不同品种猪繁殖轴Kiss1/GPR54表达差异及能量水平对母猪初情日龄的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验旨在研究早熟和晚熟母猪品种(梅山和长大母猪)繁殖轴(下丘脑-垂体-卵巢组织)kiss1/GPR54基因表达差异及其激素的变化,并进一步考察日粮能量水平对晚熟品种母猪初情启动的影响。研究内容如下:
     试验一、分别选取70日龄、初情启动的梅山和长大母猪(n=4),采用ELISA法测定母猪血液中Leptin和E2水平,采用RT-PCR法克隆两品种Kiss1基因序列,荧光定量PCR法检测母猪繁殖轴上Kiss1/GPR54基因,下丘脑LeptinR和ERα,以及卵巢上LHR基因表达的情况。结果发现:
     (1)基因分析发现,梅山和长大母猪品种Kiss1基因序列一致。
     (2)梅山和长大母猪平均初情日龄分别为100天和199天,梅山母猪繁殖轴Kiss1表达量显著高于长大母猪(P<0.05),但受体GPR54 mRNA表达量差异不显著(P>0.5)。两个品种母猪繁殖轴Kissl/GPR54 mRNA表达量均随其日龄增加而升高(P<0.05)。
     (3)梅山母猪血液中Leptin浓度在70日龄时显著高于长大母猪(P<0.05),但初情启动时差异不显著(P>0.05);梅山猪血液中E2浓度初情启动时显著高于长大母猪,70日龄未发现两品种存在差异(P>0.05);随日龄的增加,母猪血液中leptin和E2浓度都显著升高(P<0.05)。
     (4)基因检测发现,梅山母猪下丘脑ERa mRNA表达显著高于长大母猪(P<0.05);而下丘脑LeptinR mRNA表达量仅显著高于70日龄长大母猪(P<0.05),初情时LeptinR mRNA表达量无显著差异(P>0.05);梅山母猪卵巢LHR mRNA表达量显著高于70日龄与初情长大母猪(P<0.05);两品种母猪下丘脑LeptinR、ERαmRNA及卵巢LHR mRNA表达量均随其日龄增加而升高(P<0.05)。
     (5) Person相关性分析发现,除卵巢上GPR54基因外(P>0.05),母猪血液中leptin水平与HPG轴上Kissl和GPR54基因表达之间存在显著正相关关系(P<0.05)。除下丘脑Kissl基因外(P<0.05),母猪血液中E2水平与HPG轴上Kissl和GPR54基因表达之间不存在显著正相关关系(P>0.05)。
     试验二、选取体重50±4.5kg,日龄和体况相近的LY母猪20头,按照配对试验设计原则分配到两个处理组,能量限饲组和NRC水平组(10个重复/处理,每个重复/1头猪)。NRC水平组日粮能量水平参照NRC(1998)后备母猪推荐水平,能量限饲组能量供给为NRC水平组70%,其它养分摄入量均一致。母猪50 kg,80 kg,100kg和初情启动时收集血液,采用ELISA法测定血液中E2和leptin水平。母猪超过80 kg后,每天两次进行发情观察,母猪首次出现阴户红肿并伴有稀薄粘液定义为初情启动。分别考察两个处理组母猪的初情日龄以及初情期的体重和P2点背膘厚度,结果如下:
     (6)与能量限饲组相比,NRC水平组母猪能及早启动初情期(177.7±3.4 d VS 190.1±10.2d, P<0.05),并具有较高的初情体重、日增重和P2背膘厚度(122.6±7.3kg VS 108.4±4.1 kg、0.85±0.02 kg/d VS 0.65±0.15 kg/d和13.50±1.38 mm VS 10.57±1.27mm; P<0.05)
     (7)母猪血液中Leptin和E2水平随日龄的增加而提高,母猪在100kg阶段和初情期时显著高于50kg和80kg体重阶段(P<0.05);能量水平对80kg后母猪血液Leptin和E2水平有影响,能量限饲组显著低于NRC水平组(P<0.05)。同时NRC水平组母猪下丘脑Kiss1基因表达量显著高于能量限饲组(P<0.05),但两能量水平组GPR54基因表达无显著差异(P>0.05)。根据以上结果,可以得到以下结论:
     (1)梅山与LY母猪Kiss1基因序列一致,但母猪不同品种和日龄在繁殖轴上kiss1基因的表达存在差异,繁殖轴kiss1的高度表达有利于促发母猪初情启动;
     (2)母猪血液中高Leptin和E2水平可上调繁殖轴Kiss1基因表达,梅山母猪血液中高Leptin和E2水平有利于其初情及早启动,日粮高能量水平可提高母猪血液Leptin和E2水平而促发初情的启动。
The main objective of the present study was to investigate the difference of Kissl/GPR54 gene expression level on Gonadal (hypothalamus-pituitary-ovary) axis and related hormones in different breed gilts (Meishan and LY), Additionally, whether dietary energy level could induce variation for the age of puberty onset in the breed of late-maturing gilts. Two experiments was conducted:
     In experiment 1, meishan gilts (at estrus, n=4) and LY gilts (non-estrus, n=4) at age of 70 days were used to collect samples for determination the concentration of serum Leptin and E2 by ELISA, Kiss1 gene sequence clone by RT-PCR, and Kiss1/GPR54 expression in reproductive axis, LeptinR and ERαin hypothalamus, and LHR in ovary by RT-PCR.
