盐度对凡纳滨对虾的生理影响及其营养调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目结合水生动物养殖学、动物营养学、生物化学、分子生物学及组织学等研究手段,制定有限目标,较为系统和深入地研究不同养殖盐度下凡纳滨对虾基础营养生理学差异,并在此基础上从营养素(蛋白质和维生素)着手,研究了营养素对凡纳滨对虾生长速度和成活率提高方面的影响,探讨了营养素对凡纳滨对虾渗透调节的作用,初步阐明营养素对凡纳滨对虾渗透调节的调控机制,有针对性的对与凡纳滨对虾渗透调节相关的关键酶基因进性了定性和定量研究,研究成果不但可以为进一步了解甲壳动物渗透调节机理提供了一定的理论依据,也为进一步从分子生物学水平进行相关的研究建立了相关的检测平台,而且相关的营养学研究成果也为凡纳滨对虾的淡化养殖及相关的人工全价配饵提供更为准确的参考依据,具有十分重要的现实意义。
     1.盐度对凡纳滨对虾生长、体生化成份、呼吸及氨氮耐受性的影响
     在室内养殖条件下进行了凡纳滨对虾在高、中和低盐度下(分别为3.0、17.0和32.0‰)生长性能、成活率和体生化成分的研究,试验为期50天,期间投喂商用饲料,每个盐度设4个平行。结果表明,中盐度凡纳滨对虾增长率显著高于低盐度组,且低盐度组对虾成活率仅为70%左右,显著低于其它两处理组;然而,盐度对凡纳滨对虾肝体指数和肥满度却无显著影响。各盐度组凡纳滨对虾的体粗蛋白质和灰分含量无显著性差异,而对虾体水分含量却随盐度升高而升高,且高盐度组对虾的体粗脂肪含量显著低于其它两试验组。对不同盐度下凡纳滨对虾的呼吸率的研究发现,低盐度下对虾的耗氧率和吸收商显著高于中盐度和高盐度两试验组,而各盐度组对虾二氧化碳呼出率无显著性差异。此外,试验还研究了不同盐度下凡纳滨对虾对环境中氨氮耐受的差异,计算了低盐度下氨氮对凡纳滨对虾的半致死浓度,并与其它相关研究进行了比较。结果发现,低盐度下氨氮对凡纳滨对虾的半致死浓度(95%置信区间)为9.33(8.39-10.37)mg.l~(-1),显著低于其它报道的半致死浓度。另外,本试验也发现,凡纳滨对虾对环境中氨氮的耐受力随盐度的升高而增强。综合以上述研究结果,可以看出,虽然凡纳滨对虾属广盐性虾类,对环境盐度范围非常广,但在低盐度下该对虾的养殖尚存在着生长速度低、成活率低和抗逆性低的“三低”现象,因此,在凡纳滨对虾的低盐度养殖过程中除了满足凡纳滨对虾生长和渗透调节所需能量和营养物质之外,还应时刻监测对虾养殖环境中对对虾有害物质的动态变化。
     2.不同盐度下凡纳滨对虾抗氧化和消化酶活力、血蓝蛋白含量和肝胰腺组织学结构的比较
     在前期研究结果的基础上,进一步比较了三个不同盐度(分别为3.0、17.0和32.0‰)下驯养50d后的凡纳滨对虾消化酶和抗氧化相关酶活力、血蓝蛋白含量及肝腺胰组织学结构的差异,探讨了凡纳滨对虾对不同盐度的生理适应性。结果发现,盐度3.0‰对虾组胰蛋白酶活力显著高于其它两个盐度实验组,盐度17.0‰对虾组总的淀粉酶活力却显著低于盐度3.0‰对虾组。各实验组脂肪酶和纤维素酶活力虽无显著性差异,但相比盐度17.0‰对虾组组,两者在高、低盐度下会有一定程度的升高趋势。低盐度还导致对虾氧合血蓝蛋白含量及氧合血蓝蛋白/总蛋白比值显著升高,提示凡纳滨对虾可通过提高对自身消化酶活力、代谢率和携氧能力,尽量满足低盐度下的高能量需要。此外,结果还发现低盐度下凡纳滨对虾肌肉和肝胰腺组织的超氧化物歧化酶和过氧化氢酶活力显著高于盐度17.0‰对虾组,表明对虾机体抗氧化系统在长期处理低盐度应激下,已经开始启动用于最大程度地清除机体产生的自由基。相比盐度17.0‰对虾组,低盐度下凡纳滨对虾肝胰腺肝小体中分泌细胞(B细胞)数量增多,而高盐度下却表现出B细胞体积增大的趋势,在一定程度上佐证了对虾消化酶和抗氧化相关酶活力升高的现象,从组织学角度进一步证实了凡纳滨对虾对不同盐度的适应情况。
     3.盐度对凡纳滨对虾体组织蛋白质积累、氨基酸组成和转氨酶活性的影响
     研究了低、中和高三个盐度水平(分别为3‰、17‰和32‰)对凡纳滨对虾各组织蛋白质的积累、肌肉谷草转氨酶和谷丙转氨酶活力、肌肉总氨基酸和游离氨基酸组成和含量的影响。结果显示,经过50d不同盐度水平的试验,低盐度组对虾的肝胰腺和血淋巴中可溶性蛋白质含量显著高于中、高盐度组(P(0.05),而肌肉中可溶性蛋白质含量在各处理组间无显著性差异;低、高盐度均导致肌肉中谷丙转氨酶和谷草转氨酶活力升高,但是各处理间的差异不显著;低、高盐度组凡纳滨对虾肌肉总氨基酸和总必需氨基酸含量均显著高于中盐度组(P<0.05),中、低盐度处理组非必需氨基酸含量差异不显著,而低盐度组对虾肌肉中蛋氨酸、丝氨酸、半胱氨酸和脯氨酸含量均显著低于中盐度组(P<0.05),其中脯氨酸为常见的5种主要渗透调节氨基酸之一;低、高盐度组对虾肌肉总游离氨基酸含量显著高于中盐度组(P<0.05),而盐度对机体绝大部分肌肉游离氨基酸含量的影响不显著(P>0.05)。结果显示,当环境盐度偏离凡纳滨对虾最适生长盐度时,机体可通过在肝胰腺和血淋巴中积累蛋白质,及提高自身转氨酶活力,来获得机体在渗透调节供能时所需的氨基酸,而这些氨基酸以脯氨酸为主。
     4.不同盐度下饵料蛋白质含量对凡纳滨对虾生长、体成份和肝胰腺组织结构的影响
     设计了蛋白质含量为20.61、30.52、40.43和50.34%的四种饵料(分别为CP20、CP30、CP40和CP50),研究了饵料蛋白质含量对不同盐度下(分别为低盐度LS 2‰、中盐度MS22‰和高盐度HS32‰)凡纳滨对虾(0.0144±0.0047g)生长、成活及体成份的影响,测定了不同处理组对虾的肝胰腺指数(HIS)和肥满度(CF),试验为期8周。结果显示:(1)盐度对凡纳滨对虾的生长、成活、肥满度和灰分含量均有显著影响,而对肝体指数、体粗蛋白、体粗脂肪和水分无显著影响,中盐度组对虾各指标均最高,其次为高盐度组,低盐度组最低;中、高盐度组对虾的增重率、特殊体重(长)增长率均显著高于低盐度组对虾,而中、高盐度组对虾的各生长指标无显著差异;(2)饵料蛋白质含量对凡纳滨对虾的各生长指标和体粗蛋白含量影响显著,对其它各指标影响不显著。各盐度下,对虾生长和体粗蛋白含量均随饵料蛋白质含量升高而升高,投喂CP20的对虾组显著低于其它各处理组;肥满度和肝体指数均先随饵料蛋白质含量升高至40.43%而升高,然后稍有下降;饵料蛋白质含量对各盐度下对虾成活率影响均不显著。(3)双因素方差分析结果显示,盐度和饵料蛋白质含量,除对体灰分含量存着着显著的交互作用外,对其它体生化成份含量、生长及体形态指标的交互作用均不显著。(4)饲料蛋白质含量明显影响了凡纳滨对虾肝胰腺的组织结构,投喂CP30和CP40饵料的对虾肝小体基膜完整,投喂CP40对虾的肝小体中还出现了大量的存储细胞(R细胞);而投喂CP20饵料的对虾肝小体分布松散,R细胞数量较小,并且部分肝小体基膜破损;而投喂CP50饵料的对虾的肝小体排列紧密,且B细胞内出现大量内容物质。结果提示,提高饵料蛋白质含量虽然在一定程度上加快对虾的生长速度和增加肥满度,但是并不能提高低盐底下凡纳滨对虾的成活率。饲料中不适宜的蛋白质含量,尤其是含量过低,会导致对虾肝胰腺的结构发生变化,甚至发生不同程度的病理变化。
     5.盐度和饵料动植物蛋白比对凡纳滨对虾生长、成活和肝胰腺可溶性蛋白质含量的交互作用
     试验以鱼粉和大豆浓缩蛋白为蛋白源,配制了6种不同饵料动植物蛋白比的饵料,研究了饵料不同动植物蛋白比对凡纳滨对虾生长、成活和肝胰腺可溶性蛋白质含量的影响,试验为期40天。结果显示:1)饵料动植物蛋白比可显著影响凡纳滨对虾增重率、成活率、肝体指数、肥满度和肝胰腺可溶性蛋白质含量。增重率随饵料动植物蛋白升高而升高,但当饵料中动物性蛋白比至29/8时,增重速率不再明显升高,其它指标均先随饵料动植物蛋白升高至一定程度后,稍有下降;2)220‰盐度组对虾的增重率、成活率和肥满度显著高于3‰盐度组对虾,而肝体指数却显著低于3‰盐度组,且盐度对凡纳滨对虾肝胰腺可溶性蛋白含量的影响不显著;3)双因素方差分析结果显示,盐度和饵料动植物蛋白比对凡纳滨对虾增重率、成活率和肝体指数存在交互作用;4)Broken-Line模型分析结果显示,3‰盐度下凡纳滨对虾最适饵料蛋白比为分别29.12/7.79-30.29/6.71,盐度为22‰时为26.05/10.95-29.03/7.97。结果提示,由于不同蛋白源的氨基酸组成和含量不同,配饵中适当的动植物蛋白可以满足凡纳滨对各种氨基酸的适宜需求,且不同盐度下凡纳滨对虾对饵料中动植物蛋白比要求不同。因此,在养殖过程中,一定要结合实际的养殖环境和饵料蛋白源种类,来确定适合自身的饵料配方,才能达到低本高效的养殖目的。
     6.低盐度下凡纳滨对虾对饵料维生素B_6的营养需求
     研究了凡纳滨对虾对饵料中维生素B_6的最适需求含量。试验根据凡纳滨对虾的营养需求,以不含维生素的酪蛋白比为蛋白源配制成试验用基础饵料,在基础饵料中分别以0、35、70、105、140和200mg/kg饵料的比例添加维生素B_6配制成6种不同维生素B_6含量的试验用饵料,饵料中维生素B_6含量的实际测量值分别为2.17、32.43、65.79、96.97、137.13和189.56mg/kg饵料。用试验用饵料投喂体重为0.014±0.005g凡纳滨对虾幼虾,每一饵料组设3个平行,试验为期30天。结果表明,饵料中维生素B6含量可显著影响凡纳滨对虾的增重率、特殊体重和体长增长率、成活率和肥满度,而对于对虾的肝体指数却无显著影响。对虾增重率、特殊体重和体长增长率及肥满度均随饵料中维生素B_6含量升高而升高,但当饵料中维生素B_6含量升高到137.13mg/kg饵料后,各指标虽继续随饵料中维生B_6含量升高而提高,但各组之间无显著性差异。对虾成活率总体上是先随饵料中维生素B_6含量升高而升高,饵料中维生素B_6含量为137.13mg/kg时,成活率达到最大值,而当饵料中维生素B_6含量升高至189.56mg/kg饵料时,对虾成活率却稍有下降,但137.13和189.56rag/kg饵料两试验组的成活无显著差异。饵料中维生素B_6含量对凡纳滨对虾肌肉中谷草转氨酶和谷丙转氨酶活力影响显著,两转氨酶活力变化呈现相同的变化趋势,即先随饵料中维生素B_6含量升高而缓慢升高,而当饵料中维生素B_6含量从65.79mg/kg升高至96.97mg/kg时,对虾肌肉中转氨酶活力急速升高至最大值。之后,凡纳滨对虾肌肉中转氨酶活力却随着饵料中维生素B_6含量升高呈稍下降的趋势,但于96.97、137.13和189.56mg/kg三试验组之间无显著性差异,且均显著高于另外三试验组。采用Broken-line模型对凡纳滨对虾饵料中最适维生素B_6需求的分析结果范围为106.96-151.92 mg/kg饵料,平均值±标准差为129.94±18.86mg/kg饵料。
     7.低盐度下饵料中蛋白质和维生素B_6对凡纳滨对虾生长、成活和转氨酶活力交互作用
     研究了低盐度3.0‰下饵料中维生素B_6和蛋白质对凡纳滨对虾生长成活、体形态学参数及肌肉中转氨酶活力的交互作用。根据凡纳滨对虾的营养需求,以不含维生素的酪蛋白为蛋白源配制成蛋白质含量分别为25%和40%的两种等能试验用基础饵料,在基础饵料中分别以0和200mg/kg饵料的比例添加维生素B_6配制成4种不同试验用饵料。用试验用饵料投喂体重为0.014±0.005g凡纳滨对虾幼虾,每一饵料组设3个平行,试验为期30天。结果表明,饵料中添加维生素B_6可以显著提高凡纳滨对虾的增重率、成活率、肥满度及谷草和谷丙两转氨酶活力,但该饵料组对虾的肝体指数却显著低于不添加维生素B_6饵料组对虾;饵料蛋白质对凡纳滨对虾增重率、体形态学参数和转氨酶活力均不显著影响,但40%饵料组对虾成活率显著高于25%组对虾组;双因素方差分析结果显示饵料中维生素Be和蛋白质对低盐度下凡纳滨对虾各测定指标均无显著交互作用。结果提示,维生素B_6和蛋白质对低盐度下凡纳滨对虾具有不同的营养作用,配制饵料时应同时满足凡纳滨对虾对两者的营养需求量,只通过满足或者提高两者之一而节约另外一种营养素的方式,来获得凡纳滨对虾的最佳生长和成活率是不可行的。
     8.凡纳滨对虾谷氨酶脱氢基因的定性研究
     谷氨酸脱氢酶在甲壳动物游离氨基酸中,尤其是在脯氨酸和丙氨酸的合成代谢中扮演着十分重要的角色。由于脯氨酸和丙氨酸是甲壳动物常见的起渗透调节作用的游离氨基酸,因此谷氨酸脱氢酶在甲壳动物渗透调节中的作用应受到重视。本研究对凡纳滨对虾谷氨酸脱氢酶基因进行了定性的研究,结果发现凡纳滨对虾中存在两种谷氨酸脱氢酶基因,其编码的氨基酸的长度分别为474和552个氨基酸,两氨基酸序列中前461个氨基酸完全相同,从第462个氨基酸两者不同。与其它物种谷氨酸脱氢酶编码的氨基酸序列进行比较发现,凡纳滨对虾谷氨酸脱氢酶是一种相对保守的蛋白质,两种凡纳滨对虾谷氨酸脱氢酶氨基酸序列均与果蝇表现出较大的同源性。以不同物种cDNA序列建立的系统树,也可以得到较理想的系统进化物,在所有的选择的物种中,凡纳滨对虾与果蝇表现出较近的亲缘关系。通过比较凡纳滨对虾谷氨酸脱氢酶cDNA序列和基因全序列比较,发现在凡纳滨对虾两谷氨酸脱氢酶基因中均存在三个内含子,长别分别为202、333和256bp,且相位判断结果发现三个内含子均为0相位内含子。而与其它物种相比较,只有长度为256bp的第三个内含子在各物中均存在,提示内含子在研究系统进化中可能具有重要的作用。本文研究结果为以后凡纳滨对虾该基因的进一步定性和定量研究提供了基础资料。
     9.谷氨酸脱氢酶和Na~+-K~+ ATPase酶基因在凡纳滨对虾不同组织中的特异表达
     试验设计了用于定量研究凡纳滨对虾渗透调节两种主要相关酶,即谷氨酸脱氢酶和Na~+-K~+ ATPase酶的引物和实时定量PCR的反应程序,研究了两种基因在凡纳滨对虾不同组织中的特异性表达。结果表明:1)采用本试验设计的所有引物和反应程度均可成功的扩增出目的基因片段,且Na~+-K~+ ATPase酶和谷氨酸脱氢酶基因的表达均表现出组织特异性:2)Na~+-K~+ ATPase酶基因在凡纳滨对虾鳃组织中表达量显著高于其它4个组织的表达量,而该基因在对虾肌肉和上皮组织中的表达量次之,但显著高于肝胰腺和眼柄两组织中的表达量,该酶基因在肝胰腺和眼柄两组织中的表达量最低;3)谷氨酸脱氢酶基因A和基因B在凡纳滨对虾不同组织中的表达量稍有不同,但两者均在对虾肌肉组织中的表达量最高,且在肝胰腺组织中的表达量均最低,在其它3组织的表达量介于肌肉和肝胰腺两者之间;4)谷氨酸脱氢酶基因B与基因A两者表达量比值在凡纳滨对虾各组织之间虽然不显著性差异,但基因B的表达量却显著高于基因A在各组织的表达量,比值介于在眼柄中的32.04和肌肉中的64.52之间。结果提示,研究凡纳滨对虾渗透调节主要相关酶谷氨酸脱氢酶和Na~+-k~+ ATPase酶基因表达时,对虾肌肉和鳃是比较理想的研究靶点,肝胰腺与其它各组织相比则不适合作为研究该基因表达的靶组织。
     10.谷氨酸脱氢酶、Na~+-K~+ ATPase和淀粉酶基因在凡纳滨对虾不同发育阶段中的定量表达
     采用实时定量PCR技术研究了谷氨酸脱氢酶、Na~+-K~+ ATPase和淀粉酶基因在凡纳滨对虾不同发育阶段中的定量表达情况。结果发现,凡纳滨对虾两谷氨酸脱氢酶基因表达量均随着对虾的发育而呈现缓慢升高的趋势,但直到凡纳滨对虾发育到后期幼体后,两谷氨酸脱氢酶基因表达量才表现出显著的升高趋势。谷氨酸脱氢酶B与A基因表达量的比值在对虾卵中最高,但至无节幼体各阶段,两基因表达量的比值一直呈降低的趋势,而待对虾发育至潘状幼体时,比值开始稍有升高到一定水平,并在糠虾中保持较稳定的状态,但待对虾发育至后期幼体2时,比值稍有下降,而后又呈稍上升。Na~+-K~+ ATPase基因表达随着凡纳滨对虾的发育,一直保持在一个稳定的水平,直到对虾发育到后期幼体16,其表达量才急速升高。淀粉酶基因在凡纳滨对虾发育过程中的卵和无节幼体的表达量非常低,且虽然在溞状幼体中表达量稍有升高,但是表达量却依然保持在很低的水平,直到对虾发育到糠虾幼体,淀粉酶基因表达量才开始骤然升高。由于谷氨酸脱氢酶和Na~+-K~+ATPase均在凡纳滨对虾渗透调节过程中起着重要的作用,但两者基因表达量均在对虾发育阶段后期幼体的后期才有大幅度地升高,说明凡纳滨对虾只有发育到后期幼体后的某一个阶段,才开始具有较强的渗透调节能力。所以,在这一阶段之前的幼体培养过程中应该保持对虾幼体最适的盐度环境。而淀粉酶基因表达的变化规律说明凡纳滨对虾只有发育到糠虾阶段时,对外源食物的消化吸收能力才开始加强。因为结合两方面的试验结果,可以初步认为,如果想要通过营养强化的方式来提高对虾幼体的渗透调节能力,以期提高对虾在养成过程中的成活率,要待对虾发育至糠虾幼体阶段再开始进行营养调节为宜。
Pacific white shrimp,Litopenaeus vannamei,is a tropical species that has beenwidely cultured in extensive,intensive,and semi-intensive systems,and it has becomean attractive cultivar for inland saline water farming in many parts of the world including the United States,Thailand and China in these year.Therefore,research tounderstand the physiology and nutrition of this species in different ambient salinitiesis of very important role in the future inland low salinity culture.In the present study,the physiological statuses of L.vannamei at different ambient salinities were evaluatedsystematically,and the important roles of dietary protein and vitamin B_6 levels on growth and survival rate were also investigated.Besides,molecular biologytechniques were used to study qualitatively and quantitatively the som osmoreglationsrelated gene in L.vannamei.
     1.Growth,body composition,respiration and ambient ammonia nitrogentolerance of the juvenile white shrimp,Litopenaeus vannamei,at differentsalinities
     Trials were conducted in laboratory to investigate the growth performance,bodycomposition,respiration and ammonia-N tolerance of the white shrimp,Litopenaeusvannamei,at3.0,17.0 and 32.0‰,respectively.In the growth trial,40 juvenileshrimps were stocked into each tank with four replicates at each salinity,and were fedwith a commercial diet for 50 d.Shrimp weight gain at 17.0‰was the highest,andsignificantly higher than that of shrimps at 3‰.Shrimps survival rate at 3.0‰wassignificantly lower than that of other two groups.However,hepatosomatic index andcondition factor were not significantly affected by the ambient salinity.Shrimp bodyprotein and ash content were not affected significantly by salinity,while bodymoisture increased at high salinity,and crude lipid in shrimps was lowest at 32.0‰.After exposed to the above three salinities for 30 d prior to the test,shrimp oxygenconsumption and respiratory quotient of the shrimps at 3‰was significantly higherthan those of shrimps at medium and high salinities,while salinity did notsignificantly affect CO_2 production.When juvenile L.vannamei were exposed toseven ammonia-N concentrations(0,4.00,6.67,9.33,12.00,14.67,and 17.33 mg.l~(-1))at the three above salinities to which shrimps had been separately acclimated for 10 d at pH 8.30 and 29±0.5℃,shrimps at 3‰were the most susceptible to ambientammonia-N,and the 96 h LC50 with 95% confidence limit to ambient ammonia-Nwas 9.33(8.39-10.37)mg.l~(-1).This study suggests that L.vannamei could adapt to awide range of salinity,but the animals would be more susceptible to ammonia toxicityand spend more energy to compensate the cost for osmoregulation at low salinity.
     2. Comparison of digestive and antioxidant enzymes activities,haemolymphoxyhemocyanin contents and hepatopancreas histology of white shrimp,Litopenaeus vannamei,at various salinities
     Assessments on adaptation of Litopenaeus vannamei to three ambient salinities(3.0,17.0 and 32.0‰)were carried out with four replicates for 50 days Shrimpwere then sampled to measure digestive enzymes,superoxide dismutase(SOD),catalase(CAT)activities,haemolymph oxyhemocyanin content,and the histologicalstructure of hepatopancreas at each salinity.Trypsin activity at 3.0‰wassignificantly higher than that at 17.0 and 32.0‰,while total amylase activity at 17.0‰was lower than at 3.0‰.Cellulase and lipase activities were not significantly different across various salinities,though slight increases were observed at both 3.0and 32.0‰compared with 17.0‰.At 3.0‰,both haemolymph oxyhemocyanincontent and the ratio of oxyhemocyanin to heamolymph protein were enhanced.Inaddition,the SOD and CAT activities in the muscle and hepatopancreas at 3.0‰werehigher than those at 17.0‰.These results indicated that L.vannamei fed at a highlevel of nutrition,maintained metabolism and oxygen-carrying capacity to meet theirenergy requirement at low salinity.And low salinity had stimulated the production ofradicals for scavenging,and the activities increase of SOD and CAT for scavengingradicals insured the healthy status of L.vannamei in a certain degree.Besides,shrimpat 3.0‰produced more B cells in hepatopancreas tubules than at 17.0‰,while thevolume of B cells tended to increase at 32.0‰.The histological changes of thehepatopancreas tubules in concomitant with digestive and antioxidant enzymesprovide evidence on the mechanism of how L.vannamei can cope with salinitychange.
     3. Protein accumulation,amino acid profile and amino transferase activities ofthe white shrimp,Litopeneaus vannamei,at different salinities
     Experiments were conducted to investigate the protein accumulation of different tissues,muscle amino acid profile,Glatamic oxalacetic transferase(GOT)andGlutamat Pyruvat Transferase(GPT)activities of the white shrimp,Litopeneaus vannamei,reared at three ambient salinities which were 3.0‰,17.0‰and 32.0‰respectively for 50 days.The results showed that shrimps at 3.0‰had significantlyhigher soluble protein content of hepatopancreases and heamolymph than those atboth 17.0‰and 32.0‰,while no significant differences were observed in the shrimptissue of muscle among three treatments.Low salinity 3.0‰and high salinity 32‰led to the increasing of both GOT and GPT activities in muscle though withoutsignificant differences comparing with 17.0‰treatment.Shrimps at 3.0‰and 32.0‰had significant higher levels of total amino acids and total essential amino acids inmuscle than these at 17.0‰,and non essential amino acids in shrimps at 3.0‰and 17.0‰showed no obvious differences.However,the total muscle methionine,serine,cysteine and proline contents of shrimps at 3.0‰were significantly lower than theseat 17.0‰.Most muscle free amino acids were not different significantly among all thetreatments.Besides,as one of the five osmolyte amino acids,alanine of shrimps at3.0‰showed similar tendency as proline though no significant difference wasobserved when compared with shrimps at 17.0‰.All these results indicated thatunder stress of higher and lower salinity,the white shrimp ensured itself to havesufficient amino acids for energy supply in the osmoregulation by accumulatingprotein in the hepatopancreas and heamolymphs and increasing GOT and GPTactivities in muscle,and proline and alanine might be the main two among theseamino acids which play important roles in osmoregulation.
