泰山赤鳞鱼BMP11基因表达规律及分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泰山赤鳞鱼(Varicorhinus sp.),是泰山的一种珍贵野生鱼种,肉质分析结果显示泰山赤鳞鱼具有极高的营养价值和特殊的药用价值。为保护这一珍贵的野生鱼种,改良其种质资源,增加其产量,本文首先对泰山赤鳞鱼卵胚胎发育进程和特征进行了观察研究,结果发现泰山赤鳞鱼卵为沉性卵,稍呈粘性,呈橙黄色或淡黄色,未吸水的卵直径为1.65 mm~1.82 mm,吸水后卵径最大达2.38 mm~2.45 mm。在水温22.5℃~24.5℃的条件下,泰山赤鳞鱼卵历时46 h 50 min完成整个胚胎发育过程,经过了胚盘形成期、卵裂期、囊胚期、原肠期、神经胚期、器官形成期、孵化期7个主要阶段。初孵仔鱼全长6 mm~6.5 mm,肌节数为46~48,具心跳、血液循环、无色素。
     在此基础上克隆了泰山赤鳞鱼BMP11的cDNA序列,并研究了此基因在不同胚胎发育时期及不同组织中的表达状况。从泰山赤鳞鱼的cDNA中扩增出一条643bp的条带,与斑马鱼的BMP11序列同源性高达92.34%,证明了此基因在不同物种间有高度的保守性。选择了11个不同的胚胎发育时期研究BMP11基因的表达规律,结果表明:BMP11基因在原肠晚期开始表达,虽然表达量并不恒定,但是在整个胚胎发育期都有表达,证明这是一个胚胎发育的重要基因。另外,检测BMP11基因在三个年龄的鱼(1龄,2龄,5龄)不同组织中的表达规律。研究表明:不同的年龄阶段表达存在差异,但还存在一些共同的规律:在肌肉、鳃、卵巢、脑中表达量均较高;在脾脏、肾脏、肠中都比较低。
     为了确定泰山赤鳞鱼的分类地位,并研究泰山赤鳞鱼与本亚科其他鱼类的进化关系,本文克隆了cytb和D-loop全序列。结果表明cytb全序列为1140bp,没有插入和缺失,其中单态位点828个,多态位点312个,占整个序列的27.37%。碱基含量平均为T 27.3%、C 29.1%、A 29.1%、G 14.5%,T+A(56.4%)明显高于G+C(43.6%)。转换明显多于颠换Ts/Tv=4.6。基于cytb序列的聚类结果表明:四种聚类树上都可明显看出泰山赤鳞鱼和多鳞铲颌鱼聚在一起,二者为同种鱼。从聚类树还可看出所研究的鲃亚科鱼类共聚为5大支系,分别属于鲃亚科的五个属:突吻鱼属、光唇鱼属、倒刺鲃属、四须鲃属和金线鲃属。在突吻鱼属内泰山赤鳞鱼和多鳞铲颌鱼先聚在一起,然后和白甲鱼聚类,二者关系很近,远远没有达到亚属的分化水平。厚唇鱼和细身光唇鱼个体之间分别聚类后又聚在一起,明显属于同属鱼类;刺鲃和倒刺鲃也是分别聚类后又聚在一起,同属于倒刺鲃属的不同亚属;金线鲃属两个种聚在一起;宽头四须鲃单独为一类,这与5属鱼类的地理分布大致吻合。泰山赤鳞鱼与鲃亚科其他属的亲缘关系为:泰山赤鳞鱼与光唇鱼属的关系最近,其次是倒刺鲃属,与四须鲃属和金线鲃属的关系都较远。
     基于本文的研究结果,根据分子钟推断了泰山赤鳞鱼与鲃亚科其他鱼类的分化时间。金线鲃属和泰山赤鳞鱼关系最远(15.2%~16.5%),分化时间大约是三千二百万年前;其次是四须鲃属( 14.2%~15.0 %),分化时间大约在二千九百万年前;与倒刺鲃属的分化( 13.0%~14.6% )大约在二千八百万年前;光唇鱼属和泰山赤鳞鱼关系最近(10.7%~13.8%),分化时间大约在二千四百万年前。
     D-loop全序列约1024bp,在序列中有一个微卫星存在,因此个体间多态性主要是微卫星核心序列重复数不同造成的。变异位点11个,占整个序列的1.74%。碱基含量平均为T 32.4%、C 20.8%、A 33.6%、G 13.3%。转换稍高于颠换Ts/Tv=1.5。根据D-loop全序列分析了泰山赤鳞鱼和多鳞铲颌鱼个体之间的遗传距离为0%~0.5%,与泰山赤鳞鱼(0.1%~0.6%)和多鳞铲颌鱼(0%~0.5%)个体之间的距离几乎一样。而与作为外群的鲮鱼之间的距离分别为:20.3%~20.8%和20.2%~20.5%,也基本上是一样的。从四种聚类图上均可看出,泰山赤鳞鱼和多鳞铲颌鱼聚在一起,两类群之间没有任何分别。
     本文还利用5对多态性很好的微卫星引物进行扩增,然后进行聚丙烯酰胺凝胶电泳,利用软件分析了两个群体的基因频率、哈代-温伯格平衡、遗传距离和遗传相似性,发现泰山赤鳞鱼和多鳞铲颌鱼的多态性很差,都是非常纯合的群体。两个群体遗传距离非常小,为0.0113,而遗传相似性高达0.9887。
     因此,无论从核外mtDNA cytb、D-loop全序列分析,还是从核内DNA微卫星标记分析均可看出泰山赤鳞鱼和多鳞铲颌鱼聚在一起,二者没有分别。
The Varicorhinus sp. is a kind of precious and wild fish in mountain Tai, it’s meat have high nutritional value and special remedy value. In order to preserve this rare species, such as improving its germplasm resource and increasing its yield, we observed characteristics of Varicorhinus sp.embryos during the embryonic development process. We found that the eggs were sinkable, slightly sticky and with color of orange or yellowish. Before swelling, eggs were 1.65 mm~1.82 mm in diameter, and the diameter of swelled eggs were 2.38 mm~2.45 mm. Under 22.5℃~24.5℃of water, it took 46 hours and 50 minutes for the fertilized eggs to hatch. The embryonic development process could be divided into seven stages, including blastoderm formation, cell cleavage, blastula, gastrula, neural, organ forming and hatching stage. The total length of newly hatched larvae were 6 mm~6.5 mm and the myomeres were 46~48, and it had heartbeat and blood circulation, but no pigment in body.