     (1) DNA sequence of Kiss1 gene between meishan and LY gilts were not different.
     (2) The average puberty onset age of Meishan and LY was 100d and 199d separately, Gene expression encoded by Kiss1 in reproductive axis (including hypothalamus, pituitary and ovary) were significantly higher in LY gilts (P<0.05), but GPR54 mRNA expression level was similar between two breeds (P>0.05). Gene expression level encoded by Kissl/GPR54 in reproductive axis were gradually higher as the advent of first estrus in both meishan and LY gilts (P<0.05)
     (3) Leptin concentration in meishan gilts at age of 70 days was higher than in LY gilts (P<0.05), but circulating concentration of Leptin at estrus was similar between two breeds (P>0.05). E2 concentration in meishan gilts at estrus was significantly higher than that in LY gilts (P<0.05), but was similar at 70 days of age (P>0.05). Both Leptin and E2 concentration was gradually higher as the increase of age (P<0.05)
     (4) ERa mRNA expression level was higher in meishan gilts than LY gilts in hypothalamus (P<0.05). LeptinR mRNA expression in hypothalamus was higher in meishan gilts than LY gilts at 70 days of age (P<0.05), but LeptinR mRNA expression was not different between two breeds at estrus (P>0.05). LHR mRNA expression in ovary at estrus was higher than that in LY gilts at 70 days of age and at estrus (P<0.05). LeptinR and ERa mRNA in hypothalamus, LHR mRNA expression in ovary was gradually higher as the increase of age (P<0.05)
     (5) Person correlation analysis revealed that circulating Leptin concentration was positively correlated with Kiss1 and GPR54 expressions (with exception for GPR54 in ovary) in HPG axis (P<0.05). Circulating E2 concentration was positively correlated with Kissl expressions in hypothalamus (P<0.05), but not for Kissl and GPR54 expression in HPG axis (P>0.05).
     In experiment 2, twenty LY gilts with initial bodyweight of 50±4.5 kg were randomly allocated to 2 treatment groups based on paired experimental design, ten gilts were fed energy restriction of 70% energy requirement (L) of NRC(1998), remaining ten LY gilts were fed 100% energy requirement (H) of NRC(1998), notably, these two groups of gilts were fed similar nutrients except for the difference of energy intake. Circulating blood samples were collected at the age of 50 kg,80 kg,100 kg and at estrus, for the determination of serum E2 and Leptin concentrations. Estrus check twice per day were conducted when bodyweight of gilts over 80 kg. Occurrence of pink vaginal orifice and mucosal fluid leak was defined as estrus. The age, bodyweight and backfat P2 thickness at estrus initiation were determined.