     4.Effects of dietary protein level on growth,survival,body composition andhepatopancreas histological structure of the white shrimp,Litopenaeus vannamei,at different ambient salinities
     An 8-week trial was conducted to investigate the effects of dietary protein level whichwere 20.61,30.52,40.43 and 50.34%(named CP20,CP30,CP40 and CP50 respectively)on the growth,survival,body composition of the white shrimp,Litopenaeus vannamei,at three ambient salinities which were 2‰,22‰and 32‰respectively.The results showed that ambient salinity had significant effects onshrimp growth,survival,conditional factor(CF)and body ash,while no significantdifferences were observed in the hepatosomatic index(HSI),body crude protein,lipid and moisture.Shrimps at 22‰were the highest in all the parameters followed by these at 32‰and 2‰.Weight gain,specific growth rate for both weight and bodylength of shrimps at 32‰and 22‰were significantly higher than those at 2‰,while no differences were found in shrimps at 32‰and 22‰.Dietary protein level onlysignificantly affected the growth performance,body crude protein,CF and HSI of theshrimps.Weight gain and the body crude protein content of shrimps increased withthe increasing of dietary protein level,and shrimps fed with CP20 showed significantlower growth performance and body crude protein.CF and HSI increased firstly withthe dietary protein level increasing to CP40,and then decreased slightly when fedwith CP50.Dietary protein level had no effect on the survival shrimp at all theambient salinities.Ambient salinity and dietary protein level only had significantinteraction on the body ash content,while no significant interaction effects wereobserved in other parameters.Tubules of shrimp fed with CP30 and CP40 had thenormal structure,though CP40 increased the number of R cells.Tubules of shrimpsfed with CP20 had relatively fewer R cells and arranged incompactly.And the basalmembranes of partial tubules were in disrepair.While tubules of shrimps fed withCP50 compactly arranged with much ambiguous materials in B cells.The resultsindicated that though the growth performance and conditional factor could beincreased by increasing dietary protein level,low survival rate at low salinity did notenhanced.And improper content of dietary protein,especially extremely lower dietaryprotein,would results in pathological changes of the hepatopancreans' histologicalstructure.
     5.Factorial effect of salinity and dietary animal to plant protein on growth andsurvival in juvenile white shrimp,Litopenaeus vannamei
     The factorial effects of ambient salinity(3.0 and 22.0 ppt)and plant to animalprotein ratio(0/38,7/30,14/23,21/16,29/8 and 36/0 approximately)on growth andsurvival of juvenile white shrimp,Litopeneaus vannamei were investigated.Theresults showed that dietary animal to plant protein had significant effects on theshrimp weight gain,hepatosomatic index,conditional factor,survival rate and thehepatopancreas soluble protein.Weight gain increased with the dietary animal to plantprotein ratio increased,while for other index measured,they exhibited the tendency ofincreased first with the dietary animal to plant protein ratio increasing,and thendecreased.Increasing salinity significantly increased the weight gain,survival and theconditional factor,and significantly decreased the hepatosomatic index,while no significant differences of salinity were observed in the hepatosomatic index of theshrimps.Shrimp weight gain,survival and hepatosomatic index were significantlyeffected by the interaction between ambient salinity and dietary animal to plant protein ratio,while shrimp conditional factor and the hepatopancreas were not significantly affected by the interaction between ambient salinity and dietary animal to plant protein ratio.The broken-line model analysis showed that the optimal dietary animal to plant protein content in the diets for the white shrimps at 3.0 and 22.0 ppt ranged from 29.12/7.79 to 30.29/6.71 and from 26.05/10.95 to 29.03/7.97 approximately.
     6.Dietary vitamin B_6 requirement of Pacific white shrimp,Litopenaeusvannamei,at low salinity
     A feeding trial was conducted to determine the adequate level of dietary vitamin B_6(pyridoxine,PN)for juvenile Pacific white shrimp,Litopenaeus vannamei.Purifiedbasal diets were formulated using vitamin-free casein as the protein source.Gradedlevels(0,35,70,105,140 and 200 mg PN/kg diet)of PN were added to the basal dietwhich upon analyzed contained 2.17,32.43,65.79,96.97,137.13 and 189.56 mg/kgdiet,respectively.Each diet was fed to three replicate groups of shrimp(mean weight)for 30 days.Results showed that dietary vitamin B_6 significantly affected the weightgain,special growth rate,survival rate and conditional factor of L.vannamei),whileno significant differences were observed in the HIS of shrimp.Shrimp weight gainand specific growth rate and conditional factor increased significantly with theincrease of dietary vitamin B_6 content.But when the dietary vitamin B_6 contentincreased to 137.13 mg/kg diet,increase of dietary vitamin B_6 content slightlyincreased the growth rate,but no significant differences were observed.Overall,shrimp survival rate increased firstly with dietary vitamin B_6 increase to 137.13 mg/kgdiet,and then slightly decreased when dietary vitamin B_6 content increased to 189.56mg/kg diet,glatamic oxalacetic transferase(GOT)and glutamat Pyruvat Transferase(GPT)activities showed the same tendency which were increased first with theincrease of dietary vitamin B_6 content to 96.97 mg/kg diet,and then the activitiesdecreased slightly when dietary vitamin B_6 content continue increased,but nosignificant differences were observed in both GOT and GPT activeties of shrimp fedvitamin B_6 content of 96.97,137.13 and 189.56 mg/kg diets.Weight gain,specificgrowth rate for both weight and length,conditional factor and amino transferase activities of shrimp analyzed by broken-line regression indicated that the dietaryvitamin B_6 requirement of L.vannamei ranged from 106.96 to 151.92 mg/kg diet,andthe mean±standard deviation is 129.94±18.86mg/kg.
     7. Interaction of dietary vitamin B_6 and protein on growth,survival and aminotransferase activities of Pacific white shrimp,Litopenaeus vannantei,at lowsalinity
     A feeding trial was conducted to study of the interaction of dietary vitamin B_6(pyridoxine,PN)and protein on growth,survival,morphological parameters andamino transferase activities of juvenile Pacific white shrimp,Litopenaeus vannamei.Purified basal diets were formulated using vitamin-free casein as the protein source.Graded levels(0 and 200 mg PN/kg diet)of PN were added to the two basal dietswhich contain 25.50 and 40.80% dietary protein,respectively.Each diet was fed tothree replicate groups of shrimp(mean weight 0.014±0.005g)for 30 days.Resultsshowed that supplementation of vitamin B_6 in diets significantly increased weight gain,special growth rate,survival rate,conditional factor and both GOT and GPT activitiesof L.vannamei,while significantly decreased thee HIS of L.vannamei.Shrimp growth,morphological parameters and transferase activities of L.vannamei fed dietscontaining 25% and 40% dietary protein had no significantly differences,and onlysurvival rate was significantly by increasing dietary protein level from 25% to 40%.Significant interaction between dietary protein and vitamin B_6 was not observed in allparameters tested in L.vannamei in present study.Results in present study indicatedthat dietary vitamin B_6 and protein had different nutritional effect in L.vannamei,andwhen preparing diets for L.vannamei cultured at low salinity,dietary vitamin B-6 andprotein must meet the requirement of L.vannamei at the same time.And it is notfeasible to try to meet and increase one of these two nutrients to get the maximumgrowth and survival rate of L.vannamei with the aim to save the other nutrient.
     8. Characterization of the glutamate dehydrogenase gene in pacific whiteshrimp,Litopenaeus vannamei
     Glutamate dehydrogenase(GDH)plays a key role in the metabolism of freeamino acid in crustaceans.Glutamate synthesized by GDH via reductive amination isthe amino group donor for alanine synthesis and the precursor required for prolinesynthesis.Since both proline and alanine are important intracellular osmolytes in many marine invertebrates,GDH has been widely implicated as playing a central rolein response to hyperosmotic stress in these animals.In the current study,two GDH genes were obtained,and named GDH A and GDH B which encode 474 and 552 amino acids respectively.The alignment of the two GDH A amino acid sequenceswith other those of other species showed that the difference of the GDH A and Bstarted only at the 462 th amino acids,and both GDH A and B were all fairyconserved protein.Besides,three exact phase-0 introns were found in both GDH Aand B which were 202,333 and 256 bp respectively.And as a control,a phylogenetictree was constructed with the cDNA of the two GDHs of L.vannamei and otherspecies,and the results showed that the two L.vannamei GDHs fall into the expectedposition with the sequences of other arthropod based on organism phylogen,showedclosed evolutional relationship with D.melanogaster and B.mori of Arthropoda.Thisis the first time that two different GDH genes have been identified from a crustacean.Results of the present study would provide basic knowledge for future quantitativeand qualitative study of this gene in L.vannamei and other species of crustacean.
     9.Tissue expression of Na+-K+ ATPase and two glutamate dehydrogenasegenes in pacific white shrimp,Litopenaeus vannamei
     A semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR)assay was developed to estimate the tissue specific expressions of Na~+-K~+ ATPase andtwo glutamate dehydrogenase(GDH)genes in five different tissues of pacific whiteshrimp,Litopenaeus vannamei.The results showed that primers designed and reactioncondition in the present study for Na~+-K~+ ATPase and GDH genes were feasible,andcould be used in the future study.The expressions of all test genes were tissue specific.Na~+-K~+ATPase was mainly expressed in shrimp gill,and both GDH A and B weremainly expressed in shrimp muscle,while expression of all test genes in shrimphepatopancreas were the lowest when compared with that in other tissues.Beside,though no significant difference was observed in the ratio of GDH B to Atranscription between all the test tissues,the ratio of GDH B to A transcription keptvery high which ranged 32.04 in eye stalk to 64.52 in muscle indicating that GDH Bwas the dominated gene for GDH activity in L.vannamei.All these results in thepresent study indicated that shrimp muscle and gill but not hepatopancreas were themost suitable site to study the gene expression of Na~+-K~+ ATPase and GDH inL.vannamei.The results in the present study provide baseline data of physiological expressions for Na~+-K~+ ATPase and GDH genes which relates to osmoregulation of L.vannamei and a guideline of tissue or organ sampling for effective gene expressionanalyses for future related studies.
     10.Ontogenetic changes in two glutamate dehydrogenase,Na+-K+ ATPase andamylase gene expression of thepacific white shrimp,Litopenaeus vannamei
     Quantitative polymerase chain reaction(qPCR)was used to study the geneexpressions of the two glutamate dehydrogenase,Na~+-K~+ ATPase and amylase ofL.vannamei at different developmental stages.The results showed that both GDH Aand GDH B transcripts relative toβ-actin transcripts tended to increase from stage ofegg to postlarvae steadily,and a sharp increase at the stage of postlarvae was observed.Ratio of GDH B to GDH A transcripts was first decreased from stage of egg to thestage of nauplii,and then increase at the stage of zoea,and kept relatively constant inmysis,and then decreased lightly to the stage of postlarvae 2,and then there wasanother increase with the development of L.vannamei.Na~+-K~+ ATPase geneexpression kept relatively constant in egg,nauplii,zoea,mysisi and even in thepostlarvae 10.But there was a sharp increase in postlarvae 16 at which the amount ofNa~+-K~+ ATPase relative toP-actin transcripts was several times higher than those atother developmental stages.Amylase gene expression of L.vannamei in egg,nauplii,and zoea were very low,and it began to increase sharply only at the stage of mysis.Results of GDH and Na+-K+ ATPase gene expression in this study indicated thatL.vannamei larvae had no strong osmoregulation capacity until it developed to thestage of later postlarvae,while the amylase gene expression change in this study thatL.vannamei larvae could only digest and utilize food efficiently when it developed tothe stage of mysis.Therefore,if we want to modulate the osmoregulation capacityfrom the L.vannamei larvae on by some nutritional methods,the best time fornutritional modulation is when the shrimp develop to the stage of mysis at least.
引文
Barra,J.A.,Péqueux,A.,Humber,W.,1983.A morphological study on gills of crab acclimated tofreshwater.Tissue and Cell,15,583-596.
    
