猪肌肉组织差异表达基因BTG2及其家族基因BTG1和BTG3的分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BTG2基因属于BTG/TOB基因家族的重要成员,具有抗增殖和促分化的功能,我们在前期用抑制消减杂交技术对四月龄大白猪和梅山猪肌肉组织差异表达分析中发现BTG2基因表达量在品种间有极显著差异。而BTG1和BTG3基因作为其家族基因,已有报道认为它们在肌纤维的分化和生长过程中扮演着重要角色。鉴于此,本研究采用差异表达基因策略,选择BTG2、BTG1和BTG3基因作为影响猪肌肉生长发育的候选基因,开展了阶段性和不同组织表达变化规律、基因序列、遗传变异、基因结构、多态性与性状关联等方面的研究,获得如下研究结果:
     1、运用实时定量PCR的方法,检测了BTG2基因在大白和梅山猪胚胎期65d、出生后3d、35d、60d、120d和180d的背最长肌cDNA中的表达情况;检测了BTG1,BTG3在通城猪和大白猪出生后3d、21d、35d、60d、90d和120d背最长肌cDNA中的表达情况。结果表明:BTG2基因在肌肉发育不同阶段的表达趋势,在大白和梅山猪中具有相似趋势,均是先上调再下调,各阶段的表达量差异达到了极显著的水平(p<0.01);不同的是:BTG2基因在大白猪二月龄表达量达到最高,而在梅山猪中则是四月龄。BTG1基因在大白猪6个阶段的表达量呈逐渐下调趋势(p<0.01),在通城猪中则是先下调再上调,然后逐渐下调(p<0.01);品种问比较,大白猪和通城猪3d、21d、60d、90d的表达量差异都达到了极显著的水平(p<0.01)。BTG3基因在大白和通城猪肌肉生长发育不同阶段中的表达趋势大致相同:均是前期低表达,后期高表达,120d表达量最高;在两品种之间,除了出生后3d的表达量没有显著差异外,各阶段的表达量差异达到了显著的水平(p<0.05)。
     2、用RT-PCR的方法检测了BTG2、BTG1和BTG3三个基因在成年大白猪子宫、心脏、肝脏、脾脏、肾脏、脂肪组织、半腱肌和背最长肌中的表达规律。结果表明,BTG2基因在心肌、半腱肌和背最长肌中高表达,在子宫、肾脏和脾脏中中等程度表达,在肝和脂肪中低表达。BTG1和BTG3基因在子宫、肝脏和脾脏中相对高表达,在肾脏和脂肪组织中中等程度的表达,而在心肌、半腱肌和背最长肌中低表达。
     3、采用生物信息学分析方法和RACE等技术,以“大白猪-梅山猪”抑制消减文库中获得的差异表达序列(ESTs)为基础,获得了BTG2基因全长cDNA序列和基因组序列以及BTG1基因的部分cDNA序列。推导了猪BTG2基因的氨基酸序列,采用生物信息学的方法预测了它的结构和功能,发现BTG2基因推导氨基酸序列除具有BTG/TOB基因家族所共有的boxA和boxB保守结构域外,还含有3个蛋白激酶的磷酸化位点。
     4、在序列测定和比对基础上,建立了BTG2基因内含子1的Psp5Ⅱ-RFLP分型技术和BTG1基因3'非翻译区的Bsh1236Ⅰ-RFLP检测方法。对大白猪、梅山猪、二花脸猪、杜洛克猪、清平和长白猪进行的群体遗传学分析结果表明:两个SNP位点在中国地方猪种和引进猪种中的分布存在极显著的差异。利用“大白×梅山”资源家系F2群体,开展的BTG2和BTG1基因SNP与生产性状相关性研究发现:BTG2基因Psp5Ⅱ-RFLP位点的不同基因型与肥肉率、6-7肋背膘厚、平均背膘厚、胴体长存在显著相关,与臀部背膘厚和瘦肥肉比例成极显著的相关;GG基因型为增加瘦肉率和降低背膘厚的基因型。BTG1基因3'非翻译区Bsh1236Ⅰ-RFLP位点的基因型与皮率、瘦肉率、臀部背膘厚、肌内脂肪含量存在显著相关,与肌内水分和眼肌面积成极显著的相关;BTG1基因AA基因型是有利于降低背膘厚和提高瘦肉率的基因型。
BTG2(B-cell translocation gene 2),with properties of anti-proliferative and differentiation speedup,is a very important member of the B-cell translocation gene family.In our previous study,porcine BTG2 gene was found as a differentially expressed gene in different pig breeds from a forward and reverse Suppressive subtractive hybridization(SSH) cDNA libraries of longissimus dorsi muscle between 4-month Meishan and Yorkshire.BTG1 and BTG3 gene,members of BTG2 family genes,have been demonstrated to strongly inhibit myoblasts proliferation and stimulate myoblasts differentiation.Considered them as functional candidate genes associated with meat quality and muscle development,gene expression pattern in porcine muscle different developmental stages and different tissues,gene identification,genetic variation and its association with pig meat quality and production was carried out in this study.