     The sequence of BMP11 gene was cloned from Varicorhinus sp. cDNA, and its expression in different stages of embryonic development and of different tissues were examined. The Varicorhinus sp. BMP11 (643bp) has a sequence homology of 92.34% to zebrafish BMP11,which demonstrated the gene was highly conserved among different species. Eleven different stages of embryonic development were selected to study the expression regularity of BMP11, the result showed the gene was expressed during the whole stages of embryonic developing. Although its expression amount was not stable, it was an important gene for embryonic developing. In addition, the expression of BMP11 were different from ages, and the expressing quantities were more in muscles , gills, ovary and brain, less in spleen, kidney and intestines.
     To make sure the classification status of Varicorhinus sp. and the evolutionary relationship between Varicorhinus sp. and other fish species in the same Barbinae, we cloned mtDNA cytb and D-loop sequence. The results showed that there were 828 monophyletic sites and 312 polymorphic sites(27.37%) in the whole 1140 bp of Varicorhinus sp. cytb,without insertion and deletion. The results of homologous fragment analysis showed that the mean contents were T= 27.3%、C=29.1%、A=29.1% and G=14.5%, the content of (T+A) (56.4%) was significantly higher than that of (G+C)(43.6%). The times of transition were much higher than transversion, and the ratio between Transition and transversion was 4.6. Phylogenetic tree of cytb showed that the Varicorhinus sp. and Varicorhinus macrolepis clustered together, which demonstrated they were the same species. Based on the Phylogenetic tree of cytb,we obviously concluded that all of the fishes clustered to five branches, which belonged to five genus of Barbinae—Varossocheilus, Spinibarbus, Acrossocheilus, Barbodes and Sinocylocheilus. Firstly, Varicorhinus sp. and Varicorhinus macrolepis clustered together, then they were clustered with V.simus, which showed the relationships among them were closer than to the others. Species of A.elongatus and A.labiatus clustered firstly, then two subgenus clustered together. S.caldwelli and S.denticulatus belonged to the subgenus of Spinibarbus. The two species of Sinocylocheilus clustered together. B.laticeps was a group alone. The above results were in accord with their geographical distributions. The relationship between Varicorhinus sp. and the other genus as followed: the relationship between Varicorhinus sp. and Acrossocheilus was closest, next is Spinibarbus and Barbodes, and the relationship between Varicorhinus sp. and Sinocylocheilus was the farthest. According to the findings of this paper, we inferred the divergency time of Barbinae from the molecular evolution rate. The divergence of Sinocylocheilus (15.2%~16.5%) occurred about 32 Mya before, Barbodes(14.2%~15.0 %)occurred about 29 Mya before, Spinibarbus(13.0%~14.6%)occurred about 28 Mya before, and Acrossocheilu (10.7%~13.8%)occurred about 24 Mya before.
     The whole sequence of Varicorhinus sp. D-loop included 1024 bp, in which there was a microsatellite causing the polymorphism among individual, and there was 11 variation sites ( percentage 1.74%) in it. The homologous fragment analysis showed that the average content of T,C,A,G were 32.4%、20.8%、33.6%、13.3%, respectively, T+A content (66.0%)was higher than G+C(34.0%). Transition was higher lightly than transversion, and the ratio between Transition and transversion was 1.5. Based on the whole sequence of Varicorhinus sp. D-loop, we analyzed the genetic distance(0~0.5%) between Varicorhinus sp. and Varicorhinus macrolepis, which was same almostly to the genetic distance between individual of Varicorhinus sp. (0.1%~0.6%) and Varicorhinus macrolepis(0~0.5%). The genetic distance between the two species and Cirrhinus molitorella was same almostly (20.3%~20.8% and 20.2%~20.5%). Phylogenetic tree of D-loop also showed that the Varicorhinus sp. and Varicorhinus macrolepis clustered together. The results above demonstrated they were the same species.
     In addition,we also analyzed the gene frequency, Hardy– Weinberg equilibrium,genetic distance,genetic similarity of the two group using microsatellite marker. The result revealed the polymorphism of Varicorhinus sp. and Varicorhinus macrolepis was very poor,the genetic distance between two group was vey small (0.0113), and the genetic similarity was high (1.9887).
     So, we could conclude that Varicorhinus sp. and Varicorhinus macrolepis are one species by the sequence analysis of mtDNA cytb、D-loop and microsatellite marker.
引文
[1]曹祥荣,束峰钰,张锡然等.毛冠鹿与3种麋属动物的线粒体细胞色素b的系统进化析.动物学报,2002 ,48(1):44– 49.
    [2]程起群,韩金娣,王云龙等.凤鲚两群体线粒体细胞色素b基因片断多态性及进化特征.中国水产科学,2006,13(3):337-343.
    [3]陈善元,张仁东,李维贤等.六种鲃亚科鱼类线粒体细胞色素b基因序列分析.云南大学学报,2003,25(5): 453-457.
    [4]陈善元等.六种鲃亚科鱼类线粒体细胞色素b基因序列分析.云南大学学报2003,25(5):453-457.
    [5]陈宜瑜,曹文宣,郑慈英.珠江的鱼类区系及其动物地理区划的讨论.水生生物学报,1986,10(2):228-236.
    [6]陈礼强,吴青,郑曙明.云南光唇鱼的人工繁殖研究.淡水渔业,2006,36 (1): 43-45.
    [7]耿立英.猪BMP11基因的克隆、表达分析及染色体定位.山东农业大学硕士学位论文,2005.
    [8]胡文革,王金富,盛金良,段子渊,马润林.新疆三种雅罗鱼属鱼类mtDNA D-loop多态性及起源分化分析.遗传, 2003, 25(4): 414-418.
    [9]胡文革,段子渊,王金富,盛金良,马润林.新疆3种雅罗鱼线粒体DNA控制区序列的差异和系统进化关系.遗传学报, 2004, 31(9): 970-975.
    [10]公维华,宋憬愚,姜运良等.用微卫星标记分析泰山螭霖鱼的遗传多样性.山东农业大学学报,2004,35(3): 339-342.
    [11]何德奎,陈毅峰,陈宜瑜,陈自明.特化等级裂腹鱼的分子系统发育与青藏高原隆起.科学通报,2003,48(22):2355-2362.