     (6) Compared with gilts in L group, gilts in H group was 13 days earlier to reach estrus (177.7±3.4d VS 190.1±10.2 d, P<0.05). Gilts in H group had higher bodyweight, average daily gain, P2 fat thickness(122.6±7.3 kg VS 108.4±4.1 kg; 0.85±0.02 kg/d VS 0.65±0.15 kg/d; 13.50±1.38 mm VS 10.57±1.27 mm, P<0.05).
     (7) Circulating Leptin and E2 concentrations was higher as the increase of age, which was evidenced by higher Leptin and E2 concentration at bodyweight of 100kg than that at 50 kg and 80 kg (P<0.05). Leptin and E2 concentrations were affected by dietary treatment. Leptin and E2 concentration in L group was significantly lower than H gilts (P<0.05). Kissl expression in hypothalamus was significantly higher than L gilts (P<0.05), but GPR54 expression was not affected by diets (P>0.05)
     Conclusion:
     (1) There was no difference of Kissl DNA sequence in meishan gilts and LY gilts, but Kissl/GPR54 expression in reproductive axis was different between breeds, the higher Kissl expression could be beneficial for the initiation of estrus.
     (2) Higher circulating Leptin and E2 could up-regulate the Kissl expression, and higher Leptin and E2 concentration could promote the initiation of estrus. Dietary high energy level could promote the puberty onset through higher Leptin and E2 level.
引文
[1]Tummaruk P., Tantasuparuk W., Techakumphu M., et al. Age, body weight and backfat thickness at first observed oestrus in crossbred Landrace A Yorkshire gilts, seasonal variations and their influence on subsequence reproductive performance[J]. Animal reproduction science.2007, Vol.99 (1-2):167-181
    [2]Manuel T. GPR54 and kisspeptin in reproduction[J]. Human Reproduction Update.2006, Vol.12 (5):631-639
    [3]Gottsch M., Cunningham M., Smith J., et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse[J]. Endocrinology.2004, Vol.145 (9):4073-4077
    [4]Han S., Gottsch M., Lee K., et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty[J]. Journal of Neuroscience.2005, Vol.25 (49):1349-1356
    [5]Roa J., Vigo E., Castellano J., et al. Hypothalamic expression of Kissl system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female rat[J]. Endocrinology.2006, Vol.147 (6):2864-2878
    [6]Dungan H. M., Gottsch M. L., Zeng H., et al. The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone[J]. J Neurosci.2007, Vol.27 (44):12088-12095
    [7]Dhillo W., Chaudhri O., Thompson E., et al. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women[J]. Journal of Clinical Endocrinology & Metabolism.2007, Vol. 92 (10):3958-3966
    [8]Smith J., Clay C., Caraty A., et al. Kissl messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season[J]. Endocrinology.2007, Vol.148 (3):1150-1157
    [9]Shahab M., Mastronardi C., Seminara S., et al. Increased hypothalamic GPR54 signaling:a potential mechanism for initiation of puberty in primates [J]. Proceedings of the National Academy of Sciences.2005, Vol.102 (6):2129-2134
    [10]Suzuki S., Kadokawa H., Hashizume T. Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells[J]. Animal reproduction science.2008, Vol.103 (3-4):360-365
    [11]Hughes P. Factors affecting the natural attainment of puberty in the gilt[J]. Control of Pig Reproduction.1982, Vol.34 (5):117-138
    [12]Navarro V. M., Castellano J. M., Fernandez-Fernandez R., et al. Developmental and hormonally regulated messenger ribonucleic acid expression of Kissl and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of Kissl peptide[J]. Endocrinology.2004, Vol.145 (10):4565-4574