    Bianchini,A.,1990.Effets du mercure sur l'osmoregulation chez les crustaces decapods.-Ph.D.thesis,University of Liege,Liege,Belgium.Pp,l-146.
    
    Brand,G..W.,Bayly,I.A.E.,1971.Acomparative study of osmotic regulateon in four species ofcalanoid copepods.Comparative Biochemistry and Physiology,388,361-371.
    
    Bray,W.A.,Lawrence,A.L.,Leung-Trujillo,J.R.1994.The effect of salinity on growth andsurvival of Penaeus vannamei,with observations on the interaction of IHHN virus andsalinity.Aquaculture,122(2-3),pp.133-146.
    
    Caldwell,R.S.,1974.Osmotic and ionic regulateon in decapod Crustacea exposed tomethoxychlor.In:Vernberg,F.J.,and Vernberg,W.,eds.,Pollution and physicalogy andmarine organisms.Pp,197-223.Academic Press,New York.
    
    Charmantier,G.,1986.Variation des capacityes osmoregulatrices au cours du development postembryonnaire de penaeus japonicaus Bate,1988(Crustacea,Decapoda).Comptes Rendus desSeances de L'Academie des Sciences,Paris 303,217-222.
    
    Charmantier,G.,Aiken,D.E.,1987.Osmotic regulation in late embryos and prelarvae of theamerican lobster Homarus americanus.Journal of Experimental Marine Biology and Ecology,109,101-108.
    
    Charmantier,G.,Charmantier-Daures,M.,1991.Ontogeny of osmoregulation and Salinitytolerance in Caner irroratus:element of compareison with C.Borealis(Crustacea,Dacapoda).Biological Bulletin,180,125-134.
    
    Charmantier,G.,Charmantier-Daures,M.,bouaricha,N.,Thuet,P.,Aiken D.E.,Trilles,J.P.,1988.Ontogeny of osmoregulation and Salinity tolerance in two decapod crustaceans :Homarusamericanus and Penaeus japonicus.Biological Bulletin 175,102-110.
    
    Cheng,K.-M.,Hu,C.-Q.,Liu,Y.-N.,Zheng,S.-X.,Qi,X.-J.2005.Dietary magnesium requirementand physiological responses of marine shrimp Litopenaeus vannamei reared in low salinitywater.Aquaculture Nutrition,11(5),pp.385-393.
    
    Cheng,K.-M.,Hu,C.-Q.,Liu,Y.-N.,Zheng,S.-X.,Qi,X.-J.2006.Effects of dietary calcium,phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization ofLitopenaeus vannamei reared in low-salinity water.Aquaculture,251(4),pp.472-483.
    
    Dalla via,G.J.,1989.The effect of Salinity on free amino acids in the prawn Palaemon elegans(Rathke).Arch Hydrobiol,115,125-135.
    
    Davis,D.A.,Boyd,C.E.,Rouse,D.B.,Saoud,I.P.2005.Effects of potassium,magnesium and ageon growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity wellwaters in West AlabamaJournal of the World Aquaculture Society,36(3),pp.416-419.
    
    Dehnel,P.A.,1966.Chloride regulateon in the crab Hemigrapsus nudus.Physiological zoology,39,259-265.
    
    Diamond,D.W.,Scott,L.K.,Forward,R.,Kiby-Smith,W.,1989.Respiration and osmoregulationof the estuaryine crab Rhithropanopeus harrisii(Gould):effects of the herbicide,Alachlor.Comparative Biochemistry and Physiology,93A,313,-318.
    
    Díaz,F.,Farfán,C,Sierra,E.,Re,A.D.2001.Effects of temperature and salinity fluctuation on theammonium excretion and osmoregulation of juveniles of Penaeus Vannamei,Boone.Marineand Freshwater Behaviour and Physiology,34(2),pp.93-104.
    
    Duarte,CE.,Romero,G.C.,1985.Ionic and osmotic regulateon injuvenile brown shrimp PenaeusBrasiliensis Latreille(Crustacea,Decapoda,Penaeidae).Boletin del instituteo Oceanografico,Univresidad de oriente,24,3-10.
    
    Farmer,L.,1980.Evidence for hyporegulation in the calanoid copepod Acartia tonsa.ComparativeBiochemistry and Physiology,65A,359-362.
    
    Felder,J.M.,Felder,D.L.,Hand,S.C.,1986.Ontogeny of osmoregulation in the estuarine ghostshrimp Callianassa jamaicense var.lousianensis Schmitt.Journal of Experimental MarineBiology and Ecology,99,912-1006.
    
    Foster,C.A.,Howse,H.D.,1978.A morphologyical study on gills of the brown shrimp,PenaeusAztecus.Tissue and Cell,10,77-92.
    
    Geddes,M.C.,1973.Salinity tolerance and osmotic and ionic regulateon in Branchinellaaustraliensis and B.compacta(Crustacean:Anostraca).Comparative Biochemistry andPhysiology,45A,559-569.
    
    Geddes,M.G.,1975.Studies on an Australian brine shrimp Parartemia zietziana Sayce(Crustacea,Anostraca).I.Salinity tolerance.Comparative Biochemistry and Physiology,51A,553-559.
    
    Gilles,R.,Pequeux,A.,1983.Interactions of chem.ical and osmotic regulateon with theenvironment.In:Bliss,D.E.,Ed,The biology of Crustacean.Vernberg,F.,Vernberg,W.B.,Vol,8:Environmental adaptation,pp,109-177.Academic Press,New York.
    
    Gilles,R.,1975.Mechanisms of ion and osmoregulation.In:Kinne,O.,ed.,Marine Ecology.Vol.2Part Ⅰ.pp259-347.Wiley interscience ,New York.
    
    Gomez-Jimenez,S.,Urias-Reyes,A.A.,Vazquez-Ortiz,F.,Hernandez-Watanabe,G.2004.Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvaeduring sudden salinity changes.Aquaculture,233(1-4),pp.573-581.
    
    Gross,A.,Abutbul,S.,Zilberg,D.2004.Acute and chronic effects of nitrite on white shrimp,Litopenaeus vannamei,cultured in low-salinity brackish water.Journal of the WorldAquaculture Society,35(3),pp.315-321.
    
    Gross,W.J.1957.An analysis of response to osmotic stress in selected decapod Crustacean.Biological Bulletin,112,43-62.
    
    Harris,R.R.,Coley,S.,1991.The effects of nitrite on chloride regulation in the crayfishPacifastacus leniusculus(Dana)(Crustacea,Decapoda).Journal of Comparative Physiology,161B,199-206.
    
    Huong,D.T.T.,Yang,W.J.,Okuno,A.,et al.,2001.Changes in free amino acids in the hemolyphof giant freshwater prawn Macrobrachium Rosenbergii exposed to varyingSalinities:relationship to osmoregulatory ability.Comp Biochem Physiol,128,317-326.
    
    Jiang,D.-H.,Lawrence,A.L.,Neill,W.H.,Gong,H.2000.Effects of temperature and salinity onnitrogenous excretion by Litopenaeus vannamei juveniles.Journal of Experimental MarineBiology and Ecology,253(2),pp.193-209.
    
    Johnson,I.T.,Jones,MB.,1990.Effect of zinc on osmoregulation of Gammarus duebeni(Crustacea:Amphipoda)from the estuary and the sewage treatment works at Looe,Cornwall.Ophelia,31,187-196.
    
    KamemotO,F.I.,Tullis,R.E.,1972.Hydromineral regulation in decapod Crustacea.Gerneral andComparative Endocrinology,3,299-307.
    
    Koch,H.J.,1954.Cholinesterase and active transport of sodium chloride through the isolated gillsof the crab Eriocheir sinensis.In:Kitching I.A.,ed.,Recent developments in cell physiology.Pp,15-27.Butterworths,London,England.
    
    Krogh,A.,1939.Osmotic regulation in aquatic animals.Cambridge University Press,Cambridge,England,Pp,1-242.
    