    [12]何德奎,陈毅峰.高度特化等级裂腹鱼类分子系统发育与生物地理学.科学通报, 2007,52(3):303-312.
    [13]何舜平,刘焕章,陈宜瑜,中岛经夫,桑原雅之,钟杨.基于细胞色素b基因序列的鲤科鱼类系统发育研究(鱼纲:鲤形目).中国科学,2004,34(1):1-9.
    [14]孔庆鹏,罗静,黄顺友等.从线粒体细胞色素b探讨长臀鲃属三个种分类与进化的关系遗传.2000, 22(6):379-384.
    [15]李明德.鱼类分类学.海洋出版社,1998.
    [16]刘筠.中国养殖鱼类繁殖生理学.北京:农业出版社,1993.56-101.
    [17]刘焕章.鱼类线粒体DNA控制区的结构与进化:以鱼类为例.自然科学进展,2002, 12(3): 266-270.
    [18]柳爱莲,曹更生.斑马鱼早期胚胎发育形态学观察.河南大学学报,2004,32(2):50-53.
    [19]李全阳,岳永生,张庆朝.泰山赤鳞鱼脂肪酸组分分析及营养价值的初步评定.营养学报, 1994,(16):223-225.
    [20]楼允东.鱼类的孵化酶.动物学杂志,1965, 7 ( 3) : 97-101.
    [21]孟庆闻,苏锦祥,廖学祖.鱼类分类学.北京:中国农业出版社,1995.
    [22]孟庆闻,廖学祖,鱼类分类学.北京:中国农业出版社,1995.
    [23]彭作刚,何舜平,张耀光.细胞色素b基因序列变异与东亚鲿科鱼类系统发育.自然科学进展,2002,12(6):596-600.
    [24]苏敏,林丹军,尤永隆.黑脊倒刺鲃胚胎发育的观察.福建师范大学学报,2002,18(2):80-84.
    [25]孙玉华,王伟,刘思阳,何舜平等.中国胭脂鱼线粒体控制区遗传多样性分析.遗传学报, 2002, 29(9): 787-790.
    [26]唐安华,何学福.云南光唇鱼胚胎和胚后发育的初步观察.西南师范大学学报,1982(1):90-99.
    [27]唐琼英,杨秀平,刘焕章.刺鲃基于线粒体细胞色素b基因的生物地理学过程.水生生物学报2003,27(4):352-356.
    [28]伍献文.中国鲤科鱼类志(下卷).上海:上海人民出版社,1977.
    [29]王绪桢,何舜平,陈宜瑜.S7核糖体蛋白基因序列变异及其在低等鲤科鱼类中的系统发育意义.科学通报, 2002,47(14): 1089-1094.
    [30]王伟,何舜平,陈宜瑜.线粒体DNA D-loop序列变异与鳅鮀亚科鱼类系统发育.自然科学进展,2002,12(1): 33-36.
    [31]武云飞,吴翠珍.青藏高原鱼类.北京:科学出版社,1992.
    [32]肖春杰,李梅章,李维贤.金线鲃属两亚种mtDNA的序列变异.云南大学学报,1998,20(3):218-220.
    [33]熊天寿,陈明忠.中华倒刺鲃的人工繁殖和移养试验.淡水渔业,1988,(6):11-13.
    [34]谢恩义,何学福.瓣结鱼的胚胎发育.怀化师专学报,1998,17(2):33-37.
    [35]谢恩义,阳清发,何学福.瓣结鱼的胚胎及幼鱼发育.水产学报, 2002,26(2):115-121.
    [36]谢振宇,杜继曾,陈学群,WANG Yu-Xiang,Brent W Murray.线粒体控制区在鱼类种内遗传分化中的意义.遗传,2006, 28(3):362-368.
    [37]易祖盛,陈湘粦,王春等.倒刺鲃胚胎发育的研究.中国水产科学, 2004, 11 (1):65-69
    [38]严太明,何学福,贺吉盛.宽口光唇鱼胚胎发育的研究.水生生物学报,1999,23(6):636-640.
    [39]杨晓梅,侯立静,马跃等.泰山赤鳞鱼的胚胎发育和仔鱼发育.水产科学,2005, 24(11):13-16.
    [40]杨学干,王义权,周开亚.从细胞色素b基因序列探讨我国林蛙属动物的系统发生关系.动物学研究, 2001,22 (5):345 - 350.
    [41]岳永生,郑成尧.泰山赤鳞鱼.泰安新闻出版局,1990.
    [42]岳永生,李全阳,张庆朝.泰山赤鳞鱼肌肉品质的研究.山东农业大学学报,1994,(2):141-146.
    [43]杨金权,刘焕章.两种鲿科鱼类在长江和珠江流域Cytb基因序列变异性分析.水生生物学报,2003,27(3):253-257.
    [44]叶富良.鱼类学.北京:高等教育出版社,1990.
    [45]乐佩琦等.中国动物志硬骨鱼纲鲤形目(下卷).北京,科学出版社,2000.
    [46]欧阳建华,黄建安. PCR-SSCP技术的研究进展.上海畜牧兽医通讯, 2002, 4: 10-11.
    [47]张宇红. PCR-SSCP分析技术的研究进展及应用前景.中国优生与遗传杂志, 2002, 10 (5): 126-127.
    [48]张静,白俊杰,叶星等.盘丽鱼属鱼类线粒体DNA细胞色素b基因序列和亲缘关系分析.海洋渔业,2005,27(2):98-101.
    [49]周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探.动物学研究, 2001,22 (4):257-264.
    [50]周建峰,王忠卫,吴清江.鲤鱼三个亚种线粒体DNA ND5/6区段的PCR-RFLP分析及亚种间分子标记的确立.科学通报,2003,48(2):167-170.
    [51]张四明,吴清江,张亚平.从线粒体DNA控制区核苷酸序列论达式鲟、亚洲和北美洲匙吻鲟的分类地位.动物学报,2001,47(6):632-639.
    [52]张四明,吴清江,张亚平.中华鲟( Acipenser sinensis)及相关种类的mtDNA控制区串联重复列及其进化意义.中国生物化学与分子生物学报,2000, 16(4): 458-461.
    [53]张亚平.从DNA序列到物种树.动物学研究,1996,17(3):247-252.
