两个视网膜色素变性家系的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜色素变性是一类遗传性视网膜疾病,世界范围内平均约有1/3500的患病率,是成年人失明的主要原因之一。视网膜色素变性患者通常在早期出现夜盲,渐行性视野丧失;到末期阶段,往往在中年之后,患者的中心视野严重受损时,可导致永久性失明。眼底检查中通常可见视网膜血管变细,眼底分布有色素沉着,视盘呈苍白色等典型特征。目前,临床上对视网膜色素变性尚没有有效的预防与治疗方法。
     视网膜色素变性表现出高度的临床以及遗传异质性。遗传上,主要可表现为常染色体显性(30-40%),常染色体隐性(50-60%),X染色体连锁(5-15%)等三种方式的遗传,少数视网膜色素变性的病例不属于孟德尔遗传模式,如双基因遗传以及线粒体遗传等。有些基因的不同突变,在不同的家系中还可以表现为不同的遗传模式。虽然已经有很多相关基因或位点被报道,但是,迄今为止,仍然有60%的视网膜色素变性病例没有找到致病基因。发现新的视网膜色素变性基因,对于进行基因诊断、理解疾病发展的分子机制以及发现有效的治疗方法有着积极意义。
     本课题主要对两个中国人视网膜色素变性家系的遗传因素进行研究。通过连锁以及单倍型分析先在染色体上确定相关致病基因的位置;接着运用DNA直接测序法来分析该基因是否含有导致疾病的突变,以及突变是否在家系中共分离;再应用高分辨率熔解曲线分析等方法,分析突变是否存在于正常人群中。
     我们首先对一个来自山东的常染色体隐性遗传的家系进行研究。通过连锁分析和单倍型分析,我们发现该家系的致病基因可能与新发现的arRP位点RP26紧密连锁,而排除了其它隐性遗传RP基因致病的可能性。通过对RP26基因CERKL的整个编码序列,以及外显子与内含子交接区的测序,发现病人的第一个外显子中存在一个插入突变,即在CERKLcDNA的第156位核苷酸和157核苷酸之间插入了一个T(c.156_157insT);病人另一条染色体上的第5外显子中则发现缺失了一个T,即CERKL cDNA的第758位核苷酸T缺失(c.758delT)。进一步对整个家系的测序分析结果显示先证者的母亲含有c.156_157insT突变,先证者的父亲则含有c.758delT突变,两个姐妹则分别从其父母中遗传到两个正常的等位型,而先证者及其两个兄弟均得到其父母两个突变的等位型,提示CERKL两个复合型杂合突变c.156_157insT和c.758delT是该家系三位患者患有视网膜色素变性的遗传基础。在随后进行的HRM结果表明,这两个突变在100多位正常人群中不存在。
     CERKL的c.156 157insT和c.758delT突变均属于移码突变,显著改变了其编码蛋白的读码框。c.156 157msT由于T的插入,正好产生一个密码子TGA,使得该基因的编码产物提前终止,产生只有52个氨基酸的异常蛋白;而c.758delT突变由于第758位T的缺失,也改变了其后的阅读框,不仅将原来的第253-258氨基酸METDRI序列,改变为异常的RKQTES,还在第259位产生一个终止密码子TGA,因而产生一个只有258个氨基酸的异常蛋白,而不是正常CERKL基因编码的含532个氨基酸的正常蛋白质。
     目前为止,CERKL中只有三个突变被报道,并都是在同血缘关系的家系中发现的。而我们发现的这两个新突变不仅是在中国人RP家系中的首次报道,而且是世界上第一次发现,CERKL的复合型杂合突变,可以在非血缘关系的家庭中,引起隐性遗传的视网膜色素变性。我们的研究丰富了CERKL突变引起视网膜色素变性的遗传突变谱,对于视网膜色素变性的基因诊断,以及认识该基因的功能,和视网膜色素变性发病的分子病理机制具有一定的意义。
     为探讨这两个CERKL突变引起视网膜色素变性的分子机制,我们构建了含野生型和突变型CERKL的pEGFP-CERKL载体,对突变的细胞学效应进行分析。将重组载体转染HeLa细胞,用共聚焦显微镜观察野生型和突变型CERKL的亚细胞定位,发现突变后的CERKL蛋白在细胞中的定位有明显变化。
     本论文还对一个在来自湖北省的常染色体显性遗传家系进行分子遗传学研究,通过连锁分析我们排除了其它常染色体显性遗传的RP基因,发现该家系的致病基因与RP4紧密连锁;运用DNA直接测序法对RP4基因RHO整个编码区的测序,发现患者的RHO基因中有一个碱基替换突变,即:c.C5271T,该突变导致RHO蛋白第347个氨基酸由脯氨酸变为亮氨酸(p.P347L)。该突变在家系中与疾病共分离,提示RHO的p.P347L为该家系患有adRP的遗传基础。我们还对家系中两个尚未发病的个体进行了基因诊断。和其他RHO的p.P347L引起的RP的临床症状不同,该家系的部分患者还患有白内障。我们的研究对于理解RHO突变型和临床表现型的关系具有一定意义。
Retinitis pigmentosa is a set of hereditary retinal diseases affecting about 1 in 3500people worldwide,and considered to be the main cause of adult blindness.Patients withretinitis pigmentosa usually show the early onset of night blindness followed by aprogressive loss of the visual field.As a result,the grossly constricted central visioncauses irreversible blindness,often after midlife.In addition,perivascular pigmentation,attenuation of the retinal arterioles,and pale appearance of the optic disk are commonfindings during a fundus examination.To date,there is still no efficient prevention andtherapy for retinitis pigmentosa.