    Laramore,S.,Laramore,C.R.,Scarpa,J.2001.Effect of low salinity on growth and survival ofpostlarvae and juvenile Litopenaeus vannamei.Journal of the World Aquaculture Society,32(4),pp.385-392.
    
    Li,E.C.,Chen,L.Q.,Zeng,C,Chen,X.M.,Yu,N.,Lai,Q.M.,Qin,J.G.,2007.Growth,bodycomposition,respiration and ambient ammonia nitrogen tolerance of the juvenile whiteshrimp,Litopenaeus vannamei,at different Salinities.Aquaculture 265,385-390.
    
    Lignon,J.M.,Péqueux,A.,1988.Transbranchial and transcuticular potentials in the gill filamentsof the crayfish Astacusl eptodectylus.Comp Biochem Physiol,90A,820-829.
    
    Lima,A.G.,McNamara,J.C.,Terra,W.R.,1997.Regulation of hemolymph osmolytes andgill/Na+/K+ATPase activities during acclimation to saline in the freshwater shrimp Macrobrachium olfersii (Wiegmann, 1936) (Decapoda, Palaemonidae). J Exp Mar Biol Ecol, 215,81-91.
    Lin, Y.-C., Chen, J.-C.2001.Acute toxicity of ammonia on Litopenaeus vannamei boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259 (1), pp. 109-119.
    Lin, Y.-C., Chen, J.-C.2003.Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224 (2), pp. 193-201.
    Lin,S.C., Liou, C.,H., Cheng,J.H., 2000. The role of the antennal glands in ion and body volume regulateon of cannulater Penaeus monodon reared in various Salinity conditions. Comp Biochem Physiol, 127A.121-129.
    Liu, Y., Wang, W.N., Wang, A.L., Wang, J.M., Sun, R.Y., 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265,351-358.
    Lucu, C., Devescovi, M., 1999. Osmoregulation and Branchial Na+-K+ATPase in the lobster Homarus gammarus acclimated to dilutee seawater.J Exp Mar Biol Ecol, 234-304.
    Lynch, M.P., Webb, K.L., Engel, W.A, 1973. Variatins in serum constitutents of the blue crab, Callinectes sapidus:total serum protein. Comparative Biochemistry and Physiology, 44A, 1237-1249.
    Magnum, C.P., Amende, L.M., 1972. Blood osmotic concentration of the blue crabs Callinectes sapidus found in fresh water. Chesapeake Science, 13,318-320.
    Mantel,L.H., Farmer,L.L., 1983. Osmotic and ionic regulation. In: Bliss,D.E., ed. The biology of Crustacea. Mantel, L.H., ed., Vol,5, pp53-161. Academic Press, New York.
    Morris, S., 2001. Neuroendocrine regulateon of osmoregulation and the evolution of aire breathing in decapod crustaceans. J Exp Bio, 204,979-989.
    Palacios, E., Bonilla, A., Luna, D., Racotta, I.S.2004.Survival, Na+/K+-ATPase and lipid responses to salinity challenge in fed and starved white pacific shrimp (Litopenaeus vannamei) postlarvae.Aquaculture, 234 (1-4), pp. 497-511.
    Palackal, T., Faso, L., Zung,J.L., Vernon, G., Wikus, S., 1984. The ultrastructure of the hindgut epithelium of terrestrial isopods and its role in osmoregulation. Symposia of the Zoological Scociety of London, 53,185-198.
    Pan, L.-Q., Jiang, L.-X., Miao, J.-J.2005.Effects of salinity and pH on immune parameters of the white shrimp Litopenaeus vannamei. Journal of Shellfish Research, 24 (4), pp. 1223-1227.
    
    
    
    Peng Lin,H.,Charmantier,G.,Trilles,J.P.,1991.Toxicite de l'ammonium au cours dudeveloppement postembryonnaire de Penaeus japonicus.Effects sur l'osmoregulation.Comptes Rendus des Seances de l'Academie des Sciences,312(Ⅲ),99-105.
    
    Péqueux,A.,1988.The transeptithelial potentiall differentce of iolated perfused gills of theChineses crab Eriocheir sinensis acclimated to freshwater.Comp Biochem Physiol,89A,163-172.
    
    Péqueux,A.,1995.Osmotic regulation in crustaceans:review.Journal of Crustacean Biology,15,1-60.
    
    Ponce-Palafox,J.,Martinez-Palacios,C.A.,Ross,L.G.1997.The effects of salinity andtemperature on the growth and survival rates of juvenile white shrimp,Penaeus vannamei,Boone,1931.Aquaculture,157(1-2),pp.107-115.
    
    Prosser,C.L.,Green,J.W.,Chow,T.J,1955.Ionic and osmotic concentrations in blood and urineof Pachygrapsus crassipes acclimated to different salinities.Biological Bulletin,109,99-107.
    
    Read,G.H.,1984.Intraspecific variation in the osmoregulatory capacity of larval,post larval,juvenile and adult,Macrobrachium petersi.Comparative biochemistry and Physiology,78A,501-506.
    
    Roesijadi,G.,Anderson,J.W.,Petrocelli,S.R.,Giam,C.S.,1976.Osmoregulation of the grassshrimp Palaemonetes pugio exposed to polychlorinated biphenyls.I.Effect on chloride andosmotic concentrations and chloride and water exchange kinetics.Marine Biology,38,342-355.
    
    Rosas,C,Cuzon,G.,Gaxiola,G.,Le Priol,Y.,Pascual,C,Rossignyol,J.,Contreras,F.,Sanchez,A.,Van Wormhoudt,A.2001.Metabolism and growth of juveniles of Litopenaeus vannamei:Effect of salinity and dietary carbohydrate levels.Journal of Experimental Marine Biology andEcology,259(1),pp.1-22.
    
    Rosas,C,Cuzon,G.,Gaxiola,G.,Pascual,C,Taboada,G.,Arena,L.,Van Wormhoudt,A.2002.An energetic and conceptual model of the physiological role of dietary carbohydratesand salinity on Litopenaeus vannamei juveniles.Journal of Experimental Marine Biology andEcology,268(1),pp.47-67.
    
    Rosas,C,López,N.,Mercado,P.,Martinez,E.2001.Effect of salinity acclimation on oxygenconsumption of juveniles of the white shrimp Litopenaeus vannamei.Journal of CrustaceanBiology,21(4),pp.912-922.
    
    Rosenberry,B.2002.World shrimp farming 2002.Shrimp News International,276 pp.
    
    Roy,L.A.,Davis,D.A.,Saoud,I.P.2006.Effects of lecithin and cholesterol supplementation topractical diets for Litopenaeus vannamei reared in low salinity waters.Aquaculture,257(1-4),pp.446-452.
    
    Spaargaren,D.H.,1971.Aspects of osmotic regulateon in the shrimp Crangon crangon andcrangon allmnni.Neth J Sea Res,5,275-333.
    
    Sutchliffe,D.W.,1978.Waterchemistry and osmoregulation in some arthropods,especiallyMalacostraca.In:Freshwater Biological Association Fortysixth Annual Report.Pp,57-69.Freshwater Biological association of the United Kindom Ambleside,Westmorland,UnitedKingdom.
    
    Thompson,L.,1970.Osmoregulation of the freshwater crabs Metapaulius depressus andPseudotelphusa jouyi.University Microfilms,Ann Arbor,Michigan.
    
    Towel,D.W.,1981.Transport-related ATPase as probes of tissue function in three terrestrial crabsof Palau.Journal of Experimental Zoology,218,89-95.
    
    Williams,A.B.,1986.The role of the transbranchial potential difference in hyperosmoticregulation of the shore crab Carcinus maenas.Helgolander wissenschaftlichemeeresuntersuchungen,40,161-175.
    
    Wyban,J.A.& Sweeney,J.N.1991.Intensive shrimp production technology.High HealthAquaculture Inc.,Hawaii.158 pp
    
    崔莹,臧维玲,马海娟.2003.凡纳滨对虾瞬时耗氧速率与溶氧水平和海水盐度的相关关系.上 海水产大学学报.12(1):76-79.
    
    黄凯,王武,孔丽芳等.2004.低盐度水体凡纳滨对虾对饵料中钙、磷的需求.中国海洋大学学 报.34(2):209-216.
    
    黄凯,王武,卢洁等.2004.盐度对凡纳滨对虾的生长及生化成分的影响.海洋科学.28(9): 20-25.
    
    刘栋辉,何建国,刘永坚等.2005.极低盐度下饵料蛋白质量分数对凡纳对虾生长表现和免疫 状况的影响.中山大学学报.44增刊2:217-223.
    
    刘立鹤,郑石轩,郑献昌,等.南美白对虾最适蛋白需要量及饲料蛋白水平对体组分的影响.水利 渔业.2003.23(2):11-13.
    
    吕富,潘鲁青,王恒台等.2006.低盐度地下卤水对凡纳滨对虾仔虾存活率的影响.盐城工学院 学报.17(2):45-48.
    
    潘爱军,来琦芳,王慧等.2006.盐度突变对凡纳滨对虾组织碳酸酐酶活性的影响.上海水产大 学学报.15(1):47-51.
    
    王吉桥,罗鸣,张德治等.2004.水温和盐度对凡纳滨对虾幼虾能量收支的影响.水产学 报.28(2):161-166.
    
    王建梅,王维娜,王安利等.2003.盐度胁迫下维生素E对凡纳滨对虾体内抗氧化物质含量的 影响.北京水产,3:25-27.
    
    王兴强,曹梅,董双林等.2006.盐度对凡纳滨对虾存活、生长和能量收支的影响.海洋水产研 究.27(1):8-13.
    
    王兴强,马牲,董双林.2005.盐度和蛋白南水平对凡纳滨对虾存活、生长和能量转换的影响. 中国海洋大学学报.35(1):33-37.
    
    温伯格W.B.,温伯格F.J.,1982。海洋动物环境生物理学(宋天复译),北京,农业出版社。 110-117。
    
    肖国强,潘鲁青,冉宪宝等.2002.低盐度地下卤水养殖凡纳滨对虾的研究.海洋科 学.26(12):36-40.
    
    臧维玲,林喜臣,戴习林等.2003.淡化方式与盐度对凡纳对虾虾生长的影响.上海水产大学学 报.12(4):308-312.
    
    周双林,姜乃澄,卢建平,等.甲壳动物渗透压调节的研究进展Ⅰ.鳃的结构与功能及其影响 因子.东海海洋,2001,19(1):44-51.
    
    朱长波,董双林,张建东等.2005.缺K+型低盐度水体Na+/K+比值对凡纳滨对虾幼虾生长 和能量收支的影响.中国海洋大学学报.36(5):773-778.
    
    朱宏友,邓岳松.2005.盐度变化对凡纳滨对虾一氧化氮合酶水平及对病原敏感性的影响.内 陆水产.10:41-42.
    
    Aebi,H.,1984.Catalase in Vitro.In:Packer,L.(Eds.),Methods in Enzymology,Vol.105.Academic Press Inc.,San Diego,pp.121-126
    
    Allan,EX.,Froneman,P.W.,Hodgson,A.N.,2006.Effects of temperature and salinity on thestandard metabolic rate(SMR)of the caridean shrimp Pdaemon peringueyi.J.Exp.Mar.Biol.Ecol.331,103-108.
    
    Al-Mohanna,S.Y.,Nott,J.A.,1989.Functional cytology of the hepatopancreas of Penaeussemisulcatus(Crustacea:Decapoda)during molt cycle.Mar.Biol.102,535-544.
    
    Al-Mohanna,S.Y.,Nott,J.A,1986.B-cells and digestion in the hepatopancreas of Penaeussemisulcatus(Crustacea,Decapoda).J.Mar.Biol.Assoc.U.K.66,403-414.
    
    Al-Mohanna,S.Y.,Nott,J.A.,1987.R-cells and the digestive cycle in Penaeus semisulcatus(Crustacea:Decapoda).Mar.Biol.95,129-137.
    
    Andersen,F.,Lygren,B.,Maage,A.,Waago,R.,1998.Interaction between two dietary levels ofiron and two forms of ascorbic acid and the effect on growth,anti oxidant status and somenon-specific immune parameters in Atlantic salmon(Salmo salar)smolts.Aquaculture 161,437-451.
    
    Angel,D.L.,Fiedler,U.,Eden,N.,Kress,N.,Adelung,D.,Herut,B.,1999.Catalase activity inmacro-and microorganisms as an indicator of biotic stress in coastal waters of the easternMediterranean Sea.Helgoland Mar.Res.53,209-218.
    
    Antonini,E.,Brunori,M.,1974.Transport of oxygen:respiratory protein.In:Hayashi,O.(Eds.)Molecular Oxygen in Biology:Topics in Molecular Oxygen Research.North Holland,Amsterdam,pp.219-274
    
    AOAC(Association of Official Analytical Chemists),1984.Official Methods of Analysis.Association of Official Analytical Chemists Inc.,Arlington,Virginia,USA.
    
    Ashild,K.,Anne,S.,Jan,J.O.,2004.Atlantic salmon(Salmo salar)and rainbow trout(Oncorhynchus mykiss)digest and metabolize nutrients differently.Effects of water salinityand dietary starch level.Aquaculture 229,335-360.
    
    Bartlett,P.,Bonilla,P.,Quiros,L.,Takano,M.,1990.Effects of high salinity on the survival andgrowth of juvenile Penaeus L;annamei,P.stylirostris,and P.monodon.In:Abstracts,WorldAquaculture,90:121 /CP6.National Research Council,Ottawa,Ontario,Canada.
    
    Bautista,M.N.,Lavilla-Pitogo,C,Subosa,P.F.,Begino,E.T.,1994.Aflatoxin B1contamination of shrimp feeds and its effect on growth and hepatopancreas of preadultPenaeus monodon.J.Sci.Food Agricult.65,5-11.
    
    Bray,W.A.,Lawrence,A.L.,Leung-Trujillo,J.R.,1994.The effect of salinity on growth andsurvival of Penaeus vannamei,with observation on interaction of IHHN virus and salinity.Aquaculture 122,133-146.
    
    Caceci,T.,Neck,K.F.,Lewis,D.H.,Sis,R.F.,1988.Ultrastructure of the hepatopancreas of thePacific white,shrimp,Penaeus vannamei(Crustacea:Decapoda).J.Mar.Biol.Assoc.U.K.68,323-327.
    
    Campa-Cordova,A.I.,Hemandez-Saavedra,N.Y.,Ascencio,F.,2002.Superoxide dismutase asmodulator of immune function in American white shrimp(Litopenaeus vannamei).Comp.Biochem.Physiol.133C,557-565.
    
    Chanson M,Spray D C.Gating and single channel properties of gap junction channels inhepatopancreatic cells of Procambarus clarkii.Biol.Bull.Mar.Biol.Lab.,Woods Hole,1992,183:341-342.
    
    Chen,J.C.,Cheng,S.Y.,1993.Hemolymph PCO2,hemocyanin,protein level and urea excretionsof Penaeus monodon exposed to ambient ammonia.Aquat.Toxicol.27,281-292.
    
    Chen,J.C.,Cheng,S.Y.,1995.Hemolymph oxygen content,oxyhemocyanin,protein levels andammonia excretion in the shrimp Penaeus monodon exposed to ambient nitrite.J.Comp.Physiol.164 B,530-535.
    