    [13]Smith J., Acohido B., Clifton D., et al. Kiss1 Neurones Are Direct Targets for Leptin in the ob/ob Mouse[J]. Journal of neuroendocrinology.2006, Vol.18 (4):298-303
    [14]Quinton N., Smith R., Clayton P., et al. Leptin binding activity changes with age:the link between leptin and puberty[J]. Journal of Clinical Endocrinology & Metabolism.1999, Vol.84 (7):2336-2341
    [15]Ebling F., Cronin A. The neurobiology of reproductive development[J]. Neuroreport.2000, Vol.11 (16):R23-33
    [16]Navarro V. M., Fernandez-Fernandez R., Castellano J. M., et al. Advanced vaginal opening and precocious activation of the reproductive axis by Kissl peptide, the endogenous ligand of GPR54[J]. J Physiol.2004, Vol.561 (Pt 2): 379-386
    [17]Lents C., Heidorn N., Barb C., et al. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts[J]. Reproduction.2008, Vol.135 (6):879-887
    [18]Lee J., Miele M., Hicks D., et al. Kissl, a novel human malignant melanoma metastasis-suppressor gene[J]. JNCI Journal of the National Cancer Institute.1996, Vol.88 (23):1731-1737
    [19]Kotani M., Detheux M., Vandenbogaerde A., et al. The metastasis suppressor gene Kiss1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54[J]. J Biol Chem.2001, Vol.276 (37):34631-34636
    [20]Dungan H., Clifton D., Steiner R. Minireview:kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion[J]. Endocrinology.2006, Vol.147 (3):1154-1158
    [21]Seminara S., Messager S., Chatzidaki E., et al. The GPR54 gene as a regulator of puberty[J]. The New England journal of medicine.2003, Vol.349 (17):1614-1627
    [22]de Roux N., Genin E., Carel J., et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS 1-derived peptide receptor GPR54[J]. Proceedings of the National Academy of Sciences of the United States of America.2003, Vol.100(19):10972-10976
    [23]Schwanzel-Fukuda M. Origin and migration of luteinizing hormone-releasing hormone neurons in mammals[J]. Microsc Res Tech.1999, Vol.44 (1):2-10
    [24]Seminara S., Messager S., Chatzidaki E., et al. The GPR54 gene as a regulator of puberty[J]. The New England journal of medicine.2003, Vol.349 (17):1614-1627
    [25]Funes S., Hedrick J., Vassileva G, et al. The Kissl receptor GPR54 is essential for the development of the murine reproductive system[J]. Biochemical and biophysical research communications.2003, Vol.312 (4):1357-1363
    [26]d'Anglemont de Tassigny X., Fagg L. A., Dixon J. P., et al. Hypogonadotropic hypogonadism in mice lacking a functional Kissl gene[J]. Proc Natl Acad Sci U S A.2007, Vol.104 (25):10714-10719
    [27]Navarro V, Castellano J., Fernandez-Fernandez R., et al. Effects of Kissl peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat[J]. Endocrinology.2005, Vol.146 (4):1689-1697
    [28]Plant T. The role of Kiss1 in the regulation of puberty in higher primates[J]. European journal of endocrinology.2006, Vol.155 (suppl_1):S11-S16
    [29]Irwig M., Fraley G., Smith J., et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of Kiss1 mRNA in the male rat[J]. Neuroendocrinology.2004, Vol.80 (4):264-272
    [30]Matsui H., Takatsu Y., Kumano S., et al. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat[J]. Biochem Biophys Res Commun.2004, Vol.320 (2):383-388
    [31]Messager S., Chatzidaki E. E., Ma D., et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54[J]. Proc Natl Acad Sci U S A.2005, Vol.102 (5):1761-1766
