大前庭水管综合征相关基因突变检测及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     大前庭水管综合征(large vestibular aqueduct syndrome,LVAS或enlarged vestibular aqueduct syndrome,EVAS)是以前庭导水管扩大伴有感音神经性聋(SNHL)为特征的一种常染色体隐性遗传性非综合征型听力障碍性疾病。为了系列研究EVAS的临床特征、基因突变检测、基因功能,我们对19例EVAS患者的临床、听力学及影像学特征进行分析;对相关基因SLC26A4、FOXI1行突变检测,发现特异和常见的突变图谱;通过构建突变体转染HEK293T细胞,观察SLC26A4基因突变对其编码的Pendrin蛋白的表达定位产生的影响,从而为进一步研究该基因突变的致病机理打下基础。
     方法:
     选择年长配合儿童及成人行纯音测听(PTA)检查,对不能主动配合纯音测听的幼儿,用声场行为听阈测试(BA);所有患者行听性脑干反应(ABR)和40Hz相关电位(40 AERP)测试、声导抗及耳声发射检查;ABR在最大给声无反应的患者,增加听觉稳态反应(ASSR)了解患者的残余听力。完成CT及MRI检查。
     应用聚合酶链反应(PCR)结合DNA直接测序方法,用DNASTAR软件中的EditSeq、SeqMan程序分析,对19例EVAS患者的SLC26A4基因的21个外显子、FOXI1的2个外显子及相邻的内含子区域进行突变检测和分析。
     将野生型、突变型SLC26A4连入真核表达载体pEGFP-N1中,与EGFP构成融合蛋白,转染HEK293T细胞,Western Blot检测蛋白表达;免疫荧光观察细胞定位,激光共聚焦显微镜拍照。
     结果:
     1.EVAS的典型表现是儿童时期的听力丧失,主要为SNHL,听力下降呈进行性或波动性,双耳受累者多见。听力水平多为中重度耳聋以上。听力受损以高频为主,听力曲线多呈下降型。特有的听力学表现即低频骨气导差及声诱发短潜伏期负反应ASNR在本组研究中分别占44.1%和42.1%。影像学检查是诊断的金标准,行人工耳蜗植入易出现“镫井喷”,但恰当处理不影响耳蜗植入。
     2.19例患者17例检出SLC26A4基因突变,突变率高达84.2%。12例为复合杂合突变,3例为纯合突变,2例杂合突变,2例无突变。共查及17种不同类型的SLC26A4基因的致病突变,13种为错义突变,2种剪接位点突变,1种无义突变和1种大片段缺失。其中16种为国内外已报道的突变,IVS7-2A>G最多见,占34.4%。1种新发突变1716A>T/F572L。对FOXI1基因检测发现两个多态:279 G>A,1044T>C。
     3.成功构建SLC26A4基因的野生型和S448X突变体pEGFPN1融合表达载体,命名为pEGFP N1 PDS WT和pEGFP N1 PDS S448X;并成功转染HEK293T细胞,Western blot检测PDS WT和PDS S448X蛋白的表达正确。免疫荧光染色和激光共聚焦显微镜下发现S448X突变体绿色荧光局限在胞质,细胞膜没有清晰的绿色荧光显示。而大部分野生型细胞膜上有清晰的绿色荧光显示。
     结论:
     1.EVAS是以前庭导水管扩大伴有感音神经性聋(SNHL)为特征的一种隐性遗传性非综合征型听力障碍性疾病。临床听力学存在特征性改变,如低频骨气导差及声诱发短潜伏期负反应有助于发现该疾病,但诊断的金标准仍是影像学。行人工耳蜗植入易出现“镫井喷”,但恰当处理不影响耳蜗植入。
     2.本组EVAS患者,SLC26A4基因的突变率高达84.2%,说明SLC26A4基因突变与EVAS密切相关,同时提示如果我们在进行听力损失患者的基因筛查中首先发现SLC26A4基因突变,则高度预示该患者为EVAS患者,从基因检测中发现临床疾病。新发突变1716A>T/F572L进一步丰富了中国人群的突变图谱,可以利用中国人IVS7-2A>G的热点突变开展快速筛查工作。FOXI1作为SLC26A4的转录调控因子不是唯一的,EVAS的发生可能存在其他的致病因素。
     3.SLC26A4基因的S448X的突变,使突变蛋白局限于胞质,不能准确定位在细胞膜上。
Objective:
     Large vestibular aqueduct syndrome(LVAS) or enlarged vestibular aqueduct syndrome(EVAS) is an autosomal recessive nonsyndromic hearing loss which is characterized as enlarged vestibular aqueduct and Sensorineural hearing loss(SNHL). To study its clinical features、genetic mutation and gene function systematically, We analyzed the serial characters of clinic、audiometry and imageology of 19 EVAS patients, carried gene mutation detections on SLC26A4 and FOXI1 to find specific and frequent mutation map, constructed mutant and transfected HEK293T cell to observe the influence of gene mutation on Pendrin' s expression to study the pathopoiesis mechanism of SLC26A4 gene mutation.
