJ, Santillan A, et al. Amplification of a chromatin re-modeling gene, Rsf-1/HBXAP, in ovarian carcinoma[J]. Proc Natl Acad Sci USA,2005,102(39):14004-14009.
    19) Boon K, Eberhart CG, Riggins GJ. Genomic amplification of orthodenticle homologue 2 in medulloblastomas[J]. Cancer Res,2005,65(3):703-707.
    20) Di C, Liao S, Adamson DC, et al. Identification of OTX2 as a medullob-lastoma oncogene whose product can be targeted by all-trans retinoic acid[J]. Cancer Res,2005,65(3):919-924.
    21) Hu M, Yao J, Cai L, Bachman KE, et al. Distinct epigenetic changes in the stromal cells of breast cancers[J]. Nat Genet,2005,37(8):899-905.
    22) Parrett TJ, Yan H. Digital karyotyping technology:exploring the cancer genome[J]. Expert Rev Mol Diagn,2005,5(6):917-925.
    23) Korner H, Epanchintsev A, Berking C, et al. Digital karyotyping reveals frequent inactivation of the dystrophin/DMD gene in malignant melano-ma[J]. Cell Cycle,2007,6(2):189-198.
    24) Salani R, Chang CL, Cope L, et al. Digital karyotyping:an update of its applications in cancer[J]. Mol Diagn Ther,2006,108(3):231-237.
    25) Park JT, Li M, Nakayama K, et al. Notch3 gene amplification in ovarian cancer[J]. Cancer Res,2006,66(12):6312-6318.
    26) Nakayama K, Nakayama N, Davidson B, et al. Homozygous deletion of MKK4 in ovarian serous carcinoma[J]. Cancer Biol Ther,2006,5(6): 630-634.
    27) Margulies M, Egholm M, Altman WE, et al. Genome sequencing in mi-crofabricated high-density picolitre reactors[J]. Nature,2005,437(7057): 376-380.
    28) Rothberg JM, Leamon JH. The development and impact of 454 se-quencing[J]. Nat Biotechnol,2008,26(10):1117-1124.
    29) Droege M, Hill B. The Genome Sequencer FLX System-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. J Biotechnol,2008,136(1-2):3-10.
    30) Ip WK, Lai PB, Wong NL, Sy SM, et al. Identification of PEG10 as a pro-gression related biomarker for hepatocellular carcinoma[J]. Cancer Lett, 2007,250(2):284-291.
    31) Li Y, Huang J, Zhao YL, et al. UTRN on chromosome 6q24 is mutated in multiple tumors[J]. Oncogene,2007,26(42):6220-6228.
    32) Singh AP, Bafna S, Chaudhary K et al. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in andro-gen-dependent and androgen-independent prostate cancer cells[J]. Cancer Lett,2008,259(1):28-38.
    33) Grunau C, Brun ME, Rivals I et al. BAGE hypomethylation, a new epige-netic biomarker for colon cancer detection[J]. Cancer Epidemiol Bio-markers Prev,2008,17(6):1374-1379.
    34) Elsheikh SE, Green AR, Rakha EA et al. Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immuno-phenotype[J]. Br J Cancer,2008,99(2):327-334.
    35) Zhao X, Liu Y, Ma Q, et al. Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells[J]. Biochem Biophys Res Commun,2009,378(1):21-26.
    36) Tanase CP. Caveolin-1:a marker for pancreatic cancer diagnosis[J]. Ex-pert Rev Mol Diagn,2008,8(4):395-404.
    37) Sun J, Zheng SL, Wiklund F, et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12[J]. Nat Genet, 2008,40(10):1153-1155.
    38) Park JE, Park BC, Song M et al. PTP inhibitor IV protects JNK kinase ac-tivity by inhibiting dual-specificity phosphatase 14 (DUSP14) [J]. Biochem Biophys Res Commun,2009,387(4):795-799.
    39) Ou K, Yu K, Kesuma D, et al. Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping[J]. J Proteome Res,2008,7(4):1518-1528.
    40) Tsuji K, Yasui K, Gen Y, et al. PEG10 is a probable target for the amplifi- cation at 7q21 detected in hepatocellular carcinoma[J]. Cancer Genet Cytogenet,2010,198(2):118-125.
    41) Dong H, Ge X, Shen Y, et al. Gene expression profile analysis of human hepatocellular carcinoma using SAGE and LongSAGE[J]. BMC Med Genomics,2009,2:5.