    [54]张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究, 1992, 13(3): 289-298.
    [55]钟麟,李有广,张松涛等.家养鱼的生物学和人工繁殖.北京:科学出版社,1965.50-60.
    [56]郑冰蓉,张亚平.鲤属鱼类mtDNA控制区序列的变异性分析.水产学报, 2002, 26: 289-294.
    [57]郑冰蓉,张亚平,肖春杰,肖蘅,昝瑞光.洱海鲤属鱼类同域分化形成的分子遗传学证据.遗传学报, 2004, 31 (9): 976-982.
    [58] Arnold M L. Natural hybridization as an evolutionary process. Ann Rev EcolSpet, 1992, (23): 237-261.
    [59] Andersson O, Reissmann E, Ibanez C.F. Growth differentiation factor 11 signals through thetransformin growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep. 2006 .7, 831-837.
    [60] Arai R. A chromosome study on two cyprinid fishes, Acrn.ssocheilu.s labiatu.s and Pseudora.sbara pumila pumila, with notes on Eurasian cyprinids and their karyotypes. Bull Natn Sci Mus Tokyo, Ser A, 1982, (8): 131-152.
    [61] Arnold M L. Natural hybridization as an evolutionary process.AnnRevEcol Spet, 1992, 23: 237-261.
    [62] Avise J C, Arnold J, Ball R M, etal. Intraspecific phylogeography: the mitochondrial DNA brige between population genetics and systematics. Ann Rev Ecol Syst, 1987, 18: 489-522.
    [63] Avise J C, Saunders N C. Hybridization and introgression among species of sunfish ( Lepomis): analysis by mitochondrial DNA and allozyme markers. Genetics, 1984, 108(1): 237-252.
    [64] AVISE J C. Molecular markers, natural history and evolution [M]. New York: Chapman & Hall, 1994.14.
    [65] Bartlett S E, Davidson. W S. Identification of Thunnus Tuna species by the polymerase chain reaction and direct sequences analysis of their mitochondria Cytochrome b genes.Can. J. Fish. Aquat. Sci., 1991. 48: 309-317.
    [66]Ballesteros M., Leung KC, Ross RJ, et al. Distribution and abundance of messenger ribonucleic acid for growth hormone receptor isoforms in human tissues. J Clin Endocrinol Metab. 2000, 85(8): 2865-2871.
    [67] Beheregaray L B, Sunnucks P. Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Mol Ecol, 2001, 10(12): 2849-2866.
    [68] Behrmann-Godel J, Gerlach G, Eckmann R. Postglacial colonization shows evidence for sympatric population splitting of Eurasian perch (Perca fluviatilis) in Lake Constance.Molecular Ecology, 2004, 13(2): 491-497.
    [69] Berg L S. Faune de la Russie, etc. Poissons. St Petersb, Petrograd, 1912~1914, 3(1-2): 189-288.
    [70] Bessho K,Tagawa T,Murata M.Comparison of bone matrix-derived bone morphogenetic proteins from various animals. J Oral Maxillofac Surg, 1992, 50 (5) : 496-501.
    [71] BANFORD H M, BERMINGHAM E, COLLETTE B B, etal. Phylogenetic systematics of the Scomberomorus regalis (Teleostei: Scombridae) species group: molecules, morphology and biogeography of Spanish Mackerels. Copeia, 1999, 2999: 596-613.
    [72] Beheregaray L B, Sunnucks P. Fine-scale genetic structure,estuarine colonization and incipient speciation in the marine silverside fishOdontesthes argentinensis. Mol Ecol, 2001, 10(12):2849-2866.
    [73] Biga P.R, Roberts S.B, Iliev D.B, McCauley L.R, Moon J.S, Collodi P, Goetz F.W. The isolation, characterization, and expression of a second myostatin form in zebrafish, Danio rerio. Comparative Biochemistry and Physiology. Part B. 2005. 141, 218-230.
    [74] Billington N, Hebert P D N,Ward R D. 1988. Evidence of introgressive hybridization in the genus Stizostedion: interspecific transferof mitochondrial DNA between sauger and walleye. Can J Fish Aquat Sci, 1988, (45): 2035-2041.
    [75] Billington N, Hebert P D N. Mitochondrail DNA diversity in fishes and its implications for introductions . Can J Fish Aquat Sci , 1991 , 48 (sup. ) :80 - 94.
    [76] BIRSTEIN V J, DOUKAKI S P, DESALLE R. Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia, 2002, 2002: 287-301.
    [77] Berminghan E, Avise J C. Molecular zoogeography of freshwater fishes in the Southeastern United states. Genetics, 1986, 113(4): 939-965.
    [78] BERNARDI G, ROBERTSON D R, CLIFTON K E, etal. Molecular systematics,zoogeography, and evolu tionary ecology of the atlantic parrot fish genus Sparisoma [J]. Mol Phylogenet Evol, 2000, 15: 292- 300.
    [79] Bowen B W, Grant W S. Phylogeography of the sardines (Sardinops spp): Assessing biogeographic models and population histories in temperate upwelling zones. Evolution, 1997, 51: 1601-1610.
    [80] Briolay J, Galtier N, Brito R M, etal. Molecular phylogeny of cyprinidae inferred from cytochrome b DNA sequences . Mol Phylogenet Evol, 1998,9: 100-108.
    [81] CARR S M, KIVLICHAN D S, PEPIN P, et al. Molecular systematics of gadid fishes: implications for the biogeographic origins of pacific species. Can J Zool, 1999,77:19-26.
    [82] Cantatore P, Roberti, M. Pesole, G. et al. Evolutionary analysis of cytochrome b seqnce in some Perciformes: Evidence for a slower rate of evolution than in mammals. J. Mol. Evol. 1994. 39: 589-597.
    [83] Chenoweth S F, Hughes J M. Genetic population structure of the catadromous Perciform: Macquaria novemaculeata (Percichthyidae). Journal of Fish Biology, 1997, 50: 721-733.
    [84] Chow S, Kishino H. Phylogenetic relationships between tuna species of the genus Thunnus ( Scombridae: Teleostei) : Inconsistent implications from morphology, nuclear and mitochondrial genomes [J]. J Mol Evol, 1995,41:741-748.
    [85] Clements K D, Gray R D, Howard ChoatJ. Rapid evolutionary divergences in reef fishes of the family Acanthuridae ( Perciformes: Teleostei ). Mol Phylogenet Evol, 2003, 26(2): 190-201.
