小鼠青光眼模型视网膜神经节细胞损伤与CD3ζ关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景青光眼是世界上最主要的不可逆性致盲性眼病之一,引起周边视野的缺损直至中心视力消失。视网膜神经节细胞(retinal ganglion cell, RGC)的凋亡是青光眼的最主要特征之一,但是RGC损伤的具体机制至今不明,如何减少青光眼RGC的损害是世界性难题,观察RGC丢失的速度、形态的变化对揭示青光眼的病程有重要的临床指导意义。传统的研究RGC损伤的方法无法活体动态监测RGC的变化,目前国际上共焦激光显微镜活体观察转基因小鼠带自发荧光的RGC变化是一种新的趋势,但是主要集中在观察RGC数量的变化,最近有研究表明活体观察猴和小鼠RGC树突的可能性,但是还没有研究涉及到病理状态下,对RGC形态变化的观察。眼内压(introcular pressure, IOP)升高是青光眼发病的主要原因之一,但不能解释青光眼发病的所有特征。近年来免疫系统参与青光眼发病的相关研究越来越受关注。我们之前的研究已表明CD3δ是影响RGC树突形态和功能的关键因子,CD3δ-/-小鼠的树突密度明显大于同龄野生型小鼠。ShRNA沉默CD3δ在RGC的表达会导致该细胞树突明显增加,CD3ζ影响了生理状态下RGC树突的形态和功能,病理状态下是否导致了RGC的损伤有待进一步研究。目的
     建立青光眼动物模型,选择合适的模型活体观察RGC变化,构建mCherry CD3ζshRNA表达载体,研究CD3ζ与RGC损伤的关系,探讨RNAi技术在视神经保护中的运用效果。
     方法
     1三种青光眼模型的建立:1)视神经挫伤模型:用能自动闭合的镊子夹伤视神经。2) NMDA诱导的视网膜损伤模型:玻璃体腔内注射NMDA (40nmol)导致RGC凋亡3)慢性高眼压模型:前房内注射微珠(10x 106 microbeads/ml)堵塞前房角导致眼压升高。
     2 RGC损伤的观察:用共焦激光显微镜活体动态观察Thy1-CFP小鼠带自发荧光的RGC的数量变化和和Thy1-YFP小鼠带自发荧光的RGC的形态变化。
     3 mCherry CD3ζshRNA表达载体构建:mCherry CD3ζshRNA表达载体是由编码shRNA的引物序列插入BamHI和XhoI位点之间。
     4视网膜组织中CD3ζ的mRNA及蛋白表达水平检测:RT-PCR和Western blot法检测视网膜组织中CD3ζ的mRNA及蛋白表达水平。
     5 Brn3b阳性的RGC检测:将mCherry CD3ζshRNA注射入小鼠玻璃体腔后,建立青光眼模型,取出视网膜行全视网膜铺片,计数Brn3b阳性的RGC。
     结果
     1建立了三种青光眼模型:1)视神经损伤模型2) NMDA诱导的视网膜损伤模型3)慢性高眼压模型
     2视神经挫伤模型RGC减少主要集中于术后一周,7天时RGC减少97.4%(P<0.001),NMDA诱导的RGC减少主要集中于术后一天,24小时RGC减少94.7%(P<0.001),慢性高眼压导致的RGC减少持续缓慢,第4周RGC减少26.7%(P<0.001)。
     3用Thy1-CFP小鼠和Thy1-YFP小鼠建立慢性高眼压模型,活体观察结果显示,Thy1-CFP小鼠3周后RGC减少21%±4.8%(P<0.001),6周后RGC减少30%±4.7%(P<0.001), Thy1-YFP小鼠的RGC的树突丢失早于胞体消失。
     4成功构建了mCherry-CD3ζshRNA的表达载体,CD3ζshRNA减少HEK293的70%的CD3ζ表达。
     5三种青光眼模型视网膜组织中CD3ζ的mRNA表达上升(P<0.05),CD3ζ蛋白质表达水平与正常视网膜相比没有明显变化。
     6玻璃体腔注射mCherry CD3ζshRNA的三种青光眼模型中RGC的丢失没有明显减少(P>0.05)。
     结论
     1视神经挫伤模型引起的RGC减少主要集中在术后一周,NMDA诱导的RGC减少主要集中于术后24小时,而前房内注射微珠堵塞房角诱发的高眼压模型的RGC减少是持续缓慢的,更加拟合临床青光眼的状态。
     2可利用共焦激光显微镜活体观察已建立慢性高眼压模型的Thy1-CFP小鼠的RGC的数量减少和Thy1-YFP小鼠的RGC的树突丢失。
     3视神经挫伤模型、NMDA诱导的视网膜损伤模型、慢性高眼压模型的视网膜组织中CD3ζ的mRNA水平表达上升,但CD3ζ的蛋白表达水平无明显变化,玻璃体腔注射mCherry CD3ζshRNA的的三种青光眼模型,RGC的损伤没有明显减少,提示CD3ζ能与RGC的损伤无关。
Backgrouds Glaucoma is a leading cause of irreversible blindness in the world, resulting in an initial loss of peripheral vision with central visual defects occurring much later. The progressive death of retinal ganglion cell (RGC) is a key character of glaucoma.But the pathogenesis of the death of retinal ganglion cell is still unclear now.How to reduce the RGC damage of glaucoma is a hard problem.It is very meaningful to study the decrease speed and the morphology change of RGC.Confocal scanning laser microscopy is used to observe the RGC number changes of transgenic mice with expression of fluorescent