     Retinitis pigmentosa exhibits extreme heterogeneity both clinically and genetically.Itcan be inherited most frequently (50-60%) as an autosomal recessive trait,followed by anautosomal dominant pattern (30-40%) and an X-linked (5-15%) pattern.A small proportionof retinitis pigmentosa cases present with non-Mendelian inheritance patterns,such asdigenic or mitochondrial inheritance patterns.In some cases,different mutations in the samegene may involve in different inheritance traits.To date,a number of loci or genesresponsible for retinitis pigmentosa have been reported,but for about 60% of RP cases,thegenetic basis has not been found.Localization and identification of more pathogenic genesfor retinitis pigmentosa is crucial for genetic diagnosis,understanding the molecularmechanism by which the disease develops,and for finding efficient therapeutic methods.
     In this thesis project,we studied two Chinese retinitis pigmentosa families,including oneautosomal dominant family and one autosomal recessive family.By linkage and halpotypeanalyses,we localized the pathogenic genes onto specific chromosomal locations,and thenused direct DNA sequence analysis to find the disease-causing mutations and to demonstrate ifthe mutations co-segregate with the disease in the family.The High Resolution Melt (HRM)analysis was used to verify if these alterations exist in normal controls.
     In the first section of the thesis,we started our studies from a Chinese family withautosomal recessive RP from Shandong Province.Linkage analysis linked the diseasecausing gene of the arRP family to the RP26 locus,and DNA sequence analysis revealedtwo compound heterozygous mutations in the newly identified RP26 disease-causing gene, CERKL.One mutation is c.156_157insT in exon 1,and the other is c.758delT in exon 5.The affected male individuals in the family inherited both mutations,whereas twounaffected sisters inherited normal alleles from their parents.The two mutations werenot detected in more than 100 unrelated normal controls by HRM.
     Both mutations are predicted to cause frameshift of CERKL protein.Thec.156_157insT mutation introduces a stop codon at position 53 of CERKL,causing aprematurely truncated CERKL protein with only 52 amino acids.Mutation c.758delTcauses frameshift and substitutes 6 amino acids 253-METDRI-258 by abnormal RKQTES,and produces a truncated CERKL protein with only 257 amino acid residues.
     To date,there are only three RP causing CERKL mutations that have been reported,and all of them were identified in consanguineous families.The two novel CERKLmutations identified in this project are from a non-consanguineous Chinese family,andrepresent the first report that compound heterozygous mutations of CERKL cause retinitispigmentosa.These studies expand the spectrum of CERKL mutations causing autosomalrecessive retinitis pigmentosa.