     Methods:
     The audiometry included pure tone audiometry(PTA) or behavior audiometry(BA), acoustic immitance (tympanometry, acoustic reflex thresholds and stapedius muscle reflex), otoacoustic emissions (OAE), auditory brain stem responses (ABR), 40Hz auditory event related potential(40Hz AERP), auditory steady-state response (ASSR). Different tests were chosen according to different ages and circumstances to get the audiological datas. Computed tomography scan(CT) of the temporal bone and magnetic resonance imaging(MRI) were used for understanding the structure of cochlea and endolymphatic sac. All above methods were used in clinic.
     Mutation analysis was carried out by the method of polymerase chain reaction(PCR) and direct sequencing on 21 exons of SLC26A4 gene and 2 exons of FOXI1 gene and their consecutive part of introns. Then we used the software of DNAStar (EditSeq and SeqMan) to analyze the sequence.
     Mutant and wild type of PDS were reconstructed with pEGFP-N1 expression vector and transfected HEK293T cell. By the method of western blot and immunofluorescence , we tested the expression protein and got the photo through Confocal microscopy.
     Results:
     1. The classic performance of EVAS is bilateral hearing loss, especially SNHL with character of progressive or fluctuate hearing loss in childhood. The majority is worse than moderate severe hearing loss with decreasing in high frequency. Air-bone gap and ASNR account for 44.1 % and 42.1% , which are the characters of EVAS. While the imageology is the golden standard of diagnosis of EVAS. Stapedial gusher always happened in cochlear implantation, while otologists should carefully deal with it to get a good result.
     2. There were 17 EVAS patients who had SLC26A4 gene mutations in 19 EVAS patients. The mutation rate reached up to 84.2%. 12 were complex heterozygosis mutations, 3 were homozygosis mutations, 2 were heterozygosis mutations and there were no mutations in the 2 patients left. 17 different pathopoiesis mutations of SLC26A4 gene were detected. Among these mutations, 13 were missense mutations, 2 were splicing site mutations, 1 was nonsense mutation and the other 1 was klenow fragment deletion. 16 mutations have been reported before, IVS7-2A>G was at most, which accounted 34.4%. While a novel mutation 1716A>T /F572L was found in this examination. There were 2 polymorphisms of FOXI1 in 19 EVAS patients: 279 G>A、1044T>C.
     3. We successfully constructed SLC26A4 gene wild-type and S448X mutant green fluorescent vectors. They were named as pEGFP N1 PDS WT and pEGFP N1 PDS S448X. HEK293T cells were successfully transfected with pEGFP N1 PDS WT and pEGFP N1 PDS S448X. The expression of PDS WT and PDS S448X protein were detected by the method of western blot. With the help of immunofluorescence staining and laser Confocal microscopy, we founded that pEGFP N1 PDS S448X was limited in cytoplasm, there wasn't limpid green fluorescence on cytomembrane. while the majority of pEGFP N1 PDS WT has clear green fluorescence on cytomembrane.
     Conclusions:
     1. EVAS is an autosomal recessive nonsyndromic hearing loss which is characterized as enlarged vestibular aqueduct and Sensorineural hearing loss(SNHL). Characteristics of audiology such as air-bone gap at low frequency and acoustically evoked short latency negative response(ASNR) can help us to discover this disease. The golden standard of EVAS is imageology. Stapedial gusher always happened in cochlear implantation, while otologists should carefully deal with it to get a good result.
     2. In this study, the mutation rate of SLC26A4 reached up to 84.2%. This data demonstrated that SLC26A4 gene mutation had close correlation with EVAS. Since gene mutation can prognosticate EVAS, then clinic disease can be found by gene detection. The novel mutation 1716A>T /F572L multiplied Chinese mutation map. We can use the hot spot mutation IVS7-2A>G to develop fast screening of SLC26A4. FOXI1 was not the unique transcriptional control factor of SLC26A4. Other etiological factors maybe exist in the development of EVAS.