     1.Using real-time PCR,BTG2 gene expression pattern in the skeletal muscle of 65dpc(day postconception),3dp(day postnatal),21dp,60dp,120dp and 180dp between Meishan and Yorkshire was detected.The expression trend of BTG2 in the six muscle developmental stages in Large white is coincident with Meishan pigs. That's firstly up-regulated and then down-regulated.The expression level of porcine BTG2 was relatively low at 65dpc in both Large white and Meishan pigs beeds,then increased to a peak at 60dp of Large white and at 120dp of Meishan,and then down-regulated in both breeds(p<0.01).Highly significant expression differences (p<0.01) between Large white and Meishan at all the stages were observed.BTG1 and BTG3 gnes expression pattern in the skeletal muscle of 3dp,21dp,35dp,60dp,90dp and 120dp btween Tongeheng and Yorkshire pig were also investigated.The expression trend of BTG1 in the six muscle developmental stages between the two breeds is same:it was expressed at 3dp with a relatively high level,and were down-regulated thereafter in both Large white and Tong eheng pigs(p<0.01).Highly significant expression differences(p<0.01) of BTG1 between Large white and Tongcheng pig at 3dp,21dp,60dp and 90dp were observed.The expression patten of BTG3 gene in the five muscle developmental stages in Large White is also generally coincident with Tongcheng pigs.That's firstly down-regulated and then up-regulated. Significant expression differences(p<0.05) of BTG3 between Large white and Tongcheng pig at 35dp,60dp,90dp and 120dp were observed.
     2.The expression pattern of BTG2,BTG1 and BTG3 gene in heart,longissimus dorsi muscle(LD),semitendinous muscle(ST),uterus,spleen,kidney,fat and liver tissues of adult Yorkshire was detected with RT-PCR.BTG2 gene was expressed predominantly in ST,LD and heart,whereas at a moderate level in uterus,spleen, kidney and at a low level in fat and liver tissues.BTG1 and BTG3 gene were found similar in expression profile in different tissues,these two genes expressed lower in heart and muscle,middle in kidney and fat,and higher in uterus,spleen,and liver.
     3.Base on differential expressed tags from the SSH cDNA libraries of longissimus dorsi muscle between 4-month Meishan and Yorkshire,combining bioinformatics and RACE methods,full-length cDNA and genomic DNA of porcine BTG2 gene and partial cDNA sequence near 3'-end of BTG1 gene were isolated and identified.The gene structure of BTG2 and its deduced amino acids sequence,protein structure were analyzed using bioinformatics software.From the analysis results, boxA and boxB conserved motifs of BTG/TOB(B-cell translocation gene) gene family was found,and other three protein kinase phosphorylation sites were found too.