     In order to usderstand the mechanism by which mutations c.156 157insT andc.758delT in CERKL causing retinitis pigmentosa,we generate the compound mutationsby the method of mutagenesis,fusing the wildtype and two mutant CERKLs withpEGFP-C1 vector,and transfected them to HeLa cell line.We investigated if the twomutations could alterate the normal subcellular localization of CERKL protein.Asignificant difference was identified between the two mutant CERKL proteins and thenormal wild type protein.Altered subcellular localization may be a mechanism the twomutations causing retinitis pigmentosa.
     We also investigated a Chinese family with autosomal dominant retinitis pigmentosa,inthe second section of the thesis.The patients of this family display some unique character ofsymptom of RP,such as early onset,and combining with cataract.Linkage analysis excludedall RP loci except for RP4,sequencing of the whole coding area of RHO revealed a Pro347Leumutation in exon 5 of this gene.We further performed gene diagnosis study for twoasymptomatic young members in the RP family.Our studies expand the clinical spectrum ofp.P347L mutation in RHO,and may help to understand the correlationship between thegenotypes of RHO mutations and phenotypes of retinitis pigmentosa.
引文
4 参见网址:http://www.retina-international.org/sci-news/retipig.htm
    [1]Den Tonkelaar I,Henkes HE,van Leersum GK.The Utrecht Ophthalmic Hospital and the development of the ophthalmoscope.Doc Ophthalmol,1988,68(1-2): 65-69
    [2]张惠蓉.视网膜病临床和基础研究.第1版.山西太原.山西科学技术出版社,1995:1-100
    [3]Dryja TP,McGee TL,Reichel E,et al.A point mutation of the rhodopsin gene in one form of retinitis pigmentosa.Nature.1990,343: 364-366
    [4]Sullivan LS,Daiger SP.Inherited retinal degeneration: exceptional genetic and clinical heterogeneity.Mol Med Today,1996,2:380-386
    [5]Bunker CH,Berson EL,Bromley WC.Prevalence of retinitis pigrnentosa in Maine.Am J Ophthalmol,1984,97:357-365
    [6]Daiger SP,Bowne S J,Sullivan LS.Perspective on Genes and Mutations Causing Retinitis Pigmentosa.Arch Ophthalmol,2007,125:151-158
    [7]张馨方,盛迅伦.视网膜色素变性的相关基因研究进展.国际眼科杂志,2006,6(3):654-657
    [8]葛坚,赵家良,崔浩等.眼科学.第1版.北京:人民卫生出版社,2005.8:67-318
    [9]Hartong DT,Berson EL,Dryja TP.Retinitis pigrnentosa.Lancet,2006,368: 1795-809
    [10]Kennan A,Aherne A,Humphries P.Light in retinitis pigrnentosa.Trends in Genetics.2005,12(8): 694-701
    [11]姚泰,曹继民,樊小力等.生理学.第1版.北京:人民卫生出版社,2005.8:430-441
    [12]Li ZY,Jacobson SG,Milam AH.Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.Exp Eye Res,1994,58(4): 397-408
    [13]Li ZY,Chang JH,Milam AH.A gradient of basic fibroblast growth factor in rod photoreceptors in the normal human retina. Vis. Neurosci, 1997, 14: 671-679
    [14] Faktorovich EG, Steinberg RH, Yasumura D, et al. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 1990,347: 83-86
    [15] Perry J, Du J, Kjeldbye H, et al. The effects of bFGF on RCS rat eyes. Curr. Eye. Res, 1995, 14: 585-592
    [16] Steinberg RH. Survival factors in retinal degenerations. Curr. Opin. Neurobiol, 1994,4:515-524
    [17] Bok D. Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci, 1985, 26(12): 1659-1694
    [18] Deretic D, Huber LA, Ransom N, et al. Rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci, 1995, 108:215-224
    [19] Manoil C, Traxler B. Membrane protein assembly: genetic, evolutionary and medical perspectives. Annu Rev Genet, 1995,29: 131-150
    [20] Li ZY, Wong F, Chang JH, et al. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest Ophthalmol Vis Sci, 1998 , 39(5): 808-819
    [21] Li T, Snyder WK, Olsson JE, et al. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci U S A, 1996,93(24): 14176-14181
    [22] Bird AC. Retinal photoreceptor dystrophies LI. Edward Jackson Memorial Lecture. Am J Ophthalmol, 1995, 119(5): 543-562
    [23] Berson EL. Retinitis pigmentosa: unfolding its mystery. Proc Natl Acad Sci, 1996, 93(10): 4526-4528