     3. The mutation of S448X of SLC26A4 gene caused the result that mutein was limited in cytoplasm, it couldn't locate at cytomembrane correctly.
引文
[1].Valvassori GE,Clemis JD.The large vestibular aqueduct syndrome.Laryngoscope,1978,88:723-728.
    [2].Jackler RK,De La Cruze A.Large vestibular aqueduct syndrome.Laryngoscope,1989,99:1238-1243.
    [3].Levenson MJ,Parisier SC,Jacobs M,et al.The larger vestibular syndrome in children:a review of 12 cases and the description of a new clinical entity.Arch Otolaryngol Head Neck Surg,1989,115:54-58.
    [4].Okumura T,Takahashi H,Honjo I,et al.Sensorineural heating loss in patients with large vestibular aqueduct.Laryngoscope,1995,105:289-294.
    [5].Nowak KC,Messner AH.Isolated large vestibular aqueduct syndrome in a family.Ann Otol Rhinol Laryngol,2000,109(1):40-44.
    [6].Mafong DD,Shin EJ,Lalwani AK.Use of laboratory evaluation and radiologic imaging in the diagnostic e valuation of children with sensorineural heating loss.Laryngoscope,2002,112(1):1-7.
    [7].Griffith AJ,Arts A,Downs C,et al.Familial large vestibular aqueduct syndrome.Laryngoscope,1996,106(8):960-965.
    [8].张素珍,吴子明,赵承君。大前庭水管综合征临床分析。中华耳科学杂志,2004,2(2):88-92.
    [9].Gussen,R.The endolymyhatic sac in the Mondini disorder Arch.Otorhinolaryngot.1985,242:71-76.
    [10].Mafee MF,Charlett AD,Kumar A,et al.Large vestibular aqueduct and congenital sensorineural hearing loss[J].AJNR Am J Neuroradiol,1992,13:805-819.
    [11].Emmett JR.The large vestibular syndrome.Am J Otol 1985;6:387-403.
    [12].Colm Madden,Mark Halsted,Coming Benton,et al.Enlarged Vestibular Aqueduct Syndrome in the Pediatric Population.Otology & Neurotology[J].2003,24(4):625-632
    [13].杨伟炎,张素珍,赵承军,等。95例大前庭水管综合征的临床分析.中华耳鼻咽喉科杂志.2003,38:191-194.
    [14].Andrew K.Oh,Akira Ishiyama,Robert W.et al.Vertigo and the enlarged vestibular aqueduct.J Neurol,2001,248:971-974
    [15].Abe S,Usami S,Shinkawa H,et al.Three familial cases of hearing loss associated with enlargement of the vestibular aqueduct.Ann Otol Rhinol Laryngol,1997,106:1063-1069.
    [16].Eui-Kyung Goh,Woo-Young Shim,Hwan-Jung Roh,et al.Familial Enlarged Vestibular Aqueduct Syndrome.American Journal of Otolaryngology,2001,22(4):286-290.
    [17].Saumil N.Merchant,Hideko H.Nakajima,Christopher Halpin,et al.Clinical Investigation and Mechanism of Air-Bone Gaps in Large Vestibular Aqueduct Syndrome.Annals of Otology,Rhinology &Laryngology,2007,116(7):532-541.
    [18].Valvassori GE,Clemis JD.The large vestibular aqueduct syndrome.Laryngoscope.1978,88:723-728.
    [19].Levenson MJ,Parisier SC,Jacobs M,et al.The large vestibular aqueduct syndrome in children:a review of 12 cases and the description of a new clinical entity.Arch Otolaryngol Head Neck Surg.1989;115:54-58.
    [20].Govaerts PJ,Casselman J,Daemers K,et al.Audiological findings in large vestibular aqueduct syndrome.Int J Pediatr Otorhinolaryngol.1999;51:157-164.
    [21].Ellis M.Arjmand,Audra Webber.Audiometric Findings in Children With a Large Vestibular Aqueduct.Arch Otolaryngol Head Neck Surg.2004,130:1169-1174.
    [22].Lee C-S,Paparella MM,Margolis RH,Le C.Audiological profiles and Meniere's disease.Ear Nose Throat J.1995;74:527-532.