    Chen,J.C.,Nan,F.,H.,1994.Comparisons of Oxygen Consumption and Ammonia-N Excretionof Five Penaeids.J.Crusact.Biol.14,289-294.
    
    Chen,J.C.,Nan,F.H.,1993.Changes of oxygen consumption and ammonia-N excretion byPenaeus chinensis Osbeck at different temperature and salinity levels.J.Crusact.Biol.13,706-712.
    
    Chen,J.R,1998.Experimental direction book for aquatic chemistry.China agricultural Press,Beijing,pp.120-126.
    
    Cheng,K.M.,Hu,C.Q.,Liu,Y.N.,Zheng,S.X.,Qi,X.J.,2006.Effects of dietary calcium,phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization ofLitopenaeus vannamei reared in low-salinity water.Aquaculture 251,472-483.
    
    Cheng,W.,Liu,C.H.,Kuo,CM.,2003..Effects of dissolved oxygen on hemolymph parameters offresh water giant prawn,Macrobrachium rosenbergii(de Man).Aquaculture 220,843-856.
    
    Cheng,W.and Chen,J.C,2000.Effects of pH,temperature and salinity on immune parameters ofthe freshwater prawn Macrobrachium rosenbergii.Fish Shellfish Immunol.,10,387-391.
    
    Chien,Y.H.,Pan,C.H.,Hunter,H.,2003.The resistance to physical stresses by Penaeus monodonjuveniles fed diets supplemented with astaxanthin.Aquaculture 216,177-191.
    
    Crowe J.Transport of exogenous substrate and cell volume regulation in bivalve molluscs.J.Exp.Zool.,1977,233:21-28.
    
    CUI Ying,ZANG Wei-Ling,MA Hai-Juan.Studies on the correlation between theinstantaneous rate of consumed oxygen of Litnpenaeus vannamei and the dissolvedoxygen level as well as seawater salinity.Journal of Shanghai FisheriesUniversity,2003,12(1):76-79.
    
    Cuzon G,Lawrence A,Gaxiola G..Nutrition of Litopenaeus vannamei reared in tanks or in ponds.Aquaculture,2004,234:513-551.
    
    Dalla,Via G.J,1986.Salinity responses of the juvenile penaeid shrimp P.japonicus:I.Oxygenconsumption and estimations of productivity.Aquaculture 55,297-306.
    
    Davis,D.A.,Boyd,C.E.,Rouse,D.B.,Saoud,I.P.,2005.Effects of potassium,magnesium and ageon growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity wellwaters in West Alabama.J.World Aquac.Soc.36,416-419.
    
    Deaton L E,Hyperosmotic cellular volume regulation in the ribbed mussel Geukensia demissa:inhibition by lysosomal and proteinase inhibitors.J.Exp.Zool.,1987,244:375-382.
    
    Díaz F,Farfán C,Sierra E,Re A D.Effects of temperature and salinity fluctuation on theammonium excretion and osmoregulation of juveniles of Penaeus Vannamei,Boone.Marineand Freshwater Behaviour and Physiology,2001,34(2):93-104.
    
    Duchateau-bosson G,Jeuniaus C,Florkin M,.R(?)le de la variation de la composante amino-acideintracellularire dans l'euryhalinté d'Arenicola marina L.Archs int.PhysioI.,1961,69:,30-35.
    
    Frías-Espericueta,M.G.,Harfush-Melendez,M.,Osuna-López,J.I.,Páez-Osuna,F,1999.Acutetoxicity of ammonia to juvenile shrimp Penaeus vannamei Boone.Bull.Environ.Contam.Toxicol.62,646-652.
    
    Fry,F.E.J.,1971.The effect of environmental factors on the physiology offish.In:Hoar,W.S.,Randall,D.J.(Eds.),Fish Physiology Vol.Ⅶ:Environmental Relations and Behavior.Academic Press,New York,pp.1-98.
    
    Galgani,F.,1985.Regulation de l'activite des proteases digestives de Penaeus japonicus Bate enrelation avec la temperature.J.Exp.Mar.Biol.Ecol.94,11-18.
    
    Geoffrion Y,Guderley H,Larochelle J.The effect of oxygen availability on the osmoregulatorycontribution of free amino acids in Acanthamoeba castellanii.Can.J.Zool.,198664:1430-1435.
    
    Gibson R,Barker P L.The decapod hepatopancreas.Oceanogr.Mar.Biol.,1979,17:285-346.
    
    Gimenez,A.V.F.,Eenucci,J.L.,Petriella,A.M.,2004.The effect of vitamin E on growth,survivaland hepatopancreas structure of the Argentine red shrimp Pleoticus muelleri Bate(Crustacea,Penaeidea).Aquac.Res.35,1172-1178.
    
    Hagerman,L.,1986.Haemocyanin concentration in the shrimp Crangon crangon(L.)afterexposure to moderate hypoxia.Comp.Biochem.Physiol.85A,721-724.
    
    Hamilton,M.A.,Russo,R.C.,Thurston,R.V.1977.Trimmed Spearman-Karber Method forEstimating Median Lethal Concentrations in Toxicity Bioassays.Environ.Sci.Technol,11,714-719
    
    Hernández,R.M.,Bǖckle,R.L.F.,Palacios,E.,Barón S.B,2006.Preferential behavior of whiteshrimp Litopenaeus vannamei(Boone 1931)by progressive temperature-salinity simultaneousinteraction.J.Themr.Biol,31,565-572.
    
    Hochachka P W,and Somero G N.Biochemical Adaptation.Princeton University Press,Princeton,New Jersey,1984.
    
    HUANG Kai,WANG Wu,LU Jie,DAI Xiao-Wei,ZHOU Jia-Neng.Salinity effects on growthand biochemical composition of Penaeus vannamei.Marine Sciences,2004,28(9):20-25.
    
    Huang,H.J.,1983.Factors affecting the successful culture of Penaeus stylirostris and Penaeusvannamei at an estuarine power plant site:temperature,salinity,inherent growth variability,damselfly nymph predation,population density and distribution,and polyculture.PhDdissertation.Texas A&M University,College Station,TX,USA,221 pp.
    
    Huang,K.Wang,W.,Lu,J.,Dai,X.W.,Zhou,J.N.,2004.Salinity effects on growth andbiochemical composition of Penaeus vannamei.Mar.Sci.,28,20-25.
    
    Hurtado,M.A.,Racotta,I.S.,Civera,R.,Iarra,L.,Hernández-Rodriguez,M.,Palacios,E.,2007.Effect of hypo-and hypersaline conditions on osmolality and Na~+/K~+-ATPase activity injuvenile shrimp(Litopenaeus vannamei)fed low-and high-HUFA diets.Comp.Biochem.Physiol.147A,703-710.
    
    Jeuniaux C,Bricteux-Gregoire S,Florkin M,-Régulation osmoticque intracellularire chez Astacusrubeus rubens glycole dt de la taurine.Cah.Biol.Mar.,1962,3:107-113.
    
    Jiang D H,Lawrence A L,Neill W H,Gong H.Effects of temperature and salinity on nitrogenousexcretion by Litopenaeus vannamei juveniles.Journal of Experimental Marine Biology andEcology,2000,253(2):193-209.
    
    Jing,T.Y.,Zhao,X.Y.,1995.The improved pyrogallol method by using terminating agent forsuperoxide dismutase measurement.Prog.Inorg.Biochem.Biophys.1,13-15.
    
    Kinne,O.,1971.Salinity:Animal invertebrates.In:Kinne,O.(Ed.),Marine Ecology Vol.1:Environmental Factors.Wiley Interscience,London,pp.821-995.
    
    Laramore,S.,Laramore,C.R.,Scarpa,J.,2001.Effect of low salinity on growth and survival ofpostlarvae and juvenile Litopenaeus vannamei.J.World Aquac.Soc.32,385-392.
    
    Le Moulac,G.,Klein,B.,Sellos,D.,Van Wormhoudt,A.,1996.Adaptation of trypsin,chmotrypsin and a-amylase to casein level and protein source in Penaeus vannamei(Crustacea Decapoda).J.Exp.Mar.Biol.Ecol.208,107-125.
    
    Le Moullac,G.,Van Wormhoudt,A.,AQUACOP.,1994.Adaptation of digestive enzymes todietary protein,carbohydrate and fibre levels and influence of protein and carbohydrate qualityin Penaeus vannamei larae(Crustacea,Decapoda).Aquat.Living Resour.7,203-210.
    
    Lee,P.G.,Smith,L.L,Lawrence,A.L,1984.Digestive protease of Penaeus vannamei Boone:relationship between enzyme activity,size and diet.Aquaculture 42,225-239.
    
    Li E C,Chen L Q,Zeng C,Chen X M,Yu N,Lai Q M,Qin J G.Growth,body composition,respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp,Litopenaeusvannamei,at different Salinities.Aquaculture,2007,265:385-390.
    
    Lin Y C,Chen J CAcute toxicity of nitrite on Litopenaeus vannamei(Boone)juveniles atdifferent salinity levels.Aquaculture,2003,224(2):193-201.
    
    Lin,Y.C.,Chen,J.C.,2001.Acute toxicity of ammonia on Litopenaeus vannamei Boone juvenilesat different salinity levels.J.Exp.Mar.Biol.Ecol.259,109-119.
    
    Lin,Y.C.,Chen,J.C.,2003.Acute toxicity of nitrite on Litopenaeus vannamei(Boone)juvenilesat different salinity levels.Aquaculture 224,193-201.
    
    Liu,Y.M.,Zhu,J.Z.,Wu,H.Y.,Shi,D.Z.,1991.Studies on digestive enzymes and amino acids oflarval and post larval stages of prawn Penaeus chinensis(O'Sbeck 1965).Oceanologia etLimnologia Sinica 22,571-574.
    
    Lockwood A P M.Aspects of the physicalogy of Crustacea.Aberdeen University Press.
    
    Lovett,D.L.,Felder,D.L.,1990.Ontogenic change in digestive enzyme activity of larval andpostlarval white shrimp Penaeus setiferus(Crustacea,Decapoda,Penaeidae).Biol.Bull.178,144-159.
    
    Lowry O H,Rosenbrough N J,Farr A L,Randall R J.Protein measurement with a Folin reagent.J.Biol.Chem.,1951,193:265-275.
    
    Marangos C,Brogren C H,Alliot E,Ceccaldi H J.The influence of water salinity on the freeamino acid concentration in muscle and hepatopancreas of adult shrimps,Penaeus japonicus.Biochem.Syst.Ecol.,1989,17:589-594.
    
    Marklund,S.,Marklund,G.,1974.Involvement of superoxide anion radical in the autoxidation ofpyrogallol and a convenient assay for superoxide dismutase.Eur.J.Biochem.47,469-474.
    
    McGraw,W.J.,Davis,DA.,Teichert-Coddington,D.,Rouse,D.B.,2002.Acclimation ofLitopenaeus vannamei postlarvae to low salinity:influence of age,salinity,endpoint and rateof salinity reduction.J.World Aquac.Soc.33,78-84.
    
    Menezes,S.,Soares,A.M.V.M.,Guilhermino,L.,Peck,M.R.,2006.Biomarker responses of theestuarine brown shrimp Crangon crangon L.to non-toxic stressors:Temperature,salinity andhandling stress effects.J.Exp.Mar.Biol.Ecol.335,114-122.
    
    Nelson,S.G.,Armstrong,D.A.,Knight,A.W.,Li,H.W.,1977.The effects of temperature andsalinity on the metabolic rate of juvenile Macrobrachium rosenbergii(Crustacea:Palaemonidae).Comp.Biochem.Physiol.56A,533-537.
    
    Nickerson,K.W.,Van Holde,K.E.,1971.A comparison of molluscan and arthropod hemocyanin:I.Circular dichroism and absorption spectra.Comp.Biochem.Physiol.39B,855-872.
    
    Ogle,J.T.,Beaugez,K.,Lotz,J.M.,1992.Effects of salinity on survival and growth of postlarvalPenaeus vannamei.Gulf Res.Rep.8,415-421.
    
    Palacios,E.,Bonilla,A.,Luna,D.,Racotta,I.S.,2004.Survival,Na+/K+-ATPase and lipidresponses to salinity challenge in fed and starved white pacific shrimp (Litopenaeus vannamei)postlarvae.Aquaculture 234,497-511.
    
    PAN Ai-Jun,LAI Qi-Fang,WANG Hui,ZHOU Kai,YAO Zong-Li,ZHUANG Ping.Effect abruptSalinity changes on the carbonic anhydrase activeity in the tissues of Litopenaeus vannamei.Journal Of Shanghai Fisheries University,2006,15(1):47-51.
    
    Pan,L.Q.,Wang,K.Q.,1997.Studies on digestive enzyme activities and amino acid in the larvaeof Portunus trituberculatus(Chinese).J.Fish.China 21,246-251.Pante,M.J.R.,1990.Influence of Environmental Stress on the Heritability of Molting Frequencyand Growth Rate of the Penaeid Shrimp,Penaeus vannamei.University of Houston-Clear lake,Houston,TX,USA,M.Sc.Thesis.
    
    Ponce-Palafox,J.,Martinez-Palacios,C.A.,Ross,L.G.,1997.The effects of salinity andtemperature on the growth and survival rates of juvenile white shrimp,Penaeus vannamei,Boone,1931.Aquaculture 157,107-115.
    
    Reddy,H.R.V.,Ganapathi,N.M.,Annappaswa-My,T.S.,1999.Evaluation of the dietaryessentiality of vitamins for Penaeus monodon.Aquacult.Nutr 5,267-275.
    
    Redfield,A.C.,1955.The respiratory function of haemocyanin in Crustacea.J.cell.comp.physiol.46.209-247.
    
    Rick,W.,Stegbauer,H.P.,1984.Alfa-amylase.In:Bergmeyer,H.U.,Grab,M.(Eds.),Methods ofEnzymatic Analysis,Vol 5:Enzymes.Academic press,New York,pp.885-889.
    
    Rosas C,Cuzon G,Gaxiola G,Le Priol Y,Pascua]C,Rossignyol J,Contreras F,Van Wormhoudt A.Metabolism and growth of juveniles of Litopenaeus vannamei:Effect of salinity and dietarycarbohydrate levels.Journal of Experimental Marine Biology and Ecology,2001,259(1):1-22.
    
    Rosas,C,Bolongaro-Crevenna,A.,Sa'nchez,A.,Goriola,G.,Soto,L.,Escobar,E.1995.Role ofdigestive gland in energetic metabolism of Penaeus setiferus.Biol.Bull.189,168-174.
    
    Rosas,C.,Cuzon,G.,Gaxiola,G.,Le priol,Y.,pascual,C,Rossignyol,J.,Contreras,F.,Sanchez,A.,Van vormhoudt,A.,2001.Metabolism and growth of juveniles of Litopenaeus vannamei:effect of salinity and dietary carbohydrate levels.J.Exp.Mar.Biol.Ecol.259,1-22.
    
    Ross,S.W.,Dalton,D.A.,Kranmer,S.,Christensen,B.L.,2001.Physiological(antioxidant)responses of estuarine fishes to variability in dissolved oxygen.Comp.Biochem.Physiol.130C,289-303.
    