    [24] Steinberg RH, Fisher SK, Anderson DH. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol, 1980, 190(3): 501-508
    [25] Spencer M, Detwiler PB, Bunt-Milam AH. Distribution of membrane proteins in mechanically dissociated retinal rods. Invest Ophthalmol Vis Sci, 1988, 29(7):1012-1020
    [26] Milam AH, Li ZY, Cideciyan AV, et al. Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci, 1996, 37(5): 753-765
    [27]Huang PC,Gaitan AE,Hao Y,et al.Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene.Proc Natl Acad Sci,1993,90(18): 8484-8488
    [28]Milam AH.Strategies for rescue of retinal photoreceptor cells.Curr Opin Neurobiol,1993,3(5): 797-804
    [29]Steinberg RH.Survival factors in retinal degenerations.Curr Opin Neurobiol,1994,4(4): 515-524
    [30]Li ZY,Kljavin IJ,Milam AH.Rod photoreceptor neurite sprouting in retinitis pigmentosa.J Neurosci,1995,15(8): 5429-5438
    [31]Kljavin IJ,Lagenaur C,Bixby JL,et al.Cell adhesion molecules regulating neurite growth from amacrine and rod photoreceptor cells.J Neurosci,1994,14(8): 5035-5049
    [32]Mandell JW,MacLeish PR,Townes-Anderson E.Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro.J Neurosci,1993,13(8): 3533-3548
    [33]Hicks D,Courtois Y.Fibroblast growth factor stimulates photoreceptor differentiation in vitro.J Neurosci,1992,12(6): 2022-2033
    [34]Li ZY,Possin DE,Milam AH.Histopathology of bone spicule pigmentation in retinitis pigmentosa.Ophthalmology,1995,102(5): 805-816
    [35]Grunwald JE,Maguire AM,Dupont J.Retinal hemodynamics in retinitis pigmentosa.Am J Ophthalmol,1996,122(4): 502-508
    [36]Stone JL,Barlow WE,Humayun MS,et al.Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigrnentosa.Arch Ophthalmol,1992,110(11): 1634-1639
    [37]陈秀丽,过贵元.糖尿病视网膜Muller细胞的研究进展.中国体视学与图像分析,2007,12(2):152-155
    [38]Berson EL,Rosner B,Sandberg MA,et al.A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa.Arch Ophthalmol,1993,111: 761-772
    [39] Berson EL. Treatment of retinitis pigmentosa with vitamin A. Digit J Ophthaimol, 1998,4: 1-4
    [40] Berson EL, Rosner B, Sandberg MA, et al. Vitamin A supplementation for retinitis pigmentosa. Arch Ophthaimoi, 1993, 111: 1456-1459
    [41] Berson EL, Rosner B, Sandberg MA, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthaimol, 2004, 122: 1306-1314
    [42] Hoffman DR, Locke KG, Wheaton DH, et al. A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am J Ophthaimol, 2004, 137: 704-718
    [43] Faktorovich EG, Steinberg RH, Yasumura D, et al. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 1990, 347: 83-86
    [44] Reh TA, McCabe K, Kelley MW, et al. Growth factors in the treatment of degenerative retinal disorders. Ciba Found Symp, 1996, 196: 120-131
    [45] Delyfer MN, L(?)veillard T, Mohand-Sa(?)d S, et al. Inherited retinal degenerations: therapeutic prospects. Biol Cell, 2004, 96(4): 261-269
    [46] Lin N, Fan W, Sheedlo HJ, et al. Basic fibroblast growth factor treatment delays age-related photoreceptor degeneration in Fischer 344 rats. Exp Eye Res, 1997,64(2): 239-248
    [47] Zarbin MA. Retinal pigment epithelium-retina transplantation for retinal degenerative disease. Am J Ophthaimol, 2008, 146(2): 151-153
    [48] Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132: 567-582
    [49] Jones BW, Watt CB, Frederick JM, et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol, 2003, 464: 1-16
    [50] Tao S, Young C, Redenti S, et al. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip, 2007, 7: 695-701
    [51] MacLaren RE, Pearson RA. Stem cell therapy and the retina. Eye, 2007, 21(10): 1352-1359
    [52] Meyer JS, Katz ML, Kirk MD. Stem cells for retinal degenerative disorders. Ann N YAcad Sci, 2005, 1049: 135-145
    [53] Sakaguchi DS, Van Hoffelen SJ, Young MJ. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann N YAcad Sci, 2003, 995: 127-139