    [86] Consuegra S, Garciade Leaniz C,Serdio A, Gonzalez Morales M, Straus L G, Knox D, Verspoor E. Mitochondrial DNA variationin Pleistocene and modern Atlantic salmon from the Iberian glacial refugium. Mol Ecol, 2002, 11(10): 2037-2048.
    [87] Cronin A M, 1991. Mitochondrial DNA phylogeny of deer (Cervidae). J. Mamm1, 72 (3): 553-5661.
    [88] Cronin A M, 1993.Mitochondrial DNA in wildlife etaxonomy and conservation biology: Cautionary notes. Wildl. Soc. Bull. 21: 339-3431.
    [89] Dichmann D. S, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn. 2006. 235,3016-3025.
    [90] DOWLING T E, TIBBETS C A, MINCKLEY W L, et al. Evolutionary relationships of the plagopterins ( Teleostei: Cyprinidae) from cytochrome b sequences. Copeia, 2002, 2002: 665~678.
    [91] Dunn K A, McEachran J D, Honeycutt R L. Molecular phylogenetics of myliobatiformfishes (Chondrichthyes: Myliobatiformes ), with comments on the effects of missing data on parsimony and likelihood. Mol Phylogenet Evol, 2003, 27(2): 259-270.
    [92] DURAND J D, TSIGENOPOULOS C S, UNLU E, et al. Phylogeny and biogeography of the family cyprinidae in the middle east inferred from cytochrome b DNA– evolutionary significance of this region. Mol Phylogene Evol, 2002, 22: 91-100.
    [93] Durand J D, Tsigenopoulos C S, Unlu E, Berrebi P. Phylogeny and Biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA-evolutionary significance of this region. Mol Phylogenet Evol, 2002, 22(1): 91-100.
    [94] Esquela A. F and Lee S.J. Regulation of metanephric kidney development by growth /differentiation factor 11. Dev.Biol. 2003. 257,356-370.
    [95] Erlich H A. PCR Technology: Principles and Applications for DNA Amplification. New York: Stockton Press, 1989.
    [96] Falk T M, Teugels G G, Abban E K, Villwock W, Renwrantz L. Phylogeographic patterns in populations of the black-chinned tilapia complex ( Teleostei, Cichlidae) from coastal areas in West Africa: support for the refuge zone theory. Mol Phylogenet Evol, 2003, 27(1): 81-92.
    [97] Felsenstein J. 1981. Evolutionary trees From DNA sequences: a maximum likelihood approach. J. Mol. Evol.,l7: 368-376.
    [98] GARRIDO- RAMOS M A, HERRN R, JAMILENA R, etal. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the sparidae family (Pisces, Perciformes) . Mol Phylogenet Evol, 1999, 12:200-204.
    [99] Gamer, L. W., Wolfman, N. M., Celeste, A. J., Hattersley, G., Hewick, R., Rosen, V., A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev. Biol. 1999. 208, 222-232.
    [100] Gamer, L. W., Cox, K. A., Small,C., Rosen, V, Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb. Dev. Biol. 2001. 229, 407-420.
    [101] Gad J.M, Tam P.P. Axis development: the mouse becomes a dachshund. Curr Biol. 1999. 21, 783-786.
    [102] Geng, L.-Y.; Jiang, Y.-L.; Li, K.; Zhang, C.-S.; Fan, X.-Z.; Yue, Y.-S.,Radiation hybrid mapping of porcine bone morphogenetic protein 11 (BMP11) gene to pig chromosomes 5, Animal Genetics, 2005, 36(2): 185-186.
    [103] Grobstein, C., Inductive interactions in the development of the mouse metanephros. J.Exp. Zool.1955, 130,319-340.
    [104] Gronthos. S, Mankani, M, Brahim, J, Robey, P. G. and Shi, S, Postnatal human dental pulp stem cells(DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13625-13630.
    [105] Grunwald C, Stabile J, Waldman J R, Gross R, Wirgin I. population genetics of shortnose sturgeon Acipenser brevirostrum based onmitochondrial DNA control region sequences. Mol Ecol, 2002, 11(10): 1885-1898.
    [106] Guo X H, Liu S J, Liu Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture, 2003, 224(1-4): 25-38.
    [107] Harmon E.B, Apelqvist ?. A,Smart N. G, Gu X. Y, Osborne D.H, Kim S.K. GDF11 modulates NGN3+ islet progenitor cell number and promotesβ-cell differentiation in pancreas development. Development. 2004. 131, 6163-6174.
    [108] Hartmut R, Ian M, Mackie. Fish species identification in canned tuna by PCR-SSCP: validation by a collaborative study and investigation of intraspecies variability of the DNA patterns. Food Chemistry, 1999, 64: 263-268.
    [109] HAMILTON A. Phylogeny of Limia (Teleostei: Poeciliidae) based on NADH dehydrogenase subunit 2 sequences [J]. Mol Phylogenet Evol, 2001, 19: 277- 289.
    [110] Hoarau G, Holla S, Lescasse R, Stam W T, Olsen J L. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Mol Biol Evol, 2002, 19(12): 2261-2264.
    [111] Hogan B L Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev, 1996, 10(13): 1580-94.
    [112] Inoue J G, Miya M, Tsukamoto K, Nishida M. Basala ctinopterygian relationships: a mitogenomic perspective on the phylogeny of the“ancient fish”Mol Phylogenet Evol, 2003, 26(1): 110-120.
    [113] Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene in mammals J Mol Evol, 1991, 32: 128-144.
    [114] Ishiguro N B, Miya M, Nishida M .Basal euteleostean relationships: a Mitogenomic perspective on the phylogenetic reality of the“Protacanthopterygii”. Mol Phylogenet Evol, 2003,27(3): 476-488.
    [115] Johnson J B. Evolution after the flood: phylogeography of the desert fish Utah Chub.Evolution, 2002, 56 (5): 948-960.
    [116] KIM J. Improving the accuracy of phylogenetic estimation by combining different methods. Syst Biol, 1993, 42: 331-340.
    [117] Kim J, Wu H.H, Lander A.D, Lyons K.L, Matzuk M.M, Calof A.L. GDF11 controls the Timing of progenitor cell competemce in developing retina. Science. 2005. 308, 1927-1930.