    [23].Paparella MM,McDermott JC,de Sousa LCA.Meniere's disease and the peak audiogram.Arch Otolaryngol.1982;108:555-559.
    [24].Arcand P,Desrosiers M,Dube J,Abela A.The large vestibular aqueduct syndrome and sensorineural hearing loss in the pediatric population.J Otolaryngol.1991,20:247-250.
    [25].王秋菊.关于非综合征型遗传性听力损伤家系遗传学及听力学描述术语建议案[J].中华耳科杂志,2003,1(4):46-47.
    [26].Satoh H.Nonomura N,Takahashi S.Four cases of familial hearing loss with large vestibular aqueducts.Eur Arch Otorhinolaryngol.1999,256:83-86.
    [27].Nakashima T.Ueda H,Furuhashi A,et al.Air-bone gap and resonant frequency in large vestibular aqueduct syndrome.Am J Otol.2000,21:671-674.
    [28].兰兰,王秋菊,陈之慧,等.前庭水管扩大患儿纯音听力特征性表现—低频骨气导差.临床耳鼻咽喉头颈外科杂志.2007,21(7):309-311.
    [29].Shirazi A.Femon JE.Fagan PA.Large vestibular aqueduct syndrome and stapes fixation.J Laryngol Otol 1994:108:989-990.
    [30].Puls T.Van Fraeyenhoven L.Large vestibular aqueduct syndrome with mixed hearing loss:a case report.Acta Otorhinolaryngol Beig 1997:51:185-189.
    [31].Hirai S.Cureoglu S.Schaehem PA.et al.Large vestibular aqueduct syndrome:a human temporal bone study.Laryngoscope 2006:116:2007-2011.
    [32].Maniikoglu B.Bentz B.Wiet RJ.Large vestibular aqueduct syndrome presenting with mixed hearing loss and an intact mobile ossicuiar chain.Otorhinolaryngol Nova 2000:10:204-6.
    [33].Snik.A.F.M,Hombergen.G.C,Mylanus,E.A.et al.Air-bone gap in patients with X-linked stapes gusher syndrome.Am J Otol,1995.16(2):241-246
    [34].Mimura,T,Sato.E,Sugiura.M,et al.Hearing loss in patients with enlarged vestibular aqueduct:Air-bone gap and audiological Bing test.Int J Audiol.2005.44:466-469.
    [35].Mason S,Gamham C,Hudson B.Electric response audiometry in young children before cochlear implantation:a short latency component.Ear Hear,1996,17(6):537-543.
    [36].Nong DX,Ura M,Owa T,et al.An acoustically evoked short latency negative response in profound hearing loss patients[J].Acta Otolaryngol,2000,120(8):960- 966.
    [37].周娜,于黎明,刘传莲,等.重度聋的声诱发短潜伏期负反应.听力学及言语疾病杂志,2003.03:169-171.
    [38].兰兰,于黎明,陈之慧,等.短潜伏期负反应诊断前庭水管扩大的意义.听力学及言语疾病杂志,2006,14(4):241-244.
    [39].Nong DX,Ura M,Kyuna A,et al.Saccular origin of acoustically evoked short latency negative response[J].Otol Neurotol,2002,23(6):956-957.
    [40].吴子明,周娜,张素珍,等.声诱发的短潜伏期负反应与前庭诱发的肌源性电位关系初步研究.听力学及言语疾病杂志,2007,15(1):28-31.
    [41].刘中林,李志欣.前庭导水管扩大的CT表现[J].临床放射学杂志,1998,17(2):77-79.
    [42].Hamsberger H R,Dahlen R T,Shelton C,et al.Advanced techniques in magnetic resonance imaging in the evaluation of the large endolymphatic duct and sac syndrome.Laryngoscope.1995,105(10):1037-1042.
    [43].Dahlen R T,Hamsberger H R,Gray SD,et al.Overlapping thin-section fast sp in-echo MR of the large vestibular aqueduct syndrome.AJNR Am J Neuroradiol.1997,18(1):67-75.
    [44].张骥,黄文虎,潘雨辰,等.前庭导水管扩大的CT和MRI的诊断.实用放射学杂志.2001,17(11):823-826.
    [45].鲜军鲂,王振长,燕飞,等.MRI快速自旋回波T2WI三维重建技术在内耳病变中的应用[J].中华放射学杂志.1999,33(7):473-476.