    Roy,L.A.,Davis,D.A.,Saoud,I.P.,2006.Effects of lecithin and cholesterol supplementation topractical diets for Litopenaeus vannamei reared in low salinity waters.Aquaculture 257,446-452.
    
    Roy,L.A.,Davis,D.A.,Saoud,I.P.,Henry,R.P.,2007.Effects of varying levels of aqueouspotassium and magnesium on survival,growth,and respiration of the pacific white shrimp,Litopenaeus vannamei,reared in low salinity waters.Aquaculture 262 461-469.
    
    Sahana,S.,Jana,S.,1985.Effects of mercury on hydrogen peroxide and activities of catalase andperoxidase in freshwater fish Clarias batrachus.Envir.Ecol.3,504-506.
    
    Saoud,I.P.,Davis,D.A.,Rouse,D.B.,2003.Suitability studies of inland well waters forLitopenaeus vannamei culture.Aquaculture,217,373-383.
    
    Scott,E.M.,Harrington,J.P.,1990.Comparative studies of catalase and superoxide dismutaseactivity within salmon fish erythrocytes.Comp.Biochem.Physiol.95B:91-93.
    
    Silvia G J,Antonio U R A,Francisco V O,Georgina H W.Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei post larvae during sudden salinity changes.Aquaculture,2004,233:573-581.
    
    Somero G N,Bowlus R D.Osmolytes and metabolic end products of molluscs:the design ofcompatible solute systems.In:Hochachka PW(ed.).Environmental Biochemistry andPhysiology,1983,the Mollusca:Vol.2.
    
    Sowers,A.D.,Young,S.P.,Grosell,M.,Browdy,C.L.Tomasso,J.R.,2006.Hemolymphosmolality and cation concentrations in Litopenaeus vannamei during exposure to artificialsea salt or a mixed-ion solution:Relationship to potassium flux.Comp.Biochem.Phys.145A,176-180.
    
    Spaargaren,D.H.,Richard,P.,Ceccaldi,H.J.,1982.Excretion of nitrogenous products by Penaeusjaponicus Bate in relation to environmental osmotic conditions.Comp.Biochem.Physiol 72A,673-678.
    
    Taniguchi,A.,1975.Production ecology of zooplankton.In:S.Motoda,ed.,Marine plankton.Tokai University Press,Tokyo,Japan.117-235.
    
    Taylor,H.H.,Anstiss,J.M.,1999.Copper and haemocyanin dynamics in aquatic invertebrates.Mar.Freshw.Res.50,907-931.
    
    Van Wormhoudt,A.,1973.Variation des protéases,des amylases et des protéines solubles aucours du développement larvaire chez Palaemon serratus.Mar.Biol.19,245-248.
    
    Van Wormhoudt,A.,Favrel,P.,1988.Electrophoretlc characterization of Paluemon elegans(Crustacea,Decapoda)cu-amylase system:study of amylase polymotphtsm during themtermolt cycle.Camp.Biochern.Physiol.89B,201-207.
    
    Vargas-Albores et al(1993)A lipopolysaccharide-binding agglutinin isolated from brow shrimp(Penaeus californiensis Holmes)haemolymph.Comp Biochem Physiol 104,107-143.
    
    Villarreal,H.,Hinojosa,P.,Naranjo,J.,1994.Effect of temperature and salinity on the oxygenconsumption of laboratory produced Penaeus vannamei postlarvae.Comp.Biochem.Physiol,A 108A,331-336.
    
    WANG Ji-Qiao,LUO Ming,ZHANG De-Zhi,PANG Chao.Effects of water temperature andsalinity on energy budget of Penaeus vannamei juveniles.Journal of Fisheries of China,2004,28(2):161-166.
    
    Weiland,A.L.,Mangum,C.P.,2005.The influence of eniromental salinity on hemocyanin funtionin the blue crab,Callinectes sapidus.J.Exp.Zool.193A,265-273.
    
    Winston,G.W.,Giulio,R.T.,1991.Prooxidant and antioxidant mechanisms in aquatic organisms.Aquat.Toxicol.19:137-161.
    
    ZANG Wei-Ling,LIN Xi-Cchen,DAI Xi-Lin.YAO Qing-Zhen,JIANG Min,LUO Chun-Fang,XU Gui-Rong,DING Fu-Jiang.Effects of desalination method and salinity onsurvival rate and growth of Penaeus vannamei juvenile.Journal of ShanghaiFisheries University,2003,12(4):308-312.
    
    ZHU Hong-You,DENG Yue-Song.Effect ambient salinity change on the NOS activity andsensitivity to disease bacteria.Inland fisheries,2005,10:41-42.
    
    崔莹,臧维玲,马海娟.南美白对虾瞬时耗氧速率与溶氧水平和海水盐度的相关关系.上海水产 大学学报,2003,12(1):76-79.
    
    黄凯,王武,卢洁,代小伟,周家能.盐度对凡纳滨对虾的生长及生化成分的影响.海洋科学.2004, 28(9):20-25.
    
    潘爱军,来琦芳,王慧,周凯,么宗利,庄平.盐度突变对凡纳滨对虾组织碳酸酐酶活性的影响.上 海水产大学学报.2006,15(1):47-51.
    
    王吉桥,罗鸣,张德治,庞超.水温和盐度对凡纳滨对虾幼虾能量收支的影响.水产学 报,2004,28(2):161-166.
    
    臧维玲,林喜臣,戴习林,姚庆祯,江敏,罗春芳,徐桂荣,丁福江.淡化方式与盐度对凡纳对虾虾 生长的影响.上海水产大学学报,2003,12(4):308-312.
    
    朱宏友,邓岳松.盐度变化对凡纳滨对虾一氧化氮合酶水平及对病原敏感性的影响.内陆水产, 2005,10:41-42.
    
    Akiyama,D.M.,1992.Future considerations for the feed Industry.In:Proceddings of theAquaculture Feed Processing and Nutrition Workshop(Akiyama,D.M.& Tan,R.K.H.eds),pp.5-9.American Soybean Association,Singapore.
    
    Alam,M.S.,Teshima,S.,Koshio,S.,Isikawa,M.,Uyan O.,Hermandez,L.H.H.H.,Michael,F.R.,2005.Supplemental effects of coated methionine and/or lysine to soy protein isolate diet forjuvenile kuruma shrimp,Marsupenaeus japonicaus.Aquaculture 248,13-19.
    
    Amaya,E.A.,Davis,D.A.,Rouse,D.B.,2007.Replacement offish meal in practical diets for thepacific white shrimp(Litopenaeus vannamei)reared under pond conditions.Aquaculture 262,393-401.
    
    Analia V Fernandez Gimenez,Jorge L Fenucci & Ana M Petriella.(2004).The effect of vitamin Eon growth,survival and hepatopancreas structure of the Argentine red shrimp Pleoticusmuelleri Bate(Crustacea,Penaeidea).Aquaculture Research 35,1172-1178.
    
    Bartlett,P.,Bonilla,P.,Quiros,L.,et al,1990.Effects of high salinity on the survival and growthof juvenile Penaeus L;annamei,P.stylirostris,and P.monodon.In:Abstracts,WorldAquaculture,90:121 /CP6.National Research Council,Ottawa,Ontario,Canada
    
    Bautista,M.N.,1986.The response of Penaeus monodon juveniles to varying protein/energyratios in test diets.Aquaculture 53,229-313.
    
    Biswas,P.,Pal,A.K.,Sahu,N.P.,Reddy,A.K.,Prusty,A.K.,Misra,S.,2007.Lysine and/orphytase supplementation in the diet of Penaeus monodon(Fabricius)juveniles:Effect ongrowth body composition and lipid profile.Aqauculture 265,253-260.
    
    Bray,W.A.,Lawrence,A.L.,Leung-Trujillo,J.R.1994.The effect of salinity on growth andsurvival of Penaeus vannamei,with observations on the interaction of IHHN virus andsalinityAquaculture 122(2-3),pp.133-146.
    
    Chanson M,Spray D C.Gating and single channel properties of gap junction channels inhepatopancreatic cells of Procambarus clarkii.Biol.Bull.Mar.Biol.Lab.,Woods Hole,1992,183:341-342.
    
    Cheng,K.-M.,Hu,C.-Q.,Liu,Y.-N.,et al.2005.Dietary magnesium requirement andphysiological responses of marine shrimp Litopenaeus vannamei reared in low salinitywater.Aquaculture Nutrition 11(5),pp.385-393.
    
    Colvin,L.V.,Brand,C.W.,1977.The protein requirement of penaeid shrimp at various life cyclestages in controlled environment system.Proceed.WMS,vol.8.LSU,Baton Rouge,Louisiana,pp.821-840.
    
    Craig,S.R.,McLean,E.,2005.The organic movement:a role for NuPro? as an alternativeprotein source.In:Jacques,K.,Lyons,P.(Eds.),Nutritional Biotechnology in the Food andFeed Industry.Nottingham University Press,United Kingdom.
    
    Cuzon G.,Lawrence.A,Gaxiola G.,et al..Nutrition of Litopenaeus vannamei reared in tanks or inponds.Aquaculture.2004.234:513-551.
    
    Davis,D.A.,Arnold,C.R.,2000.Replacement of fish meal in practical diets for the Pacific whiteshrimp,Litopenaeus vannamei.Aquaculture 185,291-198.
    
    Díaz,F.,Farfán,C,Sierra,E.,et al.2001.Effects of temperature and salinity fluctuation on theammonium excretion and osmoregulation of juveniles of Penaeus Vannamei,Boone.Marineand Freshwater Behaviour and Physiology 34(2),pp.93-104.
    
    Fox,J.M.,Lawrence,A.L.,Li-Chan,E.,1995.Dietary requirement from lysine by juvenilePenaeus vannamei using intact and free amino acids sources.Aquacultu 131,279-290.
    
    Fry,F.E.J.,1971.The Effect of Environmental Factors on the Physiology of Fish.In:Hoar,W.S.,Randall,D.J.(Eds.),Fish Physiology Vol Ⅶ:Environmental Relations and Behaviour.Academic Press,New York,pp.1-9.8.
    
    Gibson R,Barker P L.The decapod hepatopancreas.Oceanogr.Mar.Biol.,1979,17:285-346.
    
    Hari,B.,Kurup,B.M.,2003.Comparative evaluation of dietary protein levels and plant-animalprotein ratios in Macrobrachium rosenbergii(de Man).Aquaculture Nutrition 9,131-137.
    
    Huang,H.J.,1983.Factors affecting the successful culture of Penaeus stylirostris and Penaeusuannamei at an estuarine power plant site:temperature,salinity,inherent growth variability,damselfly nymph predation,population density and distribution,and polyculrure.PhDdissertation.Texas A&M University,College Station,TX,USA,221 pp.
    
    Jiang,D.-H.,Lawrence,A.L.,Neill,W.H.,et al.2000.Effects of temperature and salinity onnitrogenous excretion by Litopenaeus vannamei juveniles.Journal of Experimental MarineBiology and Ecology 253(2),pp.193-209.
    
    Kinne,O.,1971.Salinity:Animal invertebrates.In:Kinne,O.(Ed.),Marine Ecology Vol Ⅰ.Environmental Factors.Wiley Interscience,London,pp.821-995.
    
    Kureshy,N.,Davis,DA.,2002.Protein requirement for maintenance and maximum weight gainfor the Pacific white shrimp,Litopenaeus vannamei.Aquaculture 204(1-2),125-143.
    
    Lockwood,A.P.M.,1968.Aspects of the physicalogy of Crustacea.Aberdeen University Press.
    
    Lowry O H,Rosenbrough N J,Farr A L,Randall R J.Protein measurement with a Folin reagent.J.Biol Chem.,1951,193:265-275.
    
    Marangos C,Brogren C.H.,Alliot E.et al,1989.The influence of water salinity on the freeamino acid concentration in muscle and hepatopancreas of adult shrimps,Penaeus japonicus.Biochem.Syst.Ecol.17,589-594.
    
    McGraw,W.J.,Davis,D.A.,Teichert-Coddington,D.,Rouse,D.B.,2002.Acclimation ofLitopenaeus vannamei postlarvae to low salinity:influence of age,salinity,endpoint and rateof salinity reduction.J.World Aquac.Soc.33,78-84.
    
    Millamena,O.M.,Teruel,M.B.,Kanazawa,A.,Teshima,S.,1999.Quantitative dietaryrequirements of postalrval tiger shrimp,Penaeus monodon,for hitidine,isoleucine,leucine,Phenylalanine and tryptophan.Aquaculture 179,169-179.
    
    Pan,L.Q.,Wang,K.Q.,1997.Studies on digestive enzyme activities and amino acid in the larvaeof Portunus trituberculatus(Chinese).J.Fish.China 21,246-251.
    
    Ponce-Palafox J.,Carlos A.,Palacios.M,et al,1997.The effects of salinity and temperature onthe growth and survival rates of juvenile white shrimp,Penaeus vannamei,Boone,1931.Aquaculture 157,107-115.
    
    Ponce-Palafox,J.,Martinez-Palacios,C.A.,Ross,L.G.1994.The effects of salinity andtemperature on the growth and survival rates of juvenile white shrimp,Penaeus vannamei,Boone,1931.Aquaculture 157(1-2),pp.107-115.
    
    Reddy H.R.V.,Ganapathi Naik M.& Annappaswa-My T.S.(1999)Evaluation of the dietaryessentiality of vitamins for Penaeus monodon.Aquaculture Nutrition 5,267-275.
    
    Rosas,C,Cuzon,G.,Gaxiola,G,,et al,Contreras,F.,Van Wormhoudt,A.2001.Metabolism andgrowth of juveniles of Litopenaeus vannamei:Effect of salinity and dietary carbohydratelevels.Journal of Experimental Marine Biology and Ecology 259(1),pp.1-22.
    
    Roy,L.A.,Davis,D.A.,Saoud,I.P.2006.Effects of lecithin and cholesterol supplementation topractical diets fox Litopenaeus vannamei reared in low salinity waters.Aquaculture,257(1-4),pp.446-452.
    
    Saoud,I.P.,Davis,D.A.2005.Effects of betaine supplementation to feeds of Pacific white shrimpLitopenaeus vannamei reared at extreme salinities.North American Journal of Aquaculture 67(4),pp.351-353.
    
    Saoud,I.P.,Davis,DA.,Rouse,D.B.,2003.Suitability studies of inland well waters forLitopenaeus vannamei culture.Aquaculture217,373-383.
    
    Smith,L.L.,Lee,P.G.,Lawrence,A.L.,et al,1985.Growth and digestibility of three sizes ofPenaeus vannamei Boone:effects of dietary protein level and protein source.Aquaculture 46(2),85-96.
    
    Somero,G.N.,Bowlus,R.D.,1983 Osmolytes and metabolic end products of molluscs:the designof compatible solute systems.In:Hochachka PW(ed.).Environmental Biochemistry andPhysiology,the Mollusca:Vol.2.Academic Press,London,77-100.
    
    Villarreal,H.,Hinojosa,P.,Naranjo,J.1994.Effect of temperature and salinity on the oxygenconsumption of laboratory produced Penaeus vannamei postlarvae.Comparative Biochemistryand Physiology-A Physiology 108(2-3),pp.331-336
    
    Wang,X.,Ma,S.,Dong,S.,et al.2004.Effects of salinity and dietary carbohydrate levels ongrowth and energy budget of juvenile Litopenaeus vannamei.Jovrnal of Shellfish Research 23(1),pp.231-236.
    