    [118] KLETT V, MEYER A. What if anything is a Tilapi-a? Mitochondrial ND2 phylogeny of tilapiines and the evolution of parental care systems in the African cichlid fishes . Mol Biol Evol, 2002, 19: 865-883.
    [119] Kai Y, Nakayama K, Nakabo T. Genetic differences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. Mol Ecol, 2002, 11(12): 2591-2598.
    [120] Kishino H, Hasegawa M. 1989 Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Homonoidea. J. Mol. Evol.29: 70-179.
    [121] Kontula T, Kirilchik S V, Vainola R. Endemic diversification of the Monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. MolPhylogenet Evol, 2003, 27(1): 143-155.
    [122] Koskinen M T, Knizhin I, Primmer C R, Schlotterer C, Weiss S. Mitochondrial and nuclear DNA phylogeography of Thymallus spp ( grayling) provides evidence of ice-age mediated environmental perturbations in the world.s oldest body of fresh water, Lake Baikal. Mol Ecol ,2002, 11(12): 2599-2611.
    [123] Kotlik P, Berrebi P. Genetic subdivision and biogeography of the Danubian rhe ophilic barb Barbus petenyi inferred fromp hylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol, 2002, 24(1): 10-18.
    [124] KRIEGER J, FUERST P A,CAVENDER T M. Phylogenetic relationships of the North American sturgeons (order A cipenseriformes) based on mitochondrial DNA sequences. Mol Phylogenet Evol, 2000, 16:64-72.
    [125] Lee W J, Conroy J, Howell W H, KocherT D. Structure and evolution of teleost mitochondrial control regions.JMol Evol, 1995, 41(1): 54-66.
    [126] LIU H, TZENG C S, TENG H Y. Sequence variations in the mitochondrial DNA control region and their implications for the phylogeny of the Cypriniformes. Can J Zool, 2002,80(3):569-581.
    [127] Liu J. P. The function of growth/differentiation factor 11(Gdf11) in rostrocaudal patterning of the developing spinal cord. Development. 2006.133, 2865-2874.
    [128] Lussen A, Falk T M, Villwock W. Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNAanalysis.Mol Phylogenet Evol, 2003, 29(1): 151-160.
    [129] Lockhart P J, Penny D, Meyer A. Testing the phylogeny of swordtail fishes using decomposition and spectral analysis. J Mol Evol, 1995, 41(5): 666-674.
    [130] LOVEJOY N R, COLLETTE B B. Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia, 2001, 2001:324-338.
    [131] LIN Y S, POH Y P, TZENG C S. A phylogeny of freshwater eels inferred from mitochondrial genes. Mol Phylogenet Evol, 2001, 20: 252-261.
    [132] Lussen A, Falk T M, Villwock W. Phylogenetic patterns in populations of Chileanspecies of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis. Mol Phylogenet Evol, 2003, 29(1): 151-160.
    [133] LYDEARD C, ROE K J. The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among actinoptergian fishes. Kocher T D, Stepien S A. molecular systematics of Fishes. San Diego: Academic Press, 1997.
    [134] MACHORDOM A, DOADRIO I. Evidence of acenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogenet Evol, 2001, 18: 252-263.
    [135] Martin A P, Bermingham E. Systematics and evolution of lower central American cichlid inferred from analysis of cytochrome b gene sequences. Mol Phylogenet Evol, 1998, 9: 192-203.
    [136] Martini J F, Villares S M, Nagano M, et al. Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle. Endocrinology. 1995. 136(4): 1355-1360.
    [137] Mc Pherron, A. C., Lawler, A. M., Lee, S.-J., Regulation of skeletal muscle mass in mice by a new TGF-βsuperfamily member.Nature. 1997, 387, 83-90.
    [138] Mc Pherron, A. C.,Lawler, A. M., Lee, S.-J. , Regulation of anterior/posterior patterning of the axial skeleton by growth /differentiation factor 11. Nat. Genet. 1999. 22, 260-264.
    [139] Mcveigh H P, Davidson. W S. A salmonid phylogeny inferred from mitochondria) cytochrome b gene sequences. J Fish. Biol., 1991. 39 (supplement A): 277-282.
    [140] Meyer A., Kosher, T. D. basasibwaki P. et al. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondria) DNA sequence. Nature, 1990. 347: 550-553
    [141]Meyer A. Evolution of mitochondrial DNA in fishes. In: Biochemistry and molecular biology of fishes.Vol.2.P.W. Hochachka and P. Mommsen (eds) Elsevier Press,Amsterdam, The Netherlands. 1993, 1-38.
    [142] Miya M, Takeshima H, Endo H, Ishiguro N B, Inoue J G, Mukai T, Satoh T P, Yamaguchi M, Kawaguchi A, MabuchiK, Shirai S M, Nishida M. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol, 2003, 26(1): 121-138.
    [143] MORITA T. Molecular phylogenetic relationships of the deep-seafish genus Coryphaenoides (Gadiformes: Macrouridae) based on mitochondrial DNA. Mol Phylogenet Evol, 1999, 13:447-454.
    [144] Moritz C, Dowling T E, Brown W M. Evolution of animal mito-chondrial DNA relevance for population biology and systematics. Ann Rev Ecol Syst, 1987, 18: 269-289.
    [145] MURPHY W J, THOMERSON J E, COLLIER G E. Phylogeny of the Neotropical killifish family Rivulidae (Cyprinodontiformes, Aplocheiloidei) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol, 1999, 13: 289-301.
    [146] Murakami M, Matsuba C, Fujitani H. The maternal origins of the triploid ginbuna (Carassius auratus langsdorfi): phylogenetic relationships within the C.auratus taxa by partial mitochondrial D-loop sequencing.Genes Genet Syst, 2001, 76: 25-32.
    [147] Nakashima,M.,Nagasawa,H.,Yamada,Y.and Reddi,A.H.,Regulatory role of transforming growth factor-β,bone morphogenetic protein-2,and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells.Dev.Biol. 1994a, 162, 18-28.
    [148] Nakashima,M.,Toyono,T.,Akifumi,A.,Joyner,A.,Expression of growth /differentiation factor 11,a new member of the BMP/TGFβsuperfamily during mouse embryogenesis.Mech.Dev.1999.80,185-189.
    [149] Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth /differentiation factor 11. Hum Gene Ther. 2003. 14,591-597.