     4.Detection of genetic mutations of BTG1 and BTG2 were performed and the 4 SNPs(Single nucleotide polymorphism) were detected by PCR-RFLP.Among these 4 SNPs,no changing coding amino acid mutation was detected.Two SNPs that can be detected by PCR-RFLP in BTG2 and BTG1 gene were analyzed among different pig populations.In different pig population,Genotype frequencies of BTG1 Bsh1236Ⅰ-RFLP and BTG2 Psp5Ⅱ-PCR-RFLP were significant difference among the detection pig populations.Association between BTG2 Psp5Ⅱ-PCR-RFLP and BTG1 Bsh1236Ⅰ-RFLP genotypes and meat quality traits were determined using the Least Square Analysis of Variance Procedure in a Large White and Meishan resource family F2 population.Statistic analysis revealed that highly significant associations between PCR-Psp5Ⅱ-RFLP genotype and buttock fat thickness,ratio of lean to fat were observed.Significant associations were observed with 6~7 rib fat thickness,fat meat percentage and average backfat thickness.GG genotype of BTG2 gene is positive to increase ratio of lean meat and decrease backfat thickness.Highly significant associations between Bsh1236Ⅰ-PCR-RFLP genotype and loin eye area,intramuscular water percentage were detected.And significant associations were observed with peau percentage,buttock fat thickness,lean meat percentage,Carcass length and intramuscular fat;AA genotype of BTG1 gene is positive to increase ratio of lean meat and decrease backfat thickness.
引文
1.胡静静,滕丽萍,袁庆新,袁栎,周锦勇,仲燕,刘莉沽,德伟.BTG2基因在大鼠胚胎胰腺不同发育阶段的表达.中国生物工程杂志,2005,25:71-75
    2.李学伟.四川猪与引进猪及杂种间肌肉品质的比较研究.四川农业大学学报,1992,10:285-290
    3.王楚端.长白猪、北京黑猪及民猪肌肉组织学特性研究.中国畜牧杂志,1995,32:33-34
    4.叶春,孟荣责,胡先责.BTG2基因在人胰腺癌中的表达及其与胰腺癌细胞增殖和凋亡的关系.胰腺病学,2005,5:162-165
    5.熊火印.地方品种、外来品种及其杂种猪肉脂肪酸组成的气相色谱分析.中国畜牧杂志,1991,27:14-16
    6.赵书广主编.中国养猪大成.北京:中国农业出版社,2001:41-46
    7.熊远著,邓昌彦.种猪测定原理与方法.北京:中国农业出版社,1999:57-118
    8.Allen RE,Merkel RA,Young RB.Cellular aspects of muscle growth:myogenic cellproliferation.J.Anim.Sci;1979,49(1):115-127.
    9.Anne R,Siphie M,Pierrick R et al.BTG1:A Triiodothyronine Target Involved in the Myogeic Influence if the Hormone.Exp Cell Res,1999,249:337-348
    10.Andersson L,Haley C S,Ellegren H,et al.,Genetic mapping of quantitative trait loci for growth and fatness in pigs.Science:1994,263(25):1771-1774
    11.Archibald,A.L.Livestock genetics:fat pigs can blame their genes.Current Biology,1994,4:728-30.
    12.Bandman D,Zdanis.An immunological method to assess protein degradation in postmortem muscle.Meat Sci,1988,22:1
    13.Berthet,C.,Guehenneux,F.,Revol,V.,Samarut,C.,Lukaszewicz,A.,Dehay,C.,Dumontet,C.,Magaud,J.P.and Rouault,J.P.Interaction of PRMT1with BTG/TOB proteins in cell signalling:molecular analysis and functional aspects.Genes Cells 2002,7,29-39.
    14.BradburyA,Possenti R,Shooter E M,Tirone F.Molecular cloning of PC3,a putatively secreted protein whose mRNA is induced by nerve growth factor and depolarization.Proc.Natl Acad Sci USA.1991,88:3353-3357.