    1) Beltran PJ, Bixby JL. Receptor protein tyrosine phosphatases as media-tors of cellular adhesion[J]. Front Biosci,2003,8:d87-99.
    2) Cheng A, Dube N, Gu F, et al. Coordinated action of protein tyrosine phosphatases in insulin signal transduction[J]. Eur J Biochem,2002, 269(4):1050-1059.
    3) Ostman A, Hellberg C, Bohmer FD. Proteintyrosine phosphatases and cancer[J]. Nature Rev Cancer,2006,6(4):307-320.
    4) Neel BG, Gu H, Pao L. The 'Shp'ing news:SH2 domain-containing tyro-sine phosphatases in cell signaling[J]. Trends Biochem Sci,2003,28(6): 284-293.
    5) Wang L, Wang WL, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma[J]. Hepatol Res,2007,37(5):389-396.
    6) Motiwala T, Ghoshal K, Das A, et al. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepato-cellular carcinomas[J]. Oncogene,2003,22(41):6319-6331.
    7) Yeh SH, Wu DC, Tsai CY, et al. Genetic characterization of Fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma[J]. Clin Cancer Res, 12(4):1097-1108.
    8) Wang HY, Lian ZR, Lerch MM, et al. Characterization of PCP-2, a novel receptor protein tyrosine phosphatase of the MAM domain family[J]. On-cogene,1996,12(12):2555-2562.
    9) Fuchs M, Wang H, Ciossek T, et al. Differential expression of MAM-Subfamily Protein tyrosine phosphatases during mouse develop-ment[J]. Mechanisms of Development,1998,70(1-2):91-109.
    10) Yan HX, Yang W, Zhang R, et al. Proteintyrosine phosphatase PCP-2 in-hibits β-catenin signaling and increases Ecadherin-dependent cell adhe-sion[J]. J Biol Chem,2006,281(22):15423-15433.
    11) Yan HX, He YQ, Dong H et al. Physical and functional interaction between receptor tyrosine phosphatase PCP-2 and β-catenin[J]. Biochemistry, 2002,41 (52):15854-15860.
    12) Dell'Angelica EC, Ooi CE, Bonifacino J.S. β3A-adaptin, a subunit of the adaptor-like complex AP-3[J]. J Biol Chem,1997,272(24):15078-15084.
    13) Dell'Angelica EC, Klumperman J, Stoorvogel W, et al. Association of the AP-3 Adaptor Complex with clathrin[J]. Science,1998,280(5362): 431-434.
    14) Bonifacino JS, Dell'Angelica EC. Molecular bases for the recognition of tyrosine-based sorting signals[J]. J Cell Biol,1999,145(5):923-926.
    15) Marks MS, Ohno H, Kirchhausen T, et al. Protein sorting by tyro-sine-based signals:Adapting to the Ys and wherefores[J]. Trends Cell Biol,1997,7(3):124-128.
    16) Bonifacino JS, Marks MS, Ohno H, et al. Mechanisms of signalmediated protein sorting in the endocytic and secretory pathways[J]. Proc Assoc Am Physicians,1996,108(4):285-295.
    17) Simpson F, Peden AA, Christopoulou L, et al. Characterization of the adaptor-related protein complex, AP-3[J]. J Cell Biol,1997,137(4): 835-845.
    18) Faundez V, Horng JT, Kelly RB. A function for the AP3 coat complex in synaptic vesicle formation from endosomes[J]. Cell,1998,93(3):423-432.
    19) Rous BA, Reaves BJ, Ihrke G, et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes[J]. Mol Biol Cell, 2002,13(3):1071-1082.
    20) Le Borgne R, Alconada A, Bauer U, et al. The mammalian AP-3 adap-tor-like complex mediates the intracellular transport of lysosomal mem-brane glycoproteins[J]. J Biol Chem,1998,273(45):29451-29461.
    21) Honing S, Sandoval IV, von Figura K. A di-leucine-based motif in the cy-toplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3[J]. EMBO J,1998,17(5):1304-1314.
    22) Theos AC, Tenza D, Martina JA, et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes[J]. Mol Biol Cell,2005,16(11):5356-5372.
    23) Daugherty BL, Straley KS, Sanders JM, et al. AP-3 adaptor functions in targeting P-selectin to secretory granules in endothelial cells[J]. Traffic, 2001,2(6):406-413.