    [150] Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11).Hum Gene Ther. 2004 Nov; 15(11): 1045-53.
    [151] Near T J, Pesavento J J, Cheng C H. Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic ice-fishes ( Notothenioidei: Channichthyidae).Mol Phylogenet Evol, 2003, 28(1): 87-98.
    [152] NEI M, KUMER S. Molecular evolution and phylogenetics. Oxford: Oxford Univ Press, 2000.
    [153] Normark B B., Mccune, A. R Harrison.R G. Phylogenetic relationships of Neopterygian fishes, inferred from mit chondrial DNA sequences. Llol. Biol. Bvol., 1991. 8(6): 819-834.
    [154] ORRELL T M, CARPENTER K E, MUSICK J A, et al. Phylogenetic and biogeographic analysis of the sparidae (Perciformes: Percoidei) from cytochrome b sequences [J]. Copeia, 2002, 2002: 618~631.
    [155] Obermiller L E, Pfeiler E. Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol phylogenet Evol, 2003, 26(2): 202-214.
    [156] OAKLEY T H, PHILLIPS R B. Phylogeny of salmonine fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not siste rtaxa. Mol Phylogenet Evol, 1999, 11: 381 - 393.
    [157] O. Brien, Stephen J, Mayr E etal, 1991 . Bureaecratic mischife: Recognizing endangered species and subspecies. S cience, 251: 1187-11881.
    [158] Patricia Ducy, Gerard Karsenty, The family of bone morphogenetic proteins. Kideny Interational. 2000, 57, 2207-2214.
    [159] Paul S, Yeo C.Y, Lee Y, Schrewe H, Whitman M, Li E. Activin typeⅡA andⅡB receptors megiate Gdf11 signaling in axial vertebral patterning. Genes & Development. 2002, 16, 2749-2754.
    [160] Perdices A, Bermingham E, Montilla A, Doadrio I. Evolutionary history of the genus Rhamdia ( Teleostei: Pimelodidae) in Central America. Mol Phylogenet Evol, 2002, 25(1): 172-189.
    [161] Perdices A, Doadrio I, Economidis P S, Bohlen J, Banarescu P. Pleistocene effects on the European freshwater fish fauna: double origin of the cobitid genus Sabanejewia in the Danube basin ( Osteichthyes: Cobitidae) . Mol Phylogenet Evol, 2003, 26(2): 289-299.
    [162] PHILLIPS R B, MATSUOKA M P, KONO N I etal. Phylogenetic analysis of mitochondrial and nuclear sequences supports inclusion of Acantholingua ohridana in the genus Salmo. Copeia, 2000, 2000: 546-550.
    [163] Pondella D J, Craig M T, Franck J P. The phylogeny of Paralabrax (Perciformes:Serranidae) and allied taxa inferred from partial 16S and 12S mitochondrial ribosomal DNA sequences. Mol Phylogenet Evol, 2003, 29(1): 176-184.
    [164] PORTER B A, CAVENDER T M, FUERST P A. Molecular phylogeny of the snubnose darters, subgenus Ulocentra (genus Etheostoma, family Percidae). Mol Phylogenet Evol,2002,22:364-374.
    [165] PORTERFIELD J C, PAGEL M, NEAR T J. Phylogenetic relationships among fantail darters (Percidae: Etheostoma: Catonotus): total evidence analysis of morphological and molecular data. Copeia, 1999, 2999: 551-564.
    [166] QUATTRO J M, JONES W J, GRADY J M etal. Gene-gene concordance and the phylogenetic relationships among rare and widespread pygmy sunfishes (genusElassoma). Mol Phylogenet Evol, 2001, 18: 217-226.
    [167] Ovenden J R, Lloyd J, Newman S J. Spatial genetic subdivision between northern Australian and southeast Asian populations oPristipomoides multidens: a tropical marine reef fish species. Fisheries Research, 2002, 59: 57-69.
    [168] Ravaoarimanana I B, Tiedemann R. Molecular and cytogenetic evidence for cryptic speciation within a rare endemic Malagasy lemur, the Northern Sportive Lemur (Lepilemur septentrionalis). Molecular Phylogenetics and Evolution, 2004, 31: 440-448.
    [169] REED D L, DEGRAVELLE M J, CARPENTER K E. Molecular systematics of Selene (Perciformes: Carangidae) based on cytochrome b sequences . Mol Phylogenet Evol, 2001, 21: 468-475.
    [170] REED D L, CARPENTER K E, DEGRAVELLE M J. Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches . Mol Phylogenet Evol, 2002, 23: 513-524.
    [171] Ren M Q, Kuhn G, Wegner J, et al. Feeding daidzein to late pregnant sows influences the estrogen receptor beta and type 1 insulin-like growth factor receptor mRNA expression in newborn piglets. J. Endocrinol. 2001. 70(1): 129-135.
    [171] Rognon X, Guyomard R. Large extent of mitochondrial DNA transfer From Oreochromis aureus to O. niloticus in West Africa. Mol Ecol, 2003, 12(2): 435-445.
    [172] Saxen L, Barlow, P. W, Green, P. B., White, C. C., Organogenesis of the kidney . Cambridge University Press, Cambridge, 1987, Vol. 19.
    [173] Saitoh K, Miya M, Inoue J G, Ishiguro N B, Nishida M. Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography .J Mol Evol, 2003,56(4): 464-472.
    [174] Saitou N. M Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. 1987, 406-425.
    [175] Sanjur O I, Carmona J A, Doadrio I. Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecula rdata. Mol Phylogenet Evol, 2003, 29(1): 20-30.
    [176] Schmidt T R, Bielawski J P, Gold J R. Molecular phylogenetics and evolution of the cytochrome b gene in the cyprinid genus Lythrurus (Actinopterygii: Cypriniformes) . Copeia, 1998, 1: 14-22.
    [177] Smart N.G, Apelqvist A.A, Gu X.Y, Harmon E.B, Topper J.N, MacDonald R.J, Kim S.K. Conditional expression of Smad7 in Pancreaticβcells disrups TGF-βSingnaling and induces reversible diabetes mellitus. PLOS Biology. 2006, 4, 200-209.
    [178] Southern S O, Southern P J, Dizon A E. Molecular characterization of a cloned dolphin mitochondrial genome.J Mol Evol, 1988, 28(1-2): 32-40.