    15.Brent GA,Moore DD and Larsen PR.Thyroid hormone regulation of gene expression (Review) Annu Rev Physiol.1991,53:1735
    16.Buanne P,Corrent G,Micheli L,Palena A,Lavia P,Spadafora C,Lakshmana M K, Rinaldi A, Banfi S, Quarto M, Bulfone A, Tirone F. Cloning of PC3B, a novel member of the PC3/BTG/TOB family of growth inhibitory genes, highly expressed in the olfactory epithelium. Genomics, 2000, 68:253-263
    17. Busson M, Carazo A, SeyerP, Grandemange S, Casas F, Pessemesse L, Rouault J P, Wrutniak-Cabello C, Cabello G. Coactivation of nuclear receptors and myogenic factors induces the major BTGl influence on muscle differentiation. Oncogene, 2005, 24: 1698-1710.
    18. Busson, M., et al., Coactivation of nuclear receptors and myogenic factors induces the major BTGl influence on muscle differentiation. Oncogene 2005, 24:1698-1710.
    19. Campion DR, . Richardson LR, Reagan JO, Kraeling RR Changes in the Satellite cell population in fetal pig skeletal muscle. J. Anim. Sci, 1979, 48(5): 1109-1115.
    20. Campion DR, Richardson LR, Reagan JO, ICraeling RR. Changes in thesatellite cell population during postnatal growth of pig skeletal muscle. J. Anim. Sci, 1981, 52(5): 1014-1018. Chungl983; Ethertonl982 ; Brentl991
    21. Chung CS, Meserole VK and Etherton TD. Temporal nature of insulin binding and insulin-stimulated glucose metabolism in isolated swine adipocytes. J Anim Sci.1983, 56(1): 58-66
    22. Dwyer C M, Fletcher J M, Stickland N C. Muscle cellularity and postnatal growth in the pig. J Anim Sci, 1993, 71:3339-3343
    23. el-Ghissassi , F., Valsesia-Wittmann, S., Falette, N., Duriez, C., Walden, P. D. and Puisieux, A. BTG2 (TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene 2002, 21:6772-6778.
    24. Etherton TD. The role of insulin-receptor interactions in regulation of nutrient utilization by skeletal muscle and adipose tissue: A review. J Anim Sci. 1982, 54(1): 5866
    25. Feldman, J.L., Stockdale, F.E., Temporal appearance of satellite cells during myogenesis. Dev. Biol. 1992, 153:217-226.
    26. Feng et al., 2007. Molecular characterization of the BTG2 and BTG3 genes in fetal muscle development of pigs . Gene 2007 403: 170-177.
    27. Felice T. The Gene PC3TIS21/BTG2, Prototype Member of the PC3/BTG/TOB Family: Regulator in Control of Cell Growth, Differentiation, and DNA Repair? Journal of cellular physiology, 2001, 187:155-165.
    28. Fletcher B S, Lim R W, Varnum B C, Kujubu D A, Koski R A, Hershman H R. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J BiolChem, 1991, 266:14511-14518.
    29. Gupta S K, Majumdar S, Bhattacharya T K. Ghosh T C. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochem Biophys Res Commun, 2000, 269: 692-696
    30. Hamalainen N, Pette D. Patterns of myosin isoforms in mammalian skeletal muscle fibers. Microsc. Res Tech, 1995, 30:381-389.
    31. Harbitz I, Kristensen T, Bosnes M, Kran S, Davies W. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615--Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian landrace pigs. Anim Genet, 1992, 23:395-402
    32. Hieter P, Boguski M. Functional genomics: it's all how you read it. Science, 1997, 278: 601-602
    33. Iacopetti, P., Michelini, M., Stuckmann, I., Oback, B., Aaku-Saraste, E. and Huttner, W. B. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl. Acad. Sci. USA 96, 1999, 4639-4644.
    34. Iwai, K., et al., An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochem. Biophys. Res. 2004, Commun. 316, 628-635.