protein in RGC under some pathological conditions.Two recent studies demonstrated the possibility of visualizing RGC dendrites in vivo in monkey and mouse.However,no study has provided in vivo data to determine the morphological changes of RGC. The increased intraocular pressure does not explain glaucoma in all patients but can be considered as a risk factor of the disease. People pay more and more attention to the relationship of immune system and glaucoma. Our recent study have presented strong evidence that the immune molecule CD3ζresulted in a significant change of RGC dendritic growth and elimination in developing retina.RGC dendritic density increased in mature CD3ζ-/-mice.RGC dendritic density increased After the expression of CD3ζdecreased in RGC by shRNA.CD3ζaffect the morphology and function of RGC dendrite under physiological condition.However,it is still unclear that whether CD3ζis related to the damage of RGC
     Purposes
     1 To establish three types of glaucoma model.
     2 To image RGC in vivo in the selected glaucoma model.
     3 To construct the mCherry CD3ζshRNA vector.
     4 To observe the effect of RNAi technique usage in retinal neuroprotection.
     Methods
     1 We set up three types of glaucoma model:1)optic nerve crush model:the optic nerve was clamped using a pair of self-closing tweezers.2)NMDA intravitreal injection model:Hamilton injector was used to inject NMDA(40nmol) into the vitreous body.3)chronic high intraocular pressure model:microbeads (10x106microbeads/ml) were injected into the anterior chamber to obstruct the angle of anterior chamber.
     2 A confocal scanning laser microscopy was used to image Thyl-CFP mice and Thyl-YFP mice to observe the damage of RGCs.
     3 The mCherry CD3ζshRNA expression constructs were generated by inserting a 68 bp shRNA template sequence between BamHI and XhoI sites.
     4 Real-time PCR and Western blot assy were used to detect CD3ζin retinal tissues of three glaucoma models.
     5 The mCherry CD3ζshRNA was injected into the vitreous body, then set up the glaucoma models,eyes were enucleated and processed for whole mount preparation. Brn3b-positive RGCs were counted and analyzed.
     Results
     1 We set up three types of glaucoma model:1)optic nerve crush model;2)NMDA intravitreal injection model;3)chornic high intraocular pressure model.
     2 RGC loss in optic nerve crush model focus on the postoperative week,approximately 97.4% above control(P<0.001).NMDA induced significant loss of RGC(approximately 94.7% above control) in 24 hours(P<0.001).High IOP triggered the death of 26.7%of RGC over a 4 week period(P<0.001).