    [46].韩德民,赵啸天,李永新,等.人工耳蜗在前庭水管扩大患者中的应用.中华耳鼻咽喉科杂志.2003,38(2):108.
    [47].Fahy GP,Carney AS,Nikotopoulos TP,et al.Cochlear implantation in children with large vestibular aqueduct syndrome and a review of the syndrome.Int J Otorhinolaryngol.2001,59:207-215.
    [48].王轶,曹克利,郑振宇,等.前庭导水管扩大综合征患者的人工耳蜗植入术.中华耳鼻咽喉科杂志.2003,38:104-107.
    [49].冯永,胡杰,夏昆,等.前庭水管扩大患者人工耳蜗植入及SLC26A4基因的突变分析.中华耳科学杂志.2007,5(1):14-17.
    [50].Miyamoto R T,Bichey B G,W ynne M K,et al.Cochlear implantation with large vestibular aqueduct syndrome.Laryngoscope,2002,112(7 Pt 1):1178-1182.
    [51].Usami S,Abe S,Weston M D,et al.Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations.Hum Genet,1999,104:188-192.
    [52].胡浩.遗传性非综合征型神经性耳聋基因诊断体系的建立与应用.[硕士学位论文].长沙:中南大学.2005.
    [53].Hao Hu,Lingqian Wu,Yong Feng.et al.Molecular analysis of hearing loss associated with enlarged vestibular aqueduct in the mainland Chinese:a unique SLC26A4 mutation spectrum.J Hum Genet.2007,52:492-497.
    [54].Park HJ,Shaukat S,Liu XZ,et al.Origins and frequencies of SLC26A4(PDS) mutations in east and south Asians:global implications for the epidemiology of deafness.J Med Genet,2003,40(4):242-248.
    [55].Dai P,Yu F,Kang DY,et al.Diagnostic methods and clinic application for mtDNA A1555G and GJB2 and SLC26A4 genes in deaf patients.Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2005,40:769-773.
    [56].Hu H,Wu LQ,Liang DS,et al.Prenatal diagnosis of prelingual deafness by determination of SLC26A4 gene mutation.Zhonghua Fu Chan Ke Za Zhi 2005,40:591-594.
    [57]. Wu CC, Yeh TH, Chen PJ, et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope.2005,115:1060-1064.
    [58]. Coucke PJ, Van Hauwe P, Everett LA, et al., Identification of two different mutations in the PDS gene in an inbred family with Pendred syndrome. J Med Genet, 1999, 36(6): 475-477.
    [59]. Yong AM, Goh SS, Zhao Y, et al., Two Chinese families with Pendred's syndrome-radiological imaging of the ear and molecular analysis of the pendrin gene.J Clin Endocrinol Metab, 2001, 86(8): 3907-3911.
    [60]. Tsukamoto K, Suzuki H, Harada D, et al., Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet, 2003, 11(12): 916-922.
    [61]. Hu H, Liang DS, Wu LQ,et al. Molecular analysis of SLC26A4 gene in a Chinese deafness family. Zhonghua Yi Xue Yi Chuan Xue Za Zhi .2005,22:376-379.
    [62]. Kitamura K, Takahashi K, Noguchi Y, et al., Mutations of the Pendred syndrome gene (PDS) in patients with large vestibular aqueduct. Acta Otolaryngol,2000, 120(2): 137-141.
    [63]. Reardon W, CF OM, Trembath R, et al., Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM, 2000,93(2): 99-104.
    [64]. Everett LA ,Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).Nature Genet, 1997,17:411-422
    [65]. Everett LA , Morsli H , Wu DK , et al. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (PDS) suggests a key role for pendrin in the inner ear. Proc.N at.A cad.Sci. 1999,96:9727-9732.
    [66]. Scott DA , Wang R , Krem an TM , et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nature Genet. 1999,21:440-443.
    [67]. Scott, DA, Wang, R, Kreman TM et al. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss(DFNB4).Hum.Molec.Genet.9:1709-1715,2000
    [68].Bidart JM,Mian C,Lazar V,et al.Expression of pendrin and the Pendred syndrome(PDS) gene in human thyroid tissues.J.Clin.Endocr.M etab.2000,85:2028-2033.
    [69].Yang J,Tsai C,Hsu H,et al.Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDSgene.Hear Res,2005,199(1-2):22-30.