    24) Sugita M, Cao X, Watts GF, et al. Failure of trafficking and antigen pres-entation by CD1 in AP-3-deficient cells[J]. Immunity,2002,16(5): 697-706.
    25) Faundez W, Kelly RB. The AP-3 complex required for endosomal synap-tic vesicle biogenesis is associated with a casein kinase 1α-like isoform[J]. Mol Biol Cell,2000,11(8):2591-2604.
    26) Xu Y, Hortsman H, Seet L, et al. SNX3 regulates endosomal function through its PX-domain-mediated interaction with Ptdlns(3)P[J]. Nat Cell Biol,2001,3(7):658-666.
    27) Cozier GE, Carlton J, McGregor AH, et al. The phox homology (PX) do-main-dependent,3-phosphoinositidemediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation[J]. J Biol Chem,2002,277(50):48730-48736.
    28) Wang Y, Zhou Y, Szabo K et al. Down-regulation of proteaseactivated receptor-1 is regulated by sorting nexin 1[J]. Mol Biol Cell,2002,13(6): 1965-1976.
    29) Kurten RC, Cadena DL, Gill GN. Enhanced degradation of EGF receptors by a sorting nexin, SNX1[J]. Science,1996,272(5264):1008-1010.
    30) Haft CR, de la Luz Sierra M, Barr VA, et al. Identification of a family of sorting nexin molecules and characterization of their association with re-ceptors[J]. Mol Cell Biol,1998,18(12):7278-7287.
    31) Howard L, Nelson KK, Maciewicz RA, et al. Interaction of the metallo-protease disintegrins MDC9 and MDC15 with two SH3 domaincontaining proteins, endophilin I and SH3PX1[J]. J Biol Chem,1999,274(44): 31693-31699.
    32) Zhong Q, Lazar CS, Tronchere H, et al. Endosomal localization and func-tion of sorting nexin 1[J]. Proc Natl Acad Sci USA,2002,99(10): 6767-6772.
    33) Parks WT, Frank DB, Huff C, et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases[J], J Biol Chem,2001,276(22):19332-19339.
    34) Lundmark R, Carlsson SR. The β-appendages of the four adaptor-protein (AP) complexes:Structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2[J]. Biochem J,2002, 362(Pt3):597-607.
    1) Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular car-cinoma[J]. Clin Liver Dis,2005,9(2):191-211.
    2) Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics[J]. CA Cancer J Clin,2005,55(2):74-108.
    3) Llovet JM, Lok A. Hepatitis B virus genotype and mutants:risk factors for hepatocellular carcinoma[J]. J Natl Cancer Inst,2008,100(16): 1121-1123.
    4) Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst,2008,100(16):1134-1143.
    5) Raimondi S, Bruno S, Mondelli MU, et al. Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development:a meta-analysis[J]. J Hepatol,2009,50(6):1142-1154.
    6) Tanabe KK, Lemoine A, Finkelstein DM, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis[J]. JAMA,2008,299(1):53-60.
    7) Bruix J, Sherman M. Management of hepatocellular carcinoma[J]. Hepa-tology,2005,42(5):1208-1236.
    8) Kojiro M, Roskams T. Early hepatocellular carcinoma and dysplastic no-dules[J]. Semin. Liver Dis,2005,25(2):133-142.
    9) Villanueva A, Newell P, Chiang D, et al. Genomics and signaling pathways involved in the pathogenesis of HCC[J]. Sem Liv Dis,2007,27(1):55-76.
    10) Homayounfar K, Gunawan B, Cameron S, et al. Pattern of chromosomal aberrations in primary liver cancers identified by comparative genomic hybridization[J]. Hum Pathol,2009,40(6):834-842.
    11) Marchio A, Meddeb M, Pineau P, et al. Recurrent chromosomal abnor-malities in hepatocellular carcinoma detected by comparative genomic hybridization[J]. Genes Chromosomes Cancer,1997,18(1):59-65.
    12) Wong N, Lai P, Lee S, et al. Assessment of genetic changes in hepato-cellular carcinoma by comparative genomic hybridization analysis; Rela-tionship to disease stage, tumor size, and cirrhosis[J]. Am J Pathol,1999, 154(1):37-43.
    13) Zondervan PE, Wink J, Alers JC, et al. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma:analysis of 26 carcinomas and 12 concurrent dysplasias[J]. J Pathol,2000,192(2): 207-215.