    崔莹,臧维玲,马海娟.2003.凡纳滨对虾瞬时耗氧速率与溶氧水平和海水盐度的相关关系.上海 水产大学学报.12(1):76-79.
    
    黄凯,王武,卢洁等.2004.盐度对凡纳滨对虾的生长及生化成分的影响.海洋科学.28(9):20-25.
    
    刘栋辉,何建国,刘永坚等.2005.极低盐度下饵料蛋白质量分数对凡纳对虾生长表现和免疫状 况的影响.中山大学学报.44增刊2:217-223.
    
    刘立鹤,郑石轩,郑献昌,等.南美白对虾最适蛋白需要量及饲料蛋白水平对体组分的影响.水利 渔业.2003.23(2):11-13.
    
    潘爱军,来琦芳,王慧等.2006.盐度突变对凡纳滨对虾组织碳酸酐酶活性的影响.上海水产大学 学报.15(1):47-51.
    
    王吉桥,罗鸣,张德治等.2004.水温和盐度对凡纳滨对虾幼虾能量收支的影响.水产学报.28(2): 161-166.
    
    王建梅,王维娜,王安利等.2003.盐度胁迫下维生素E对凡纳滨对虾体内抗氧化物质含量的影 响.北京水产,3:25-27.
    
    王兴强,马牲,董双林.2005.盐度和蛋白质水平对凡纳滨对虾存活、生长和能量转换的影响.中 国海洋大学学报.35(1):33-37.
    
    臧维玲,林喜臣,戴习林等.2003.淡化方式与盐度对凡纳对虾虾生长的影响.上海水产大学学 报.12(4):308-312.
    
    朱宏友,邓岳松.2005.盐度变化对凡纳滨对虾一氧化氮合酶水平及对病原敏感性的影响.内陆 水产.10:41-42.
    
    Adron,J.W.,Knox,D.,Cowey,C.B.,1978.Studies on the nutrition of marine flatfish.Thepyridoxine requirement of turbot(Scophthalmus maximus).Br.J.Nutr.40,261-268.
    
    Akiyama,D.E.,Dominy,W.G.,Lawrence,A.L.,1992.Penaeid shrimp nutrition.In:Fast,A.W.,Lester,L.J.(Eds.),Marine Shrimp Culture:Principle and Practices.Elsevier,Amsterdam,TheNetherlands,p.550.
    
    Albrektsen S,K Sandnes,J Glette,and R Waagbo,1995.Influence of dietary vitamin B6 on tissuevitamin B6 content and immunity in Atlantic salmon,Salmo salar L.Aquaculture Research,26:331-339.
    
    Albrektsen S,R Waagbo,and K Sandnes,1993.Tissue vitamin B6 concentrations and aspartateaminotransferase(AspT)activity in Atlantic salmon(Salmo salar)fed graded dietary levels ofvitamin B6.Fik Dir Skr Ser,Ernaring,6:21-34.
    
    Andrews,J.W.,Murai,T.,1979.Pyridoxine requirements of channel catfish.J.Nutr.109,533-537.
    
    Morean,R.,Cuzon,G.,Gabaudan,J.,1998.Efficacy of silicon-coatedascorbyl-2-phosphate to fast-growing tiger shrimp(Penaeus monodon).Aquac.Nutr.4,23-29.
    
    Apollonia S.D and Anderson,P.D.,1980.Optimal assay conditions for serum and liver glutamateoxaloacetate transaminase,glutamate pyruvate transaminase,and sorbitaol dehydrogenasefrom the rainbow trout,Sahno gairdneri.Canadian Journal of Fisheries and Aquatic Sciences,37:163-169.
    
    Baker,R T M and S J Davis,1995.The effect of pyridoxine supplementation on dietary proteinutilization in gilthead sea bream fry.Animal Science,60:157-162.
    
    Colvin L V,Brand C W.The protein requirement of penaeid shrimp at various life cycle stages incontrolled environment system.Proceed WMS,vol.8.LSU,Baton Rouge,Louisiana,821-840.
    
    Conklin,D.E.,1997.Vitamin.In:D'Abramo,L.R.,Conklin,D.E.,Akiyam,D.M.(Eds),Crustacean Nutrition.The World Aquaculture Society,Baton Rouge,pp.130-131.
    
    Deshimaru O and K Kuroki,1979.Requirement of prawn for dietary thiamine,pyridoxine andcholine chloride.Bulletin of the Japanese Society of Scientific Fisheries,45:363-367.
    
    Giri I N A,S Teszima,A Kanazawa,and M Ishikawa,1997.Effects of dietary pyridoxine andprotein levels on growth,vitamin B_6 content,and free amino acid profile of juvenile Penaeusjaponicus.Aquaculture,157:263-275.
    
    He,H.,Lawrence,A.L.,1993.Vitamin E requirement of Penaeus vannamei.Aquaculture,118(3-4),pp.245-255.
    
    Hilton,1989.The interaction of vitamins,minerals and diet composition in the diet of fish.Aquaculture,79:223-244.
    
    Kissil GW,CB Cowey,J W Adron,and R H Richards,1981.Pyridoxine requirements of thegilthead bream,Sparus aurata.Aquaculture,23:243-255.
    
    Kureshy N,Davis DA.Protein requirement for maintenance and maximum weight gain for thePacific white shrimp,Litopenaeus vannamei.Aquaculture,2002,204:125-143.
    
    Lowry O H,Rosenbrough N J,Farr A L,Randall R J.Protein measurement with a Folin reagent.Journal of Biological Chemistry,1951,193:265-275
    
    McGraw W J,Davis D.A,Teichert-Coddington D,.Acclimation of Litopenaeus vannameipostlarvae to low salinity:influence of age,salinity,endpoint and rate of salinity reduction[J].J World Aqua Soc.,2002,33:78-84.
    
    Ogino,C,1965.B vitamin requirements of carp,Cyprinus carpio:I.Deficiency symptoms andrequirements of vitamin B6.Nippon Suisan Gakkaishi 31,546-551.
    
    Saoud I P,Davis D A,Rouse D B.Suitability studies of inland well waters for Litopenaeusvannamei culture[J].Aquaculture,2003,217:373-383.
    
    Shiau S.Y.,Wu,M.H.,2003.Dietary vitamin B6 requirement of grass shrimp Penaeus monodon.Aquaculture 225,397-404
    
    Shiau,S.Y.,Hsieh,H.L.,1997.Vitamin B6 requirements of tilapia Oreochromis niloticus_O.aureus fed two dietary protein concentrations.Fish.Sci.63,1002-1007.
    
    Shigueno,K.,Itoh,S.,1988.Use of Mg-L-ascorbyl-2-phosphate as a vitamin C source in shrimpdiets.J.World Aquac.Soc.19,168-174.
    
    Smith L L,Lee P G,Lawrence A L,et al.Growth and digestibility of three sizes of Penaeusvannamei Boone:effects of dietary protein level and protein source.Aquaculture,1985,46:85-96.
    
    Takeda,T.,Yone,Y.,1971.Studies of nutrition of red sea bream:2.Comparison of vitamin B6requirement level between fish fed a synthetic diet and fish fed beef liver during prefeedingperiod.Rep.Fish.Res.Lab.,Kyushu Univ.1,27-47.
    
    Wang,W.N.,Wang,Y.,Wang,A.L.,2006.Effect of supplemental l-ascorbyl-2-polyphosphate(APP)in enriched live food on the immune response of Penaeus vannamei exposed toammonia-N.Aquaculture 256,552-557.
    
    Woodward,B.,1989.Dietary requirements of some water-soluble vitamins for young rainbowtrout.Proceeding of the 25th Annual Nutrition Conference for Feed Manufactures,Toronto,Ontario,pp.25-33.
    
    黄凯,王武,卢洁,等.盐度对凡纳滨对虾的生长及生化成分的影响.海洋科学,2004,28(9):20-25.
    
    刘栋辉,何建国,刘永坚,等.极低盐度下饵料蛋白质量分数对凡纳对虾生长表现和免疫状况的 影响.中山大学学报.2005,44 增刊2:217-223.
    
    刘立鹤,郑石轩,郑献昌,等.南美白对虾最适蛋白需要量及饲料蛋白水平对体组分的影响.水利 渔业.2003.23(2):11-13.
    
    Abe,H.,Okuma,E.,Amano,H.,Noda,H.,Watanabe,K.,1999.Role of free d-and l-alanine in theJapanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstreamspawning migration.Comparative biochemistry and physiology A,123,55-59.
    
    Alvarez,A.L.,Racotta,I.S.,Arjona,O.,Palacios,E.,2004.Salinity stress test as a predictor ofsurvival during growout in pacific white shrimp(Litopenaeus vannamei).Aquaculture 237,237-249.
    
    Anderson,J.O.,Roger,A.J.,2003.Evolution of glutamate dehydrogenase genes:evidence forlateral gene transfer within and between prokaryotes and eukaryotes.BMC EvolutionaryBiology.3:14.
    
    Bages,M.,and L.Sloane.1981.Effects of dietary protein and starch levels on growth andsurvival of Penaeus monodon(Fabricius)postlarvae.Aquaculture 25:117-128.
    
    Benachenhou-Lahfa,N.,Forterre,P.,Labedan,B.,1993.Evolution of glutamate dehydrogenasegenes:evidence fro two paralogous protein families and unusual branching patters of thearchaebacteria in the universal tree of life.J Mol Evol,36,335-346.
    
    Blake,C.C.F.,1978.Do genes-in-pieces imply proteins-in-pieces?Nature 273:267.
    
    Bray,W.A.,Lawrence,A.L.,Leung-Trujillo,J.R.,1994.The effect of salinity on growth andsurvival of Penaeus vannamei,with observation on interaction of IHHN virus and salinity.Aquaculture 122,133-146.
    
    Brown,J.R.,Doolittle,W.F.,1997.Archaea and the prokaryote-to- eukaryote transition.Microbiol Mol Biol Rev.61,456-502.
    
    Burton,R.S.,1992.Proline synthesis during osmotic stress in megalopa stage larvae of the bluecrab,Callinectes sapidus.Biol.Bull,182,409-415.
    
    Castille,F.L.,Samocha,T.M.,Lawrence,A.L.,He,H.,Frelier,P.,Jaenike,F.,1993.Variability ingrowth and survival of postlarval shrimp(Penaeus vannamei Boone 1931).Aquaculture113,65-81.
    
    Cavalier-Smith,T.,1991.Intron phylogeny:a new hypothesis.Trends Genet.7,145-148.
    
    Cheng,K.M.,Hu,C.Q.,Liu,Y.N.,Zheng,S.X.,Qi,X.J.,2006.Effects of dietary calcium,phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization ofLitopenaeus vannamei reared in low-salinity water.Aquaculture 251,472-483.
    
    Dalla Via,G.J.,1989.The effect of salinity on free amino acids in the prawn Palaemon elegans(Rathke).Arch Hydrobiol,115,125-135.
    
    Doolittle,W.F.,1978.Genes in pieces:where they ever together?Nature 272:581-582.
    
    Fang,L.S.,Lee,B.N.,1992.Ontogenetic change of digestive enzymes in Penaeus monodon.Comp.Biochem.Physiol.103B,1033-1037.
    
    Fast,A.W.,Lester,L.J.,1992.Marine Shrimp Culture:Principles and Practices.Elsevier,Amsterdam(1992).
    
    Flint,L.H.1956.Notes on the algal food of shrimp and oysters.Proc.La.Acad.Sci.19:11-14.
    
    Frías-Espericueta,M.G.,Harfush-Melendez,M.,Osuna-López,J.I.,Páez-Osuna,F,1999.Acutetoxicity of ammonia to juvenile shrimp Penaeus vannamei Boone.Bull.Environ.Contam.Toxicol.62,646-652.
    
    Fry,F.E.J.,1971.The effect of environmental factors on the physiology of fish.In:Hoar,W.S.,Randall,D.J.(Eds.),Fish Physiology Vol.Ⅶ:Environmental Relations and Behavior.Academic Press,New York,pp.1-98.
    
    Gilbert W.1987 .The exon theory of genes.Cold Spring Harbor Symp.Quant.Biol.52,901-905.
    
    Gilbert W.Why genes in pieces?Nature,1978,271,501.
    
    Gleason,D.F.1986.Utilization of salt marsh plants by postlarval brown shrimp:carbonassimilation rates and food preferences.Mar.Ecol.Prog.Ser.31:151-158.
    
    Gleason,D.F.,and R.J.Zimmerman.1984.Herbivory potential of postlarval brown shrimpassociated with salt marshes.J.Exp.Mar.Biol.Ecol.84:235-246.
    
    Hare,P.D.,Cress,W.A.,Van Staden,J.,1998.Dissecting the roles of osmolyte accumulationduring stress.Plant,Cell,Env.21,535-553.
    
    Hochachka,P.W.,Somero,G.N.,2002.Biochemical adaptation.Oxfor University Press,NewYork,NY,217-289.
    
    Hurtado,M.A.,Racotta,I.S.,Civera,R.,Iarra,L.,Hernandez-Rodriguez,M.,Palacios,E.,2007.Effect of hypo-and hypersaline conditions on osmolality and Na+/K+-ATPase activity injuvenile shrimp(Litopenaeus vannamei)fed low-and high-HUFA diets.Comp.Biochem.Physiol.147A,703-710.
    
    Jones,R.R.J.,1973.Utilization of Louisiana Estuarine Sediments as a Source of Nutrition for theBrown Shrimp Penaeus aztecus.Ph.D.Dissertation.Louisiana State University,Baton Rouge.130pp.
    
    Kempf,B.,Bremer,E.,1998.Uptake and synthesis of compatible solutes as microbial stressresponses to high-osmolaity environments.Arch.Microbiol.170,319-330.
    
    Kinne,O.,1971.Salinity:Animal invertebrates.In:Kinne,O.(Ed.),Marine Ecology Vol.1:Environmental Factors.Wiley Interscience,London,pp.821-995.
    
    Kurmaly,K.,Yule,A.B.,Jones,D.A.,1989.An energy budget for the larvae of Penaeus monodon(Fabricius).Aquaculture 81,13-25.
    
    Li,E.C.,Chen,L.Q.,Zeng,C,Chen,X.M.,Yu,N.,Lai,Q.M.,Qin,J.G.,2007.Growth,bodycomposition,respiration and ambient ammonia nitrogen tolerance of the juvenile whiteshrimp,Litopenaeus vannamei,at different Salinities.Aquaculture 265,385-390.
    
    Lima,A.G.,McNamara,J.C.,Terra,W.R.,1997.Regulation of hemolymph osmolytes and gillNa+/K+-ATPase activities during acclimation to saline in the freshwater shrimpMacrobrachium olfersii(Wiegmann,1836).J Exp Mar Bio Ecol.215,81-91.
    
    Lin,Y.C.,Chen,J.C.,2001.Acute toxicity of ammonia on Litopenaeus vannamei Boone juvenilesat different salinity levels.J.Exp.Mar.Biol.Ecol.259,109-119.
    