    [179] Strecker U, Bernatchez L, Wilkens H. Genetic divergence between cave and surface populations of Astyanax in Mexico ( Characidae, Teleostei) . Mol Ecol, 2003, 12(3): 699-710.
    [180] Stepien C A. Population genetic divergence and geographic patterns from DNA sequences: examples form marine and freshwater fishes.Amer Fish Soc Symp, 1995, 17: 263-287.
    [181] Thacker C E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). MolPhylogenet Evol, 2003, 26(3): 354-368.
    [182] Thesleff, I, Sharpe, P., Signalling networks regulating dental development. Mech. Dev. 1997, 67: 111-123.
    [183] TAKAHASHI H, GOTO A. Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control regionsequences . Mol Phylogenet Evol, 2001, 21:135-155.
    [184] Tamate H B, Tsuchiya T. Mitochondrial DNA polymorphism in subspecies of the Japanes esikadeer, Cervusnippon . J Heredity, 1995, (3): 211-2151.
    [185] Thomas W K. Beckenbach. A. T. Variation in salmonid mitochondrial DNA: evolutionary constrains and mechanisms of substitution. J. Mol. Evol, 1989, 29: 233-245
    [186] TRINGALI M D, BERT T M, SEYOUM S, etal. Molecular phylogenetics and ecological diversification of the transisthmian fish genus Centropomus (Perciformes: Centropomidae) .Mol Phylogenet Evol, 1999,13: 193-207.
    [187] TSIGENOPOULOS C S, BERREBI P. Molecular phylogeny of north Mediterranean fresh water barbs (genus barbus: cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications . Mol Phylogenet Evol, 2000, 14: 165-179.
    [188] Tsigenopoulos C S, Rab P, Naran D, Berrebi P. Multiple origins of polyploidy in the phylogeny of southern African barbs ( Cyprinidae) as inferred from mtDNA markers. Heredity, 2002, 88(6): 466-473.
    [189] Urist, M. R., Bone:formation by autoinduction.Science,1965,150:893.
    [190] Verheyen E, Salzburger W, Snoeks J, Meyer A. Origin of the superflock of cichlid fishes from lake Victoria, East Africa. Science, 2003, 300(5617): 325-329.
    [191] Verspoor E, Hammar J .Intropressive hybridization in fishes: the biochemical evidence. J Fish Biol, 1991, 39 ( Suppl. A): 309-334.
    [192] Watanabe K, Mori S, Nishida M. Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback,“hariyo”. ZoologSci, 2003, 20(2): 265-274.
    [193] Wang X, Liu H, He S, Chen Y. Sequence analysis of cytochrome b gene indicates that East Asian group of cyprinid subfamily Leuciscinae ( Teleostei: Cyprinidae) evolved independently. Progress in Natural Science, 2004, 14(2): 41-46.
    [194] WANG H Y, TSAI M P, DEAN J, et al. Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12SrRNA sequences. Mol Phylogenet Evol, 2001, 20: 390-408.
    [195] Wang J P, Lin H D, Huang S. Phylogeography of Varicorhinu barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes.Molecular Phylogenetics and Evolution, 2004, 31: 1143-1156.
    [196] WATERS J M, SARUWATAR I T, KOBAYASH I T etal. Phylogenetic placement of retropinnid fishes: data set incongruence can be reduced by using asymmetric character state transformation costs . Syst Boil, 2002, 51: 432-449.
    [197] Walberg M W, Clayton D A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA.Nu-cleic Acids Res, 1981, 9(20): 5411-5421.
    [198] WILEY E O, JOHNSON G D, DIMMICK W W. The phylogenetic relationships of lampridiform fishes (Teleostei: acanthomorpha), based on a total-evidence analysis of morphological and molecular data . Mol Phylogenet Evol, 1998, 10: 417-425.
    [199] Wilson A C, CannRL, Carr S M, etal. Mitochondrial DNA and two perspectives on evolutionary genetics . Biol J Linn Soc, 1985, 26: 375-400.
    [200] Wilson G M, Thomas, W. K Beckenbach. A. T. Intra-and inter-specific mitochondria) DNA sequences divergence in salmo: rainbow, steelhead, and cutthroat trouts. Can J Zool., 1985. 63: 2088-2094.
    [201] Wozney J M., Rosen V., Celeste A J., Mitsock, L M., Whitters, M. J., Kriz, R. W., Hewick, R. M., and Wang, E. M .Novel regulators of bone formation: molecular clones and activities. 1988, 242, 1528-1534.
    [202] Wu H H, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof ALAutoregulation of neurogenesis by GDF11. Neuron. 2003 Jan 23. 37(2), 197-207.
    [203] XIAO W, ZHANG Y, LIU H. Molecular systematics of Xenocyprinae (teleostei: cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia . Mol Phylogenet Evol, 2001, 18:163-173.
    [204] Yang X G, Wang Y Q , Zhou K Y, et al. The authentication of Oviductus Ranae and their original animals by using molecular marker. Bio Pharm Bull , 2002 , 25 (8) :1 035 - 1 039.
    [205] Zardoya R, Meyer A. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates.Genetics, 1996, 142(4): 1249-1263.
    [206] Zardoya R, Meyer A. The complete DNA sequence of the mitochondrial genome of a‘living fossil’, the coelacanth ( Latimeria chalumnae). Genetics, 1997, 146(3): 995-1010.
    [207] Zardoya R, Meyer A. Phylogenetic performance mitochondrial protein–coding genes in resolving relationship among vertebrates . Mo Biol Evol, 1996, 13: 933- 942.
    [208] Zhang X. H, Wharton W, Yuan Z G, Tsai S C, Olashaw N, Seto E. Activation of the Growth-Differentiation Factor 11 gene by the histone deacetylase(HDAC) inhibitor Trichostatin A and repression by HDAC3. Molecular and Cellular Biology. 2004. 24, 5106-5118.
    [209] Zhou J F, Wu Q J, Ye Y Z, Tong J G. Genetic divergence between cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasison origin of European domestic carp. Genetica, 2003, 119(1): 93-97.
    [210] Zardoya R, Meyer A. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterusdolloi) supports its phylogenetic position as a close relative of landvertebrates. Genetics, 1996, 142(4): 1249-1263.
    [211] Zuckerkandl E, L Panling 1965. Evolutionary divergence and convergence in proteins. In: V. Bryson and H J Vogel Evolving genes and proteins. New York: Academic Press, 97-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700