    35. Jiang, Z.H., et al., Significant associations of the mitochondrial transcription factor A promoter polymorphisms with marbling and subcutaneous fat depth inWagyu×Limousin F2 crosses. Biochem. Bioph. Res. 2005, Co. 334, 516-523.
    36. Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004 Jan 15; 16(2): 166-77
    37. Kim C W, Hong Y H, Yun S I, Lee S R, Kim Y H , Kim M S, Chung K H, Jung W Y, Kwon E J, Hwang S S, Park D H, Cho K K, Lee J G, Kim B W, Kim J W, Kang Y S, Yeo J S, Chang K T. Use of microsatellite markers to detect quantitative trait loci in Yorkshire pigs. J Reprod Dev, 2006, 52:229-237.
    38. Kimchi-Sarfaty C, Oh J M, Kim I W, Sauna Z E, Calcagno A M, Ambudkar S V, Gottesman M M.A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315:525-528
    39. Kim, C.W., et al., Use of microsatellite markers to detect quantitative trait loci in Yorkshire pigs. J. Reprod. 2006, Dev. 52, 229-237.
    40. Lawrie R A. Meat Science. 5th ed, 188 and 206. Pergamon Press, New York, NY. , 1991: 56-60
    41. Lim IK, Kim NK, Lee MS, Lee SH. Expression of TIS-21 gene during the development of Balb/c mice and the liver regeneration. Korean J Biochem, 1994, 26: 169-175
    42. Liu, B. H. 1998. Statistical Genomics: Linkage, Mapping and QTL Analysis. CRC Press LLC. Boca Raton. 1998, pp. 404-409.
    43. Lefaucheur L, Edom F, Ecolan P, Butler-Browne G S. Pattern of muscle fiber type formation in the pig. Dev. Dyn, 1995, 203: 27-41.
    44. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science, 1997, 276: 1404-1407.
    45. Lin W J, Gary J D, Yang M C, Clarke S, Herschman H R. The mammalian immediateearly TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem, 1996, 271: 15034-15044
    46. Marchal S, Cassar-Malek I, Magaud J P, Rouault J P, Wrutniak C, Cabello G, Stimulation of avian myoblast differentiation by triiodothyronine: possible involvement of the cAMP pathway. Exp Cell Res, 1995, 220: 1-10.
    47. MatsudaS, Kawamura-Tsuzuku J, Ohsugi M, YoshidaM, EmiM, NakamuraY, Onda M, Yoshida Y, Nishiyama A, Yama-moto T. Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene, 1996, 12: 705-713.
    48. McLennan I S. Neurogenic and myogenic regulation of skeletal muscle formation: A critical re-evaluation. Prog Neurobiol, 1994, 44:119-140.
    49. Milan, D., et al., Detection of quantitative trait loci for carcass composition traits in pigs. Genet. Sel. Evol. 2002, 34: 705-728.
    50. Milan D, Bidanel J P, lannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol, 2002, 34: 705-728.
    51. Montagnoli A, Guardavaccaro D, Starace G, Tirone F. Overexpression of the nerve growth factor-inducing PC3 immediate early gene is associated with growth inhibition. Cell Growth Differ, 1996, 7:1327-1336
    52. Ontell, M., D. Bourke, and D. Hughes. Cytoarchitecture of the fetal murine soleus muscle. Am. J.Anat, 1988, 181:267-278.
    53. Padma, B., P.Kumar, V. Choudhary, S. K. Dhara, A. Mishra, T. K. Bhattacharya, B. Bhushan and A. Sharma. Nucleotide sequencing and PCR-RFLP of insulin-like growth factor binding protein-3 gene in Riverine Buffalo (Bubalus bubalis). Asian-Aust. J. Anim. Sci, 2004, 17(7):910-913.
    54. Picard B, Lefaucheur L, Berri C, Duclos M J. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev, 2002, 42:415-431.