    [70].Park H.-J,Lee,S-J,Jin H-S,et al.Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans.Clin.Genet.2003.67:160-165
    [71].Wang,Q.-J,Zhao Y.-L,Rao S.-Q,et al.A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China.Clin.Genet.2007,72:245-254.
    [72].戴朴.聋病基因诊断进展.[第十二届全军耳鼻咽喉-头颈外科专业学术会议论文汇编].中国,昆明.2006年5月:28-32.
    [73].戴朴,韩东一,冯勃,等.大前庭水管综合征的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13(5):303-307.
    [74].戴朴,黄德亮,王嘉陵,等.PDS基因检测一诊断大前庭水管综合征的新方法.中华耳科学杂志,2005,3(4):241-244.
    [75].李琦,戴朴,黄德亮,等.应用试剂盒配合PAGE基因IVS7-2A>G银染法分析SLC26A4突变.中华耳科学杂志.2007,5(2):182-185.
    [76].Albert S,Blons H,Jonard L,et al.SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations.Europ.J.Hum.Genet.2006,14:773-779.
    [77].Pryor S.P,Madeo A.C,Reynolds J C,et al.SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct(EVA):evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities.(Letter) J.Med.Genet.2005,42:159-165.
    [78].Hulander,M.,Wurst,W.,Carlsson,P.et al.The winged helix transcription factor Fkh10 is required for normal development of the inner ear.Nat.Genet.1998,20:374-376.
    [79].Malin Hulander,Amy E,Kieman,et al.Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxil null mutant mice. Development ,2003 ,130(9) :2013-2025
    [80]. Tao Yang, Hilmar Vidarsson, Sandra Rodrigo-Blomqvist, et al. Transcriptional control of SLC26A4 is involved in pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). The American Journal of Human Genetics, 2007, 80 (6):1055-1063
    [81]. Aghaallaei N, Bajoghli B, Czerny T.Distinct roles of Fgf8, Foxil, Dlx3b and Pax8/2 during otic vesicle induction and maintenance in medaka. Dev Biol, 2007, 15;307(2):408-420.
    [82]. Hochmann S, Aghaallaei N, Bajoghli B,et al. Expression of marker genes during early ear development in medaka. Mol Cell Biol, 2006 ,26(1):155-168.
    [83]. Lacroix L , Mian C , Caillou B , et al. Na + /I- symporter and Pendred syndrome gene and protein expressions in human extrathyroidal tissues. Euro J Endocrinol, 2001,144 (3) :2972302.
    [84]. Soleimani M, Greeley T, Petrovic S, et al. Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. Am J Physiol Renal Physiol. 2001;280(2):F356-F364.
    [85]. Royaux IE, Suzuki K, Mori A,et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology .2000,141:839-845
    [86]. Dohan O, De la Vieja A, Carrasco N . Molecular study of the sodiumiodide symporter (NIS): a new field in thyroidology. Trends Endocrinol Metab. 2000,11:99-105.
    [87]. Bidart JM, Mian C, Lazar V, et al. Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab.2000, 85:2028-2033
    [88]. Everett LA, Belyantseva IA, Noben-Trauth K,et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet. 2001, 10:153-161.
    [89]. Rotman-Pikielny P, Hirschberg K, Maruvada P, et al. Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome.Hum Mol Genet. 2002;l l(21):2625-2633.
    [90]. Walsh T, Abu Rayan A, Abu Sa'ed J, et al. Genomic analysis of a heterogeneous Mendelian phenotype: multiple novel alleles for inherited hearing loss in the Palestinian population. Hum Genomics. 2006;2(4):203-211.
    [91]. Taylor JP, M etcalfe R A, W atson PF, et al. Mutations of the PDS gene,encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: im plications for thyroid dysfunction in Pendred syndrome. J Clin Endocrino M etab. 2002,87:1778-1784.
    [92]. Zippora N. Brownstein, Amiel A. Dror, Dror Gilony, et al. A Novel SLC26A4 (PDS) Deafness Mutation Retained in the Endoplasmic Reticulum. Otolaryngol Head Neck Surg. 2008;134(4):403-407
    [93]. Laura Fugazzola, Valentina Cirello, Silvia Dossena, et al. High phenotypic intrafamilial variability in patients with Pendred syndrome and a novel duplication in the SLC26A4 gene: clinical characterization and functional studies of the mutated SLC26A4 protein. European Journal of Endocrinology.2007, 157:331-338.