     3 In Thyl-CFP mice with IOP elevation,three weeks after the IOP elevation,CFP-positive RGCs were reduced by 21%±4.8%(P<0.001).CFP-positive RGCs continued to decrease in number over time and 6 weeks after IOP elevation,CFP-positive RGCs were reduced by 30%±4.7%(P<0.001).In Thyl-YFP mice with IOP elevation,the damage on RGC dendrites start several days before cell death.
     4 We constructed the mCherry CD3ζshRNA expression vectors,CD3ζshRNA knockdown the CD3ζexpression level by 70% in HEK293 cells.
     5 CD3ζmRNA expression levels in retinal tissue of three glaucoma models are significantly changed compared to control(p<0.05),but CD3ζprotein expression levels in retinal tissue of three glaucoma models are not significantly changed compared to control.
     6 The damage of RGC in three glaucoma models with mCherry CD3ζshRNA introvitreal injection are not significantly decreased compared to the same models without mCherry CD3ζshRNA introvitreal injection.(p>0.05)
     Conclusions
     1 RGC loss in optic nerve crush model focus on the postoperative week, NMDA induced significant loss of RGC in 24 hours, high IOP trigger the progressive death of RGC over a long time.
     2 Confocal scanning laser microscopy is used to observe the RGC number decrease of Thy1-CFP mice and RGC dendrite loss of Thy1-YFP mice.
     3 CD3ζmRNA expression levels in retinal tissue of three glaucoma models are significantly changed compared to control,but CD3ζprotein expression levels in retinal tissue of three glaucoma models are not significantly changed compared to control. The damage of RGC in three glaucoma models with mCherry CD3ζshRNA introvitreai injection are not significantly decreased compared to the same models without mCherry CD3ζshRNA introvitreal injection.CD3ζmaybe not related to the RGC damage.
引文
1 Gray DC,Wolfe R,Gee BP,et al.In vivo imaging of the fine structure of rhodaminelabeled mancaque retinal ganglion cells.Invest Ophthalmol Vis Sci. 2008;49:467-473.
    2 Walsh MK,Quigley HA.In vivo time-lapse fluorescence imaging of individual retinal ganglion cell in mice.J Neurosci Meth.2008; 169:214-221.
    3 Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-267. [PubMed:16488940]
    4 Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study:a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-713.
    5 Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:714-720.
    6 Le A, Mukesh BN, McCarty CA, et al. Risk factors associated with the incidence of open-angle glaucoma:the visual impairment project. Invest Ophthalmol Vis Sci 2003;44:3783-3789.
    7 Hong-ping Xu,Hui Chen.The Immune Protein CD3ζ. is Required for NormalDevelopment of Neural Circuits in the Retina. Neuron 65,503-515.
    8曹业宏,林乐理.青光眼与谷氨酸、细胞凋亡[J].沈阳医学院院报.2007,9(1):54-59.
    9 GuPtaN, Yucel YH.Glaucoma as a neurodegenerative disease[J].Curr Opin Ophthalmol.2007,18(2):110-114.
    10 Osborne NN, Wood JP, Chidlow G.lnvited review:Neuroprotective properties Of certain beta-adrenoceptor antagonists used for the treatment of glaucoma[J].Jocul Phannacol Ther.2005,21(3):175-81.