    [54] Li T, Adamian M, Roof DJ, et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest. Ophthalmol. Vis. Sri, 1994, 35: 2543-2549
    [55] Ali RR, Reichel MB, Thrasher AJ, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum. Molec. Genet, 1996, 5:591-594
    [56] Bennett J, Tanabe T, Sun D, Zeng, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nature Med, 1996, 2: 649-654
    [57] Hangai M, Kaneda Y, Tanihara H, et al. In vivo gene transfer into the retina mediated by a novel liposome system. Invest. Ophthalmol. Vis. Sri, 1996, 37:2678-2685
    [58] Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science, 1994, 264: 1604-1608
    [59] Mansergh FC, Millington-Ward S, Kennan A, et al. Retinitis pigmentosa and progressive sensorineural hearing loss caused by a C12258A mutation in the mitochondrial MTTS2 gene. Am J Hum Genet, 1999, 64: 971-985
    [60] Wang DY, Chan WM, Tarn POS, et al. Gene mutations in retinitis pigmentosa and their clinical implications. Clinica Chimica Acta, 2005, 351: 5-16
    [61] Rosenfeld PJ, Cowley GS, McGee TL, et al. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet, 1992, 1(3): 209-213
    [62] Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000, 289(5480): 739-745
    [63] Babak Borhan, Maria L. Souto, Hiroo Imai, et al. Movement of Retinal Along the Visual Transduction Path. Science, 2000, 288(5474): 2209-2212
    [64] Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies:genotype-phenotype correlations and impact on genetic counseling. Hum Mutat, 2007,28(1): 81-91
    [65] Meindl A, Dry K, Herrmann K, et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nature Genet, 1996, 13: 35-42
    [66] Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nature Genet, 2000, 25: 462-466
    [67] Hong DH, Pawlyk BS, Adamian M, et al. A single abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest. Ophthal. Vis. Sci, 2005, 46: 435-441
    [68] Huang SH, Pittler SJ, Huang X, et al. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nature Genet, 1995, 11:468-471
    [69] McLaughlin ME, Sandberg MA, Berson EL. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet, 1993,4: 130-134
    [70] Dryja TP, Finn JT, Peng YW, et al. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Nat. Acad. Sci, 1995, 92: 10177-10181
    [71] Bareil C, Hamel CP, Delague V, et al. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet, 2001, 108: 328-334
    [72] Morimura H, Saindelle-Ribeaudeau F, Berson EL, et al. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nature Genet, 1999, 23: 393-394
    [73] Sohocki MM, Sullivan LS, Mintz-Hittner HA, et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am. J. Hum. Genet, 1998, 63: 1307-1315
    [74] Bessant DA, Payne AM, Mitton KP, et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nature Genet, 1999, 21: 355-356
    [75] Martinez-Mir A, Bayes M, Vilageliu L, et al. A new locus for autosomal recessive retinitis pigmentosa(RP19)maps to lpl3-lp21. Genomics, 1997,40: 142-146
    [76] Maw MA, Kennedy B, Knight A, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nature Genet, 1997, 17: 198-200
    [77] Morimura H, Fishman GA, Grover SA, et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc. Nat. Acad. Sci, 1998, 95: 3088-3093
    [78] Fingert JH, Oh K, Chung M, et al. Association of a novel mutation in the retinol dehydrogenase 12 (RDH12) gene with autosomal dominant retinitis pigmentosa. Arch Ophthalmol, 2008. Sep;126(9): 1301-7
    [79] Morimura H, Saindelle-Ribeaudeau F, Berson EL, et al. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nature Genet, 1999, 23: 393-394
    [80] Farrar GJ, Kenna P, Jordan SA, et al. A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature, 1991, 354: 478-480
    [81] Wada Y, Abe T, Takeshita T, et al. Mutation of human retinal fascin gene (FSCN2) causes autosomal dominant retinitis pigmentosa. Invest. Ophthal. Vis. Sci, 2001, 42: 2395-2400