    14) Sakakura C, Hagiwara A, Taniguchi H, et al. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infec-tion detected by comparative genomic hybridization[J]. Br J Cancer,1999, 80(12):2034-2039.
    15) Nishida N, Nishimura T, Ito T, et al. Chromosomal instability and human hepatocarcinogenesis[J]. Histol Histopathol,2003,18(3):897-909.
    16) Okabe H, Ikai I, Matsuo K, et al. Comprehensive allelotype study of he- patocellular carcinoma:potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and-negative tumors[J]. Hepatology,2000,31(5):1073-1079.
    17) Bruix J, Boix L, Sala M, et al. Focus on hepatocellular carcinoma[J]. Cancer Cell,2004,5(3):215-219.
    18) Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment[J]. Nat Rev Cancer,2006,6(9):674-687.
    19) Oda T, Tsuda H, Scarpa A, et al. p53 gene mutation spectrum in hepato-cellular carcinoma[J]. Cancer Res,1992,52(22):6358-6364.
    20) Terris B, Pineau P, Bregeaud L, et al. Close correlation between P-catenin gene alterations and nuclear accumulation of the protein in human hepa-tocellular carcinomas[J]. Oncogene,1999,18(47):6583-6588.
    21) Yu MW, Yang SY, Pan IJ, et al. Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma[J]. J Natl Cancer Inst,2003,95(19):1485-1488.
    22) Kirk GD, Turner PC, Gong Y, et al. Hepatocellular carcinoma and poly-morphisms in carcinogen-metabolizing and DNA repair en-zymes in a population with aflatoxin exposure and hepatitis B virus endemicity[J]. Cancer Epidemiol Biomarkers Prev,2005,14(2):373-379.
    23) Yuan JM, Lu SC, van den Berg D, et al. Genetic polymorphisms in the methylenetetrahydrofolate reductase and thymidylate synthase genes and risk of hepatocellular carcinoma[J]. Hepatology,2007,46(3): 749-758.
    24) Farazi PA, Glickman J, Jiang S, et al. Differential impact of telomere dys-function on initiation and progression of hepatocellular carcinoma[J]. Cancer Res,2003,63(16):5021-5027.
    25) Kondo Y, Kanai Y, Sakamoto M, et al. Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis-A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma[J]. Hepatology,2000,32(5): 970-979.
    26) Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. N Engl J Med,2006, 354(6):567-578.
    27) Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer[J]. N Engl J Med,2007,357(20): 2040-2048.
    28) Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant che- motherapy for operable HER2-positive breast cancer[J]. N Engl J Med, 2005,353(16):1673-1684.
    29) Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in pre-viously treated non-small-cell lung cancer[J]. N Engl J Med,2005,353(2): 123-132.
    30) Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer[J]. N Engl J Med,2006,355(26): 2733-2743.
    31) Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC[J]. Gastroenterology,2006,130(4): 1117-1128.
    32) Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma[J]. Oncogene,2006,25(27): 3787-3800.
    33) Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sora-fenib:a multikinase inhibitor for treating cancer[J]. Nat Rev Drug Discov, 2006,5(10):835-844.
    34) Takami T, Kaposi-Novak P, Uchida K, et al. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of Nnitrosodie-thylamine induced hepatocarcinogenesis[J]. Cancer Res,2007,67(20): 9844-9851.
    35) Osipo C, Miele L. Hedgehog signaling in hepatocellular carcinoma:novel therapeutic strategy targeting hedgehog signaling in HCC[J]. Cancer Biol Ther,2006,5(2):238-239.
    36) Schmitz KJ, Wohlschlaeger J, Lang H, et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carci-noma and ERK activation in cancer tissue is associated with hepatitis C virus infection[J]. J Hepatol,2008,48(1):83-90.
    37) Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma[J]. Gastroenterology,2008,135(6):1972-1983.
    38) Ashkenazi A, Herbst R. To kill a tumor cell:the potential of proapoptotic receptor agonist[J]. J Clin Invest,2008,118(6):1979-1990.
    39) Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarci-nogenesis[J]. Gastroenterology,2001,120(7):1763-1773.
    40) Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies[J]. Nat Rev Genet,2004,5(9):691-701.
    41) Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepato-cellular carcinoma[J]. N Engl J Med,2008,359(4):378-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700