    11刘红,詹桂林,徐亮.青光眼的动物模型,国际眼科纵览:2007年4月第31卷第2 期103-107
    12 Rebecca M. Sappington, Brian J,et al.The Microbead Occlusion Model:A Paradigm for Induced Ocular Hypertension in Rats and Mice.Investigative Ophthalmology & Visual Science, January 2010, Vol.51,207-216
    13 Moncaster JA, Walsh DT, Gentleman SM, et al. Ergothioneinet reatment protects neurons against N-methyl-D-aspartate excitotoxicity in an in vivo rat retinal model. Neurosci Lett,2002,328:552
    14 Dreyer EB, Grosskreutz CL. Excitatory mechanisms in retinal ganglion cell death in primary open angle glaucoma(POAG) [J]. Clin Neurosc,1997,4:270-273
    15 LiY, Schlamp CL, Poulsen GL, et a.l P53 regulates apoptotic retinal ganglion celldeath induced byN-methyl-D-aspartate[J].MolVis,2002,8:341-350
    16 Li Y, Schlamp CL, Nickells RW. Experimental induction of retinal ganglion cell death in adultmice[J]. InvestOphthalmolVis Sc,i 1999,40:1004-1008
    17 Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion:implications for optic nerve neuropathies.Exp Neurol,1998,153:1271
    18 Gellrich NC,Eysel UT,Mechtans E.Damage to the optic nerve:an animal model[J].Fortschr Kiefer Gesichtschir,1996,41(1):1-6
    19 Christopher Kai-shun Leung,James D. Lindsey,et al.Longitudinal Profile of Retinal Ganglion Cell Damage after Optic Nerve Crush with Blue-Light Confocal Scanning Laser Ophthalmoscopy Investigative Ophthalmology & Visual Science, November 2008, Vol.49, No.11,4898-4902
    20 Agarwal RS.Eye troubles in old age:glaucoma. Antiseptic 1947 May;44(5):302-8.
    21 Yang J, Patil R V, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma [J]. American Journal of Ophthalmology,2001,131(4):421-426.
    22 Boyer C, Auphan N, Luton F,et al.T cell receptor/CD3 complex internalization following activation of a cytolytic T cell clone:evidence for a protein kinase C-independent staurosporine-senstivested.Eur J Immunol.1991 Jul;21(7): 1623-34.
    23杨俊杰.免疫机制在青光眼视神经变形中的保护作用,河南大学学报:第29卷 第4期,2010年11月231-234.
    24 Anderson M, Libby R, Gould D, et al.High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma[J]. PNAS,2005, 102 (12):4566-4571.
    25 Lam TT, Abler AS, Kwong JM,et al.N-methyl-D-aspartate(NMDA)-induced apoptosis in rat retina [J].Invest Ophthalmol Vis Sci,1999,40:2391~2397.
    26 Levkovitch-Verbin H,Quigley HA,Martin KR,et al.Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci,2002,43:402-410.
    27Gross RL,Ji J,Chang P,et al.A mouse model of elevated intraocular pressure:retina and optic nerve findings. Trans Am Ophthalmol Soc,2003,101:16321711
    28 Kielczewski J L, Pease M E, Quigley H A.The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina [j].Invest Ophthalmol Vis Sci,2005,46 (9):3188~3196.
    29 Levent Sarikcioglu, Necdet Demir, Arife Demirtop.A standardized method to create optic nerve crush:Yasargil aneurysm clip [J].Experimental Eye Research, 2007,84:373~377.
    30 Barron KD, Dentinger MP. Krohel G, et al.Qualitative andquantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush [J] Journal of Neurocytology,1986,15:345~362.
    31 Vorwerk CK,Lipton SA, ZurakowskiD, et a.l Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine[J]. InvestOphthalmol Vis Sci 1996,37:1618-1624
    32 Smith RS, Zabaleta A, Savinova OV, et al. The mouse anterior chamber angle and trabecular meshwork develop without cell death.BMC Dev Biol.201,1:3
    33Lindsey JD,Weinreb RN.Identification of the mouse uveoscleral outflow pathyway using fluorescent dextran.Invest Ophthalmol Vis Sic,2002,43; 2201-2205
    34Aihara M,Lindsey JD,Weinreb RN.Aqueous humor dynamics in mice.Invest Ophthalmol Vis Sic,2003,44:5168-5173.
    35 Aihara M,Lindsey JD,Weinreb RN.Twenty-four-hour pattern of mouse intraocular pressure.Exp Eye Res,2003,77:681-686
    36Aihara M,Lindsey JD,Weinreb RN.Reduction of intraocular pressure in mouse eyes treated with latanoprost.Invest Ophthalmol Vis Sic,2002,43:146-150
    37 Crowston JG,Aihara M,Lindsey JD,et al.Effect of latanoprost on intraocular preesure in mice lacking the prostaglandin FP receptor.Invest Ophthalmol Vis Sic,2004,45:3555-3559.