    [32]Seminara S. B., Dipietro M. J., Ramaswamy S., et al. Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta):a finding with therapeutic implications [J]. Endocrinology.2006, Vol.147 (5): 2122-2126
    [33]Dhillo W., Chaudhri O., Patterson M., et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males[J]. Journal of Clinical Endocrinology & Metabolism.2005, Vol.90 (12):6609-6615
    [34]Smith J., Dungan H., Stoll E., et al. Differential regulation of Kissl mRNA expression by sex steroids in the brain of the male mouse[J]. Endocrinology.2005, Vol.146 (7):2976-2984
    [35]Smith J. Kisspeptin signalling in the brain:steroid regulation in the rodent and ewe[J]. Brain Research Reviews.2008, Vol.57 (2):288-298
    [36]Revel F. G., Saboureau M., Masson-Pevet M., et al. Kisspeptin mediates the photoperiodic control of reproduction in hamsters[J]. Curr Biol.2006, Vol.16 (17):1730-1735
    [37]Shahab M., Mastronardi C., Seminara S., et al. Increased hypothalamic GPR54 signaling:a potential mechanism for initiation of puberty in primates[J]. Proceedings of the National Academy of Sciences.2005, Vol.102 (6):2129-2134
    [38]Rometo A., Krajewski S., Lou Voytko M., et al. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys[J]. Journal of Clinical Endocrinology & Metabolism.2007, Vol.92 (7):2744-2750
    [39]Smith J., Acohido B., Clifton D., et al. Kissl Neurones Are Direct Targets for Leptin in the ob/ob Mouse[J]. Journal of neuroendocrinology.2006, Vol.18(4):1150-1157
    [40]Smith J., Cunningham M., Rissman E., et al. Regulation of Kissl gene expression in the brain of the female mouse[J]. Endocrinology.2005, Vol.146 (9):3686-3692
    [41]Kauffman A., Gottsch M., Roa J., et al. Sexual differentiation of Kiss 1 gene expression in the brain of the rat[J]. Endocrinology.2007, Vol.148 (4):1774-1783
    [42]Kinoshita M., Tsukamura H., Adachi S., et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats[J]. Endocrinology.2005, Vol.146 (10):4431-4436
    [43]Richard N., Galmiche G., Corvaisier S., et al. Kiss1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone [J]. J Neuroendocrinol.2008, Vol. 20 (3):381-393
    [44]Smith J., Rao A., Pereira A., et al. Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge:evidence that gonadotropes are not direct targets of kisspeptin in vivo[J]. Endocrinology.2008, Vol.149 (4):1951-1959
    [45]Smith J., Rao A., Pereira A., et al. Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge:evidence that gonadotropes are not direct targets of kisspeptin in vivo[J]. Endocrinology.2008, Vol.149 (4):1951-1959
    [46]Gaytan F., Gaytan M., Castellano J., et al. Kissl in the mammalian ovary:distribution of kisspeptin in human and marmoset and alterations in Kissl mRNA levels in a rat model of ovulatory dysfunction[J]. American Journal of Physiology-Endocrinology And Metabolism.2009, Vol.296 (3):E520-E531
    [47]Inoue N., Hirano T., Uenoyama Y., et al. Localization of Kisspeptin and Gonadotropin-Releasing Hormone (GnRH) in Developing Ovarian Follicles of Pigs and Goats[J]. Biology of reproduction.2009, Vol.81 (1):551-559
    [48]Castellano J. M., Gaytan M., Roa J., et al. Expression of Kissl in rat ovary:putative local regulator of ovulation?[J]. Endocrinology.2006, Vol.147 (10):4852-4862
    [49]Castellano J., Navarro V., Fernandez-Fernandez R., et al. Changes in hypothalamic Kissl system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition[J]. Endocrinology.2005, Vol.146 (9): 3917-3925