    [82] Hagstrom SA, North MA, Nishina PM, et al. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nature Genet, 1998, 18: 174-176
    [83] den Hollander AI, ten Brink JB, de Kok YJ, et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genet, 1999,23:217-221
    [84] Pierce EA, Quinn T, Meehan T, et al. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nature Genet, 1999, 22: 248-254
    [85] Abd El-Aziz MM, Barragan I, O'Driscoll C, et al. Large-scale molecular analysis of a 34 Mb interval on chromosome 6q: major refinement of the RP25 interval. Hum Genet, 2008, 72: 463-477
    [86] Keen TJ, Hims MM, McKie AB, et al. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Europ. J. Hum. Genet, 2002, 10: 245-249
    [87] Vithana EN, Abu-Safieh L, Allen MJ, et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13. 4 (RP11). Molec Cell, 2001, 8: 375-381
    [88] McKie AB, McHale JC, Keen TJ, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Molec Genet, 2001, 10: 1555-1562
    [89] Chakarova CF, Hims MM, Bolz H, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum. Molec. Genet, 2002, 11: 87-92
    [90] Roepman R, van Duijnhoven G, Rosenberg T, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum. Molec. Genet, 1996, 5: 1035-1041
    [91] Rebello G, Ramesar R, Vorster A, et al. Apoptosis-inducing signal sequence mutation in carbonic anhydrase Ⅳ identified in patients with the RP17 form of retinitis pigmentosa. Proc. Nat. Acad. Sci, 2004, 101: 6617-6622
    [92] Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet,2000,26:270-271
    [93] Tuson M, Marfany G, Gonzalez-Duarte R. Mutations of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26).Am. J. Hum. Genet, 2004, 74: 128-138
    [94] Bowne SJ, Sullivan LS, Blanton SH, et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum. Molec. Genet, 2002, 11: 559-568
    [95] Zangerl B, Goldstein O, Philp AR, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics, 2006, 88: 551-563
    [96] Abid A, Ismail M, Mehdi SQ, et al. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J. Med. Genet, 2006,43: 378-381
    [97] Rivolta C, Berson EL, Dryja TP. Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type Ⅱ gene USH2A. Arch. Ophthal, 2002, 120: 1566-1571
    [98] Schwahn U, Lenzner S, Dong J, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet, 1998, 19: 327-332
    [99] Bayes M, Goldaracena B, Martinez-Mir A, et al. A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J. Med. Genet, 1998,35: 141-145
    [100] Avila-Fernandez A, Riveiro-Alvarez R, Vallespin E, et al. CERKL mutations and associated phenotypes in seven Spanish families with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci, 2008, 49(6): 2709-2713
    [101] Auslender N, Sharon D, Abbasi AH, et al. A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Invest Ophthalmol Vis Sci, 2007, 48(12):5431-8
    [102] Ali M, Ramprasad VL, Soumittra N, et al. A missense mutation in the nuclear localization signal sequence of CERKL (p. R106S) causes autosomal recessive retinal degeneration. Mol Vis, 2008, 14: 1960-1964
    [103] Inagaki Y, Mitsutake S, Igarashi Y. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein. Biochem Biophys Res Commun, 2006, 343(3): 982-987
    [104] Bornancin F, Mechtcheriakova D, Stora S, et al. Characterization of a ceramide kinase-like protein. Biochim Biophys Acta, 2005, 1687(1-3): 31-43
    [105] Gomez-Munoz A. Ceramide-1-phosphate: a novel regulator of cell activation. FEBS Lett, 2004, 562(1-3): 5-10
    [106] Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci, 2005, 118(Pt 20): 4605-4612
    [107] Graf C, Niwa S, M(?)ller M, et al. Wild-type levels of ceramide and ceramide-1 -phosphate in the retina of ceramide kinase-like-deficient mice. Biochem Biophys Res Commun, 2008, 373(1): 159-163
    [108] Acharya U, Patel S, Koundakjian E, et al. . Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science, 2003, 299(5613):1740-1743