    [94]. Silvia Dossena, Valeria Vezzoli, Nadia Cerutti, et al. Functional Characterization of Wild-Type and a Mutated Form of SLC26A4 Identified in a Patient with Pendred Syndrome. Cell Physiol Biochem. 2006;17:245-256.
    [95]. Mary P. Gillam, Aniket R. Sidhaye , Eun Jig Lee, et al. Functional Characterization of Pendrin in a Polarized Cell Systeal. The Journal of Biological Chemistry.2004,13(279): 13004-13010.
    [1]. Beal DD, Davey PR, Lindsay JR . Inner ear pathology of congenital deafness. Arch Otolaryngol .1967.85:135-142
    [2]. Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope, 1978,88:723-728.
    [3].Jackler RK, De La Cruze A. Large vestibular aqueduct syndrome. Laryngoscope, 1989,99:1238-1243.
    [4].Arjmand EM, Webber A. Audiometric findings in children with a large vestibular aqueduct. Arch Otolaryngol Head Neck Surg.2004.130:1169-1174.
    [5]. Everett LA ,Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).Nature Genet, 1997,17:411-422
    [6]. Usami S, Abe S, Weston M D , et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet, 1999, 104:188-192.
    [7]. Lacroix L , Mian C , Caillou B , et al . Na + / I- symporter and Pendred syndrome gene and protein expressions in human extrathyroidal tissues. Euro J Endocrinol, 2001 ,144 (3) :2972302.
    [8]. Soleimani M, Greeley T, Petrovic S, et al. Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. Am J Physiol Renal Physiol. 2001;280(2):F356-F364.
    [9].Royaux IE, Suzuki K, Mori A,et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology .2000,141:839-845
    [10]. Dohan O, De la Vieja A, Carrasco N . Molecular study of the sodiumiodide symporter (NIS): a new field in thyroidology. Trends Endocrinol Metab. 2000,11:99-105.
    [11]. Bidart JM, Mian C, Lazar V, et al. Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab.2000, 85:2028-2033
    [12]. Everett LA, Belyantseva IA, Noben-Trauth K,et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet. 2001, 10:153-161.
    [13]. Reardon W, Coffey R, Phelps PD, et al., Pendred syndrome-100 years of underascertainment. QJM, 1997, 90(7): 443-447.
    [14]. Li XC, Everett LA, Lalwani AK, et al., A mutation in PDS causes non-syndromic recessive deafness. Nat Genet, 1998,18(3): 215-217.
    [15]. Cremers CW, Admiraal RJ, Huygen PL, et al., Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred's syndrome. Int J Pediatr Otorhinolaryngol, 1998,45(2): 113-123.
    [16]. Phelps PD, Coffey RA, Trembath RC, et al., Radiological malformations of the ear in Pendred syndrome. Clin Radiol, 1998, 53(4): 268-273.
    [17]. Tsukamoto K, Suzuki H, Harada D, et al., Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet, 2003, 11(12): 916-922.
    [18]. Reardon W, CF OM, Trembath R, et al., Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM, 2000, 93(2): 99-104.
    [19]. Campbell C, Cucci RA, Prasad S, et al., Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat, 2001,17(5): 403-411.
    [20]. Scott DA, Wang R, Kreman TM, et al., Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet, 2000, 9(11):1709-1715.
    [21]. Tekin M, Akcayoz D, Comak E, et al., Screening the SLC26A4 gene in probands with deafness and goiter (Pendred syndrome) ascertained from a large group of students of the schools for the deaf in Turkey. Clin Genet, 2003, 64(4): 371-374.
    [22]. Namba A, Abe S, Shinkawa H, et al., Genetic features of hearing lo ss associated with ear anomalies: PDS and EYA1 mutation analysis. J Hum Genet, 2001,46(9): 518-521.
    [23]. Bogazzi F, Raggi F, Ultimieri F, et al., A novel mutation in the pendrin gene associated with Pendred's syndrome. Clin Endocrinol (Oxf), 2000, 52(3): 279-285.
    [24]. Kopp P, Arseven OK, Sabacan L, et al., Phenocopies for deafness and goiter development in a large inbred Brazilian kindred with Pendred's syndrome associated with a novel mutation in the PDS gene. J Clin Endocrinol Metab, 1999, 84(1): 336-341.