    55. Quintanilla, R., Milan, D., Bidanel, J.P., A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations. Genet. Sel. Evol. 2002, 34: 193-210.
    56. Raouf, A., and A. Seth. Discovery of osteoblast-associated genes using cDNA microarrays. Bone, 2002, 30:463-471.
    57. Rasmus Wernersson, Mikke H Schierup, Frank G J(?)rgensen. et al, Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing, BMC Genomics 2005, 6:70 < http://www. biomedcentral.com/1471-2164/6/70
    58. Rodier A, Marchal-Victorion S, Rochard P, Casas F, Cassar-Malek I, Rouault J P, Magaud J P, Mason D Y, Wrutniak C, Cabello G BTG1: A Triiodothyronine Target Involved in the Myogeniclnfluence of the Hormone. Exp Cell Res, 1999, 249: 337-348.
    59. Rodier, A.P., et al., Identification of functional domains involved in BTG1 cell localization. Oncogene 2001, 20: 2691-2703.
    60. Ross, J. J., M. J. Duxson, and A. J. Harris. Formation of primary and secondary myotubes in rat lumbrical muscles. Development, 1987, 100:383-394.
    61. Rothschild M F, Jacobson C, Vaske C et al. , The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proceedings of National Academy of science, 1996, 93:201-205
    62. Rothschild B M. Quality of care of musculoskeletal conditions, Rheumatology Oxford, 2003, 42:703-704.
    63. Rohrer, G.A., Ford, Ji., Wise, T.H., Vallet, J.L., Christenson, R.K., Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J. Anim. Sci. 1999, 77: 1385-1391.
    64. Sambrook J. et al. Molecular Cloning: A Laboratory Manual, 2rd Ed. Cold Spring Laboratory Press, 1989, New York.
    65. Smbrook, J. and D. Russell. Molecular Cloning: A Laboratry Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, 2001, New York.
    66. Shaw G, Kamen R. A conserved AU sequence from the 3'-untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell, 1986, 46:659-667.
    67. Stal P, Eriksson P O, Schiaffino S, Butler-Browne G S, Thornell L E. Differences in myosin composition between human oro-facial, masticatory and limb muscles: enzyme, immunohisto and biochemical studies. J Muscle Res Cell Motil, 1994, 15: 517-534.
    68. Stickland, N. C., and S. E. Handel. The numbers and types of muscle fibers in large and small breeds of pigs. J. Anat, 1986, 147:181-189.
    69. Soussi-Yanicostas, N., L'ontogenèse musculaire de l'induction mésodermique a la formation du sarcomère. Bull. Inst. Pasteur, 1991, 89: 255-295.
    70. Stal, P., Eriksson, P.O., Schiaffino, S., Butler-Browne, G.S., Thornell, L.E., Differences in myosin composition between human oro-facial, masticatory and limb muscles: enzyme, immunohisto and biochemical studies. J. MuscleRes. Cell Motil, 1994, 15:517-534.
    71. Tang, Z., et al., LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome. 2007, Biol. 8, R115.
    72. Tirone, F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell. Physiol, 2001, 187:155-165.
    73. Walbert, J.B., et al., FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J. Cell. Biol. 2004, 164: 175-184.
    74. Wigmore PM, Stickland NC. Muscle development in large and small pig fetues. J Anat, 1983, 137:235-245
    75. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet, 1998, 82:182-188.
    76. Young VR. Muscle protein accretion. J. Anim. Sci, 1985, 61(Suppl.2):39-56.
    77. Yu, T.P., Tuggle, C.K., Schmitz, C.B., Rothschild, M.F., Association of PIT1 polymorphisms with growth and carcass traits in pigs. J. Anim. Sci, 1995, 73: 1282-1288.
    78. Zhu, Z.M., Zhang, J.B., Li, K., Zhao, S.H., Cloning, mapping and association study with carcass traits of the porcine SDHD gene. Anim.Genet, 2005, 36: 191-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700