    [50]Smith J., Cunningham M., Rissman E., et al. Regulation of Kissl gene expression in the brain of the female mouse[J]. Endocrinology.2005, Vol.146 (9):3686-3692
    [51]Roa J., Vigo E., Castellano J. M., et al. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat:implications for the generation of the preovulatory surge[J]. Endocrinology.2008, Vol.149 (4):1627-1637
    [52]Goodman R. L. Neural systems mediating the negative feedback actions of estradiol and progesterone in the ewe[J]. Acta Neurobiol Exp (Wars).1996, Vol.56 (3):727-741
    [53]Chappell P. E., Lydon J. P., Conneely O. M., et al. Endocrine defects in mice carrying a null mutation for the progesterone receptor gene[J]. Endocrinology.1997, Vol.138 (10):4147-4152
    [54]Roa J., Vigo E., Castellano J. M., et al. Follicle-stimulating hormone responses to kisspeptin in the female rat at the preovulatory period:modulation by estrogen and progesterone receptors[J]. Endocrinology.2008, Vol.149 (11): 5783-5790
    [55]Smith J., Dungan H., Stoll E., et al. Differential regulation of Kissl mRNA expression by sex steroids in the brain of the male mouse[J]. Endocrinology.2005, Vol.146 (7):2976-2984
    [56]Herbison A. E., Skinner D. C., Robinson J. E., et al. Androgen receptor-immunoreactive cells in ram hypothalamus: distribution and co-localization patterns with gonadotropin-releasing hormone, somatostatin and tyrosine hydroxylase[J]. Neuroendocrinology.1996, Vol.63 (2):120-131
    [57]Huang X., Harlan R. E. Absence of androgen receptors in LHRH immunoreactive neurons[J]. Brain Res.1993, Vol. 624 (1-2):309-311
    [58]Skinner D. C., Caraty A., Allingham R. Unmasking the progesterone receptor in the preoptic area and hypothalamus of the ewe:no colocalization with gonadotropin-releasing neurons[J]. Endocrinology.2001, Vol.142 (2):573-579
    [59]Skinner D. C., Dufourny L. Oestrogen receptor beta-immunoreactive neurones in the ovine hypothalamus:distribution and colocalisation with gonadotropin-releasing hormone[J]. J Neuroendocrinol.2005, Vol.17 (1):29-39
    [60]Hrabovszky E., Steinhauser A., Barabas K., et al. Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain[J]. Endocrinology.2001, Vol.142 (7):3261-3264
    [61]Castellano J. M., Navarro V. M., Fernandez-Fernandez R., et al. Changes in hypothalamic Kiss1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition[J]. Endocrinology.2005, Vol. 146 (9):3917-3925
    [62]Luque R., Kineman R., Tena-Sempere M. Regulation of hypothalamic expression of Kissl and GPR54 genes by metabolic factors:analyses using mouse models and a cell line[J]. Endocrinology.2007, Vol.148 (10):4601-4611
    [63]周平,吴德,周东胜等.能量水平及来源对后备母猪体成分、初情日龄和发情表现的影响[J].动物营养学报.2009,Vol.(2):123-129
    [64]张勇.中国梅山猪在日本[J].动物科学与动物医学.2003,Vol.:63-65
    [65]刘萍.KISS1基因在母猪初情期下丘脑-垂体-卵巢轴中的定位和发育性变化[D].学位论文,杨州大学.2008
    [66]Li S., Ren J., Yang G., et al. Characterization of the porcine Kisspeptins receptor gene and evaluation as candidate for timing of puberty in sows[J]. Journal of Animal Breeding and Genetics.2008, Vol.125 (4):219-227
    [67]Tomikawa J., Homma T., Tajima S., et al. Molecular Characterization and Estrogen Regulation of Hypothalamic KISS1 Gene in the Pig[J]. Biology of reproduction.2009, Vol.82 (2):313-319
    [68]周春宝,汪劲能,陆艳凤等.猪gpr54基因在下丘脑、垂体、卵巢发育性表达变化的研究[J].畜牧兽医学报.2009,Vol.(3):333-337
    [69]Parhar I. S., Ogawa S., Sakuma Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish[J]. Endocrinology. 2004, Vol.145 (8):3613-3618
    [70]Popa S., Clifton D., Steiner R. The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction[J]. 2008, Vol.70:213-238