    Lin,Y.C.,Chen,J.C.,2003.Acute toxicity of nitrite on Litopenaeus vannamei(Boone)juvenilesat different salinity levels.Aquaculture 224,193-201.
    
    Lockwood,A P.M.Aspects of the physicalogy of Crustacea.Aberdeen University Press.1956,88.
    
    Long,M.,Rosenberg,C,Gilbert,W.,1995.Intron phase correlations and the evolution of theintron/exon structure of genes.Lovett,D.L.,Felder,D.L.,1990.
    
    Ontogenetic change in digestive enzyme activity of larval andpost larval white shrimp Penaeus setiferus(Crustacea,Dacapoda,penaeidae).Bio.Bull.178,144-159.
    
    Lucu,C.,Towle,D.W.,2003.Na+-K+-ATPase in gills of aquatic Crustacea,Comp.Biochem.Physiol.135(A),195-214.
    
    MacGregor,S.E.,Walker,J.M.,1993.Inhibitors of the Na+-K+-ATPase.Comp.Biochem.Physiol.C Comp.Pharmacol.Toxicol.105,1-9.
    
    McDaniel,H.,Bosing-Schneider,R.,Jenkins,R.,Rasched,I.,Sund,H.,1886.Demonstration ofglutamate dehydrogenase isozymes in beef heart mitochonidria.The Journal of BiologialChemistry.261,884-888.
    
    McGraw,W.J.,Davis,D.A.,Teichert-Coddington,D.,Rouse,D.B.,2002.Acclimation ofLitopenaeus vannamei postlarvae to low salinity:influence of age,salinity,endpoint and rateof salinity reduction.J.World Aquac.Soc.33,78-84.
    
    McVey,J.P.,and J.M.Fox.,1983.Hatchery techniques for penaeid shrimp utilized by TexasA&M-NMFS Galveston Laboratory Program.Pp,129-154 in CRC Handbook of Mariculture:Crustacean Aquaculture,Vol.1,CRC Press,Inc.,Boca Raton,Florida.
    
    Minambres,B.,Olivera,E.R.Jensen,R.A.,Luengo,J.M.,2000.A new class of glutamatedehydrogenases(GDH).Biochemical and genetic characterization of the first member,theAMP-requiring NAD-specific GDH of Streptomyces clavuligerus.J Biol Chem,275,39529-395-42.
    
    Morris,S.,2001.Neuroendocrine regulation of osmoregulation and the evolution of air-breathingin decapod crustaceans.J Exp Bio.204,979-989.
    
    Murray,M.G.,and Thompson,W.F.,1980.Rapid isolation of high-molecular-weight plant DNA,Nucleic Acids Res.8,pp.4321-4325.
    
    Palacios,E.,Bonilla,A.,Luna,D.,Racotta,I.S.,2004.Survival,Na+/K+-ATPase and lipidresponses to salinity challenge in fed and starved white pacific shrimp (Litopenaeus vannamei)postlarvae.Aquaculture 234,497-511.
    
    Palacios,E.,Bonilla,A.,Perez,A.,Racotta,I.S.,Civera,R.,2004.Influence of highly unsatuatedfatty acids on the responses of white shrimp (Litopenaeus vannamei)postlarvae to lowsalinity.J Exp Mar Biol Ecol,299,201-215.
    
    Pan,L.Q.,Zhang,L.J.,Liu,H.Y.,2007.Effects of salinity and pH on ion-transport enzymeactivities,survival and growth of Litopenaeus vannamei postlarvae.Aquculture,273,711-720.
    
    Pante,M.J.R.,1990.Influence of Environmental Stress on the Heritability of Molting Frequencyand Growth Rate of the Penaeid Shrimp,Penaeus vannamei.University of Houston-Clearlake,Houston,TX,USA,M.Sc.Thesis.
    
    Perez-Farfante,L.,1969.Western Atlantic shrimps of the genus Penaeus.Fish.Bull.67:461-591.
    
    Pillay,T.V.R.,1990.Aquaculture:Principles and Practices.,Blackwell,London.
    
    Plaitakis,A.,Zaganas,I.,2001.Regulation of human glutamate dehydrogenases:implications forglutamate ammonia and energy metabolism in brain.Journal of Neuroscience Research,66,899-908.
    
    Ponce-Palafox,J.,Martinez-Palacios,C.A.,Ross,L.G.,1997.The effects of salinity andtemperature on the growth and survival rates of juvenile white shrimp,Penaeus vannamei,Boone,1931.Aquaculture 157,107-115.
    
    Rogers,J.H.,1989.How were introns inserted into nuclear genes.Trends Genet.5,213-216.
    
    Rosas,C.Cuzon,G.,Gzxiola,G.,Priol,Y.L.,Pascual,C,Rossignyo,J.,Contreras,F.,Sanchez,A.,Van Wormhoudt,A.,2001.Metabolism and growth of juveniles of Litopenaeus vannamei:effect of salinity and dietary carbohydrate levels.Journal of experimental marine biology andecology,259,1-22.
    
    Roy,L.A.,Davis,D.A.,Saoud,I.P.,Henry,R.P.,2007.Effects of varying levels of aqueouspotassium and magnesium on survival,growth,and respiration of the pacific white shrimp,Litopenaeus vannamei,reared in low salinity waters.Aquaculture 262 461-469.
    
    Saoud,I.P.,Davis,D.A.,Rouse,D.B.,2003.Suitability studies of inland well waters forLitopenaeus vannamei culture.Aquaculture 217,373-383.
    
    Sastrakusumah,S.1970.A study of the food of juvenile migrating pink shrimp,Penaeusduorarum Burkenroad.Fla.Seu Gram Tech.Bull.9:1-31.
    
    Smith,E.L.,1979.The evolution of glutamate dehydrogenases and a hypothesis for the insertionor deletion of multiple residues in the interior of polypeptide dhains.Proc Am Phil Soc.,123,73-84.
    
    Smith,EX.,Austin,B.M.,Blumenthal,K.M.,Nyc,J.F.,1975.Glutamate dehydrogenase.In:Boyer,P.D.,editor.The enzymes.New York:Academic Press.11,293-367.
    
    Somero,G.N,Bowlus,R.D.Osmolytes and metabolic end products of molluscs:the design ofcompatible solute systems.In:Hochachka PW(ed.).Environmental Biochemistry andPhysiology,the Mollusca.London:Academic Press,.1983,77-100.
    
    Sowers,A.D.,Young,S.P.,Grosell,M.,Browdy,C.L.Tomasso,J.R.,2006.Hemolymphosmolality and cation concentrations in Litopenaeus vannamei during exposure to artificialsea salt or a mixed-ion solution:Relationship to potassium flux.Comp.Biochem.Phys.145A,176-180.
    
    Spaargaren,D.H.,1971.Aspects of osmotic regulation in the shrimp Crangon crangon andCragon allmnni.Neth J Sea Res,179,267-278.
    
    Towle,D.W.,1981.Role of Na+-K+-ATPase in ionic regulation by marine and estuarine animals.Mar Biol Lett.2,107-122.
    
    Towle,D.W.,1984.Membrance-bound ATPase in arthropod ion-tranporting tissues.Am.Zool.24,177-185.
    
    Villarreal,H.,Hinojosa,P.,Naranjo,J.,1994.Effect of temperature and salinity on the oxygenconsumption of laboratory produced Penaeus vannamei postlarvae.Comp.Biochem.Physiol.108A,331-336.
    
    Wickins,J.F.1976.Prawn biology and culture.Ann.Rev.Oceunogr.Mar.Biol.14:435-507.Yokoe,Y.,and 1.Yasumasu.
    
    Willett,C.S.,Burton,R.S.,2003.Characterization of the glutamate dehydrogenase gene and itsregulation in a euryhaline copepod.Comparative biochemistry and physiology B 135,639-649.
    
    Butterwick,L.,Oude,N.,Raymond,K.,1989.Safety assessment of boron in aquatic andterrestrial environments.Ecotoxicol.Environ.Saf.17:339-371.
    
    Cheng,K.M.,Hu,C.Q.,Liu,Y.N.,Zheng,S.X.,Qi,X.J.,2006.Effects of dietary calcium,phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization oflitopenaeus vannamei reared in low-salinity water.Aquaculture.251:472-483.
    
    Clarkson,T.W.,1991.Inorganic and organometal pesticides.In Handbook of Pesticide Toxicology;Hayes,W.J.Jr.,Laws,E.R.Jr.,Eds.;Academic:San Diego,CA,;Vol.2:497-583.
    
    Curtis,D.E.,1998.Boron stimulates embryonic trout growth.Journal of nutrition.128:2488-2493.
    
    Eisler,R.,1990.Boron Hazards to Fish,Wildlife,and Invertebrates:A Synoptic Review.U.S.Fishand Wildlife Serv.Biol.Rep.82(1.20):1-32.
    
    Frias-Espericueta,M.G.,Voltolina,D.,Osuna-Lopez,J.I.,2001.Acute toxicity of Cadmium,Mercury,and Lead to Whiteleg shrimp(Litopenaeus Vannamei)postlarvae.Bull.Environ.Contain.Toxicol.67:580-586
    
    Frias-Espericueta,M.G,Voltolina,D.,Osuna-Lopez,J.I.2003.Acute toxicity of copper,zinc,ironand manganese and of the mixture copper-zinc and iron-manganese to whiteleg shrimpLitopenaeus vannamei postlarvae.Bull.Environ.Contain.Toxicol.71:68-74.
    
    Gross,A.,Abutbul,S.,Zilberg,D.,2004.Acute and chronic effects of nitrite on white shrimp,Litopenaeus vannamei,cultured in low-salinity brackish water.J.World Aquacult Soc.35:315-321.
    
    Hamilton,M.A.,Russo,R.C.,Thurston,R.V.,1977.Trimmed Spearmn-Karber method forestimating median lethal concentrations in toxicity bioassays.Environ.Sci.Technol.11:714-719
    
    Hamilton,S.J.,1995.Hazard assessment of inorganic to three endangered fish in the green river,Utah.Ecotoxicol.Environ.Saf.30:134-142.
    
    Hamilton,S.J.,Buhl,K.J.,1990.Acute toxicity of boron,molybdenum,and selenium to fry ofChinook salmon and Coho salmon.Arch.Environ.Contam.Toxicol.19:366-373.
    
    Huang,H.J.,1983.Factors affecting the successful culture of Penaeus stylirostris and Penaeusvannamei at an estuarine power plant site:temperature,salinity,inherent growth variability,damselfly nymphpredation,population density and distribution,and polyculture.PhDdissertation.Texas A&M University,College Station,TX,USA,221 pp.
    
    Krasovskii,G.N.,Varshavskaya,S.P.,Borisov,A.I.,1976.Toxic and gonadotropic effects ofcadmium and boron relative to standards for these substances in drinking water.EnvironHealth Persp.13:69-75.
    
    Ku,W.W.,Chapin,R.E.,1993.Testicular toxicity of boric acid(BA):relationship of dose to lesiondevelopment and recovery in the F344 rat.Reprod Toxicol.7(4):305-319.
    
    Li,E.,Chen,.L,Zeng,C,Chen,X.,2007.Growth,body composition,respiration and ambientammonia nitrogen tolerance of the juvenile white shrimp,Litopenaeus vannamei,at differentsalinities.Aquaculture 265:385-390.
    
    Li,E.,Chen,L.,et al.,Zeng,C.,2007.Comparison of digestive and antioxidant enzymes activities,haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp,Litopenaeus vannamei,at various salinities.Aquaculture,In press.
    
    Lin,Y.C.,Chen,J.C.,2001.Acute toxicity of ammonia on Litopenaeus.vannamei Boone Juvenilesat different salinity levels.J.Exp.Mar.Biol.Ecol.259:109-119.
    
    Lin Y.C.,Chen J.C.,2003.Acute toxicity of nitrite on Litopenaeus vannamei(Boone)juveniles atdifferent salinity levels.Aquaculture 224,193-201.
    
    McGraw,W.J.,Davis,D.A.,Teichert-Coddington,D.,Rouse,D.B.,2002.Acclimation oflitopenaeus vannamei postlarvae to low salinity:influence of age,salinity,endpoint and rate ofsalinity reduction.J.World Aquacult.Soc.33:78-84.
    
    Palacios,E.,Bonilla,A.,Luna,D.,Racotta,I.S.,2004.Survival,Na~+/K+~- ATPase and lipidresponses to salinity challenge in fed and starved white pacific shrimp(Litopenaeus vannamei)postlarvae.Aquaculture 234,497-511.
    
    Pante,M.J.R.,1990.Influence of environmental stress on the heritability of molting frequency andgrowth rate of the penaeid shrimp,Penaeus vannamei.University of Houston-Clear lake,Houston,TX,USA,M.Sc.Thesis.
    
    Robert,F.,Moseman,1994.Chemical disposition of boron in animals and humans.Environ healthperspect.102:113-117.
    
    Saoud,I.P.,Davis,D.A.,Rouse,D.B.2003.Suitability studies of inland well waters forlitopenaeus vannamei culture.Aquaculture.217:373-383.
    
    Schou,J.S.,Jansen,J.A.,Aggerbeck,B.,1984.Human pharmacokinetics and safety of boric acid.Arch Tocicol Suppl 7:232-235.
    
    Steven,J.,Hamilton,Kevin,J.B.1990.Acute toxicity of boron,molybdenum,and Selenium to fryof chinook salmon and coho salmon.Arch.Environ.Contain.Toxicol.19:366-373.
    
    Straus,D.L.,2003.The acute toxicity of copper to blue tilapia in dilutions of settled pond water.Aquaculture 219:233-240.
    
    Takeshi,F,,Nakahiro,I,,Kotaro,K.2007.Effect of fish size and water temperature on the acutetoxicity of boron to Japanese flounder Paralichthy olivaceus and red sea bream Pagrus major.Fisheries sci.73:356-363.
    
    Taylor,D.,Maddock,B.G,Mance,G,1985.The acute toxicity of nine "grey list" metals(arsenic,boron,chromium,copper,lead,nickel,tin,vanadium and zinc)to two marine fish species dab(Limanda limanda)and gray mullet(Cheion labrosus).Aquat.Toxicol.7:135-144
    
    Thompson,J.A.J.,Davis,J.C.,Drew,R.E.,1976.Toxicity,uptake and survey studies of boron inthe marine environment.Water Res.10:869-875.
    
    Treinen,K.A.,Chapin,R.E.,1991.Development of testicular lesions in F344 rats after treatmentwith boric acid.Toxicol Appl.Pharm.107:325-335.
    
    Turnbull,H.,Demann,J.G,Weston,R.F.,1954.Toxicity of various refinery materials tofreshwater fish.Ind.Eng.Chem.46:324-333.
    
    Wallen,I.E.,Greer,W.C.,Lasater,R.,1957.Toxicity to Gambusia affinis of certain pure chemicalsin turbid water.Sew Ind.Wastes.29:695-711.
    
    Wimmer,M.A.,Goldbach,H.E.1999.A miniaturized curcumin method for the determination ofboron in solutions and biological samples.J.plant Nutr.Soil.162:15-18.
    
    Wu,Z.W.,Pan,L.Q.,Zhang,H.X.2005.Effects of heavy metal ions on SOD activity ofLitopenaeus vannamei hepatopancreas,gill and blood.Chin.J.Appl Ecol.16(10):1962-1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700