    [25]. Sato E, Nakashima T, Miura Y, et al., Phenotypes associated with replacement of His by Arg in the Pendred syndrome gene. Eur J Endocrinol, 2001, 145(6): 697-703.
    [26]. Hulander, M., Wurst, W., Carlsson, P. et al. The winged helix transcription factor Fkh10 is required for normal development of the inner ear. Nat. Genet. 1998,20:374-376.
    [27]. Malin Hulander, Amy E, Kiernan, et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxil null mutant mice. Development ,2003 ,130(9) :2013-2025.
    [28]. Tao Yang, Hilmar Vidarsson, Sandra Rodrigo-Blomqvist, et al. Transcriptional control of SLC26A4 is involved in pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). The American Journal of Human Genetics, 2007, 80 (6):1055-1063
    [29]. Karet FE, Finberg KE, Nelson RD, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999.21(1):84-90.
    [30]. Berrettini S, Forli F, Franceschini SS,et al. Distal renal tubular acidosis associated with isolated large vestibular aqueduct and sensorineural hearing loss. Ann Otol Rhinol Laryngol .2002.111(5):385-391.
    [31]. Read AP, Newton VE. Waardenburg syndrome. J Med Genet, 1997,34: 656-665.
    [32]. Dourmishev AL, Stoimenov A. Klein-Waardenburg's syndrome. Dermatol Venereol (Sofia), 1985, 25: 67-70
    [33]. Carey ML, Friedman TB, Asher JH, et al. Septooptic dysplasia and WSI in the proband of a WSI family segregating for a novel mutation in PAX3 exon 7. J Med Genet, 1998,35:248-250
    [34]. Attaie A, Kim E, Wilcox ER, Lalwani AK. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type Ⅰ (WSI). Molec Cellul Probes, 1997,11: 233-236
    [35]. Baldwin CT, Hoth CF, Macina RA, et al.Mutations in PAX3 that cause Waardenburg syndrome type Ⅰ. Ten new mutations and review of the literature. Am J Med Genet, 1995, 58: 115-122
    [36]. Wildhardt G, Winterpacht A, Hilbert K, et al. Two different PAX3 gene mutations causing Waardenburg syndrome type I. Molec Cellul Probes, 1996, 10:229-231
    [37]. Asher JH Jr, Sommer A, Morell R, et al.Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat, 1996,7: 30-35
    [38]. Nakayama, A., Nguyen, M.T., Chen, C.C., et al. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech,1998 ,70,155-166
    [39]. Madden C, Halsted MJ, Hopkin RJ, et al. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome. Laryngoscope. 2003.113(11):2035-4441.
    [40]. Ramirez Camacho R, Arellano B, Garcia Berrocal JR.Gusher perilinfa'tico. Mitos y Realidad. Acta Otorrinolaringol Esp .2000.51 (3): 193-198.
    [41]. Talbot JM, Wilson DF. Computed tomographic diagnosisof X-linked congenital mixed deafness, fixation of the stapedial footplate, and perilymphatic gusher. Am J Otol. 1994.15(2): 177-182
    [42]. Brunner HG, van Bennekom A, Lambermon EM, et al. The gene for X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery (DFN3) is linked to PGK. Hum Genet .1988.80(4):337-340.
    [43]. Arellano B, Ramirez-Camacho R, Garcia-Berrocal JR et al. Sensorineural hearing loss and Mondini dysplasia caused by a deletion at locus DFN3. Arch Otolaryngol Head Neck Surg .2000.126(9): 1065-1069.
    [44]. Stinckens C, Standaert L, Casselman JW, et al. The presence of a widened vestibular aqueduct and progressive sensorineural hearing loss in the branchio-oto-renal syndrome. A family study. Int J Pediatr Otorhinolaryngol . 2001.59(3): 163-172
    [45]. Ceruti S, Stinckens C, Cremers CW, et al.Temporal bone anomalies in the BOR syndrome: detailedcomputed tomographic and magnetic resonance imaging findings. Otol Neurotol .2002.23(2):200-207.
    [46]. Griffith AJ, Arts A, Downs C, et al. Familial large vestibular aqueduct syndrome. Laryngoscope. 1996. 106(8):960-965
    [47]. Ram(?)rez-Camacho R, Garc(?)a-Berrocal J, Arellano B, et al. Familial
    isolated unilateral large vestibular aqueduct syndrome.ORL J Otorhinolaryngol Relat
    Spec.2003.65(1):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700