    [71]Miller A. T., Picton H. M., Craigon J., et al. Follicle Dynamics and Aromatase Activity in High-Ovulating Meishan Sows and in Large-White Hybrid Contemporaries[J].Biology of reproduction.1998, Vol.58:512-520
    [72]Asghar A., Gray J., Booren A., et al. Effects of supranutritional dietary vitamin E levels on subcellular deposition of a-tocopherol in the muscle and on pork quality[J]. J Sci Food Agric.1991, Vol.57 (3):1-4
    [73]Gutierrez-Pascual E., Martinez-Fuentes A. J., Pinilla L., et al. Direct pituitary effects of kisspeptin:activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion[J]. J Neuroendocrinol.2007, Vol.19 (7):521-530
    [74]Franceschini I., Lomet D., Cateau M., et al. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha[J]. Neurosci Lett.2006, Vol.401 (3):225-230
    [75]Gaytan F., Gaytan M., Castellano J., et al. Kissl in the mammalian ovary:distribution of kisspeptin in human and marmoset and alterations in Kissl mRNA levels in a rat model of ovulatory dysfunction[J]. American Journal of Physiology-Endocrinology And Metabolism.2009, Vol.296 (3):E520-531
    [76]Ohtaki T., Shintani Y., Honda S., et al. Metastasis suppressor gene Kissl encodes peptide ligand of a G-protein-coupled receptor[J]. Nature.2001, Vol.411 (6837):613-617
    [77]Zhou J., Zhao R., Wei X., et al. Developmental patterns of serum leptin levels, leptin gene expression in adipose tissue and Ob-Rb gene expression in hypothalamus of Erhualian and Large White pigs[J]. Sci China C Life Sci.2004, Vol.47 (2):190-196
    [78]Lin J., Richard Barb C., Kraeling R. R., et al. Developmental changes in the long form leptin receptor and related neuropeptide gene expression in the pig brain[J]. Biol Reprod.2001, Vol.64 (6):1614-1618
    [79]Jackson G. L., Kuehl D., Rhim T. J. Testosterone inhibits gonadotropin-releasing hormone pulse frequency in the mal sheep[J]. Biol Reprod.1991, Vol.45 (1):188-194
    [80]Takase K., Uenoyama Y., Inoue N., et al. Possible role of oestrogen in pubertal increase of Kiss1/kisspeptin expressio in discrete hypothalamic areas of female rats[J]. J Neuroendocrinol.2009, Vol.21 (6):527-537
    [81]Clayton R., Catt K. Regulation of pituitary gonadotropin-releasing hormone receptors by gonadal hormones[J Endocrinology.1981, Vol.108 (3):887-895
    [82]Hunter M. G, Biggs C, Foxcroft G. R., et al. Comparisons of endocrinology and behavioural events during th periovulatory period in Meishan and large-white hybrid gilts[J]. J Reprod Fertil.1993, Vol.97 (2):475-480
    [83]彭慧霞,吴静,曲群.正常月经周期中血清瘦素与雌激素的关系[J].第四军医大学学报.2003,Vol.24(10944-945
    [84]Castracane V., Kraemer R., Franken M., et al. Serum leptin concentration in women:effect of age, obesity, an estrogen administration[J]. Fertility and sterility.1998, Vol.70 (3):472-477
    [85]Dardeno T., Chou S., Moon H., et al. Leptin in Human Physiology and Therapeutics[J]. Frontiers i Neuroendocrinology.2010, Vol.:31(3):377-393
    [86]Aubertin-Leheudre M., Gorbach S., Woods M., et al. Fat/fiber intakes and sex hormones in healthy premenopaus women in USA[J]. The Journal of steroid biochemistry and molecular biology.2008, Vol.112 (1-3):32-39
    [87]Dorgan J., Reichman M., Judd J., et al. Relation of energy, fat, and fiber intakes to plasma concentrations of estroger and androgens in premenopausal women[J]. American journal of clinical nutrition.1996, Vol.64 (1):25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700