    [109] Nathans J, Hogness DS. Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc. Nat. Acad. Sci, 1984, 81: 4851-4855
    [110] Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 1986, 232: 193-202
    [111] McWilliam P, Farrar GJ, Kenna P, et al. Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3.Genomics, 1989,5:619-622
    [112] Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 1990, 343: 364-366
    [113] Dryja TP, McGee TL, Hahn LB, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. New Eng. J. Med, 1990,323:1302-1307
    [114] Mendes HF, van der Spuy J, Chappie JP, et al. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med, 2005, 11(4): 177-85
    [115] McInnes RR, Bascom RA. Retinal genetics: a nullifying effect for rhodopsin. Nature Genet, 1992, 1: 155-157
    [116] Sohocki MM, Daiger SP, Bowne SJ, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat, 2001, 17(1):42-51
    [117] Macke JP, Hennessey JC, Nathans J. Rhodopsin mutation proline347-to-alanine in a family with autosomal dominant retinitis pigmentosa indicates an important role for proline at position 347. Hum Mol Genet, 1995, 4(4): 775-776
    [118] Gal A, Artlich A, Ludwig M, et al. Pro-347-Arg mutation of the rhodopsin gene in autosomal dominant retinitis pigmentosa. Genomics, 1991, 11(2): 468-470
    [119]Vaithinathan R,Berson EL,Dryja TP.Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa.Genomics,1994,21(2): 461-3
    [120]张晓莉,府伟灵,彭智培等.100例视网膜色素变性患者中视紫红质基因突变的筛选与检测.中华医学遗传学杂志,2002,19(6):463-466
    [121]Berson EL,Rosner B,Sandberg MA,et al.A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa.Arch Ophthalmol,1993,111(6): 761-772
    [1]Stenson PD,Ball EV,Mort M,et al..Human Gene Mutation Database(HGMD): 2003 update. Hum Mutat, 2003, 21(6):577-581
    [2] Kawai S, Nomura S, Harano T, et al. The COL4A5 gene in Japanese Alport syndrome patients: spectrum of mutations of all exons. The Japanese Alport Network. Kidney Int, 1996, 49(3):814-822
    [3] Wang F, Wang Y, Ding J, et al._Detection of mutations in the COL4A5 gene by analyzing cDNA of skin fibroblasts. Kidney Int, 2005, 67(4): 1268-1274
    [4] Lemmink HH, Schroder CH, Monnens LA, et al._The clinical spectrum of type Ⅳ collagen mutations. Hum Mutat, 1997, 9(6): 477-499
    [5] Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science, 1990, 248:1224-1227
    [6] Badenas C, Praga M, Tazon B, et al. Mutations in the COL4A4 and COL4A3 genes cause familial benign hematuria. J Am Soc Nephrol, 2002, 13:1248-1254
    [7] Hudson BG, Tryggvason K, Sundaramoorthy M, et al. Alport's syndrome, Goodpasture's syndrome, and type Ⅳ collagen. N Engl J Med, 2003, 348(25):2543-2556
    [8] Kalluri R, Shield CF, Todd P, et al. Isoform switching of type Ⅳ collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest, 1997,99(10):2470-2478
    [9] Kalluri R, Cantley LG, Kerjaschki D, et al. Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome. J Biol Chem, 2000,275(26):20027-20032
    [10] Kobayashi T, Kakihara T, Uchiyama M. Mutational analysis of type IV collagen alpha5 chain, with respect to heterotrimer formation. Biochem Biophys Res Commun, 2008, 366(1):60-65
    [11] Gross O, Netzer O, Lambrecht R, et al.. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant, 2002, 17(7): 1218-1227
    [12] Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study. J Am Soc Nephrol, 2003, 14(10):2603-2610
    [13] Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol, 2000, 11(4):649-657
    [14] Wang F, Wang Y, Ding J, et al. Detection of mutations in the COL4A5 gene by analyzing cDNA of skin fibroblasts. Kidney Int, 2005, 67(4): 1268-1274
    [15] Wilson JC, Yoon HS, Walker RJ, et al. A novel Cysl638Tyr NCl domain substitution in alpha5(Ⅳ) collagen causes Alport syndrome with late onset renal failure without hearing loss or eye abnormalities. Nephrol Dial Transplant, 2007, 22(5): 1338-1346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700