    38Crowston JG,Aihara M,Lindsey JD,et al.Effect of latanoprost on outflow facility in the mouse.Invest Ophthalmol Vis Sic,2004,45:2240-2245.
    39 Ota T,Murata H,Sugimoto E,et al.Prostaglandin analogues and mouse intraocular pressure:effects of latanoprost,tafluprost,travoprost,anf unoprostone,considering 24-hour variation.Invest Ophthalmol Vis Sic,2005,46:2006-2011.
    40 Quigly HA,Addicks EM,Green WR,et al.Optic nerve damage in human glaucoma.The site of injury and susceptibility to damage.Am J Ophthalmol. 1981;99:635-649
    41 Sheldon WG, Warbritton AR, Bucci TJ, et al. Glaucoma in food restricted and ad libitum fed DBAP 2NNia mice. Lab Anim Sci,1995,45:50825181
    42 John SWM, Smith RS, Savinora OV, et al. Essential iris atrophy,pigment dispersion, and glaucoma in DBAP J mice. Invest Ophthalmol Vis Sci,1998, 39:9512962,1641.
    43 Anderson MG, Smith RS, Savinova OV, et al. Genetic modification of glaucoma associated phenotypes between AKXD228P Ty and DBA/2J mice. BMC Genet, 2001,2:1213.
    44 Schuettauf F,Rejdak R,Waslski M,et al.Retinal neurodegeneration in the DBA/2J mouse:a model for ocular hypertension.Acta Neuropathol(Berl),2004, 107:352-358.
    45 Jakobs TC,Libby RT,Ben Y,et al.Retinal ganglion cell degeneration is topological but not type specific in DBA/2J mice.J Cell Biol,2005,171:313-325.
    46 Aihara M,Lindsey JD,Weinreb RN.Experimental mouse ocular hypertension: establishment of the model.Invest Ophthalmol Vis Sci,2003,44:4314-4320.
    47 Danias J.Kontiola AI,Filippopoulos T,et al.Method for the noninvasive measurement of intraocular pressure in mice.Invest Ophthalmol Vis Sic,2003, 44:1138-1141
    48 Gross RL,Ji J,Chang P,et al.Amouse model of elevated intraocular pressure:retina and optic nerve findings.Trans Am Ophthalmol Sic,2003;101:163-171
    49 Grozdanic SD,Betts DM,Sakaguchi DS,et al.Laser-induced mouse model of chronic ocular hypertension.Invest Ophthalmol Vis Sic,2003,44:4337-4346.
    50 Ruiz-Ederra J,Verkman AS.Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion.Exp Eye Res,2006,82:879-884.
    51 McKinnon SJ, Pease ME, Wolde Mussie E, et al. Comparison of three models of rat glaucoma caused by chronic int raocular pressure elevation. Invest Ophthalmol Vis Sci,1999,40 (4):S787.
    52 Shareef SR, Garcia-Valenzuela E, Salierno A, et al. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res,1995,61:379-3821
    53 Morrison JC, Johnson EC, Cepurna W, et al. Understanding mechanisms of pressure2induced optic nerve damage. Prog Retin Eye Res,2005,24:217-2401
    54 Christopher Kai-shun Leung,James D. Lindsey,Jonathan G. Longitudinal Profile of Retinal Ganglion Cell Damage after Optic Nerve Crush with Blue-Light Confocal Scanning Laser Ophthalmoscopy Investigative Ophthalmology & Visual Science, November 2008, Vol.49, No.11 4898-4902
    55 Keith RG Martin,Hana Levkovitch-verbin,Danielle Valenta,et al.Retinal Glutamate Transpoter Changes in Experimental Glaucoma and after Optic Nerve Transection in the Rat.Investigative Ophthalmology and Visual Science,2002, 43;2236-2243
    56 Levkjovitch-verbin H,Quigley HA.Translimbal laser Photocoagulation to the trabecular Meshwork as a model of glaucoma in rats.Invest Ophthalmol Vix Sci,2002,43:402-410
    57 Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by doublr-stranded RNA in caenorhabditis elegens.[J].Nature.1998,391(6669): 806-811.
    58 Couzin J.Breakthrough of the year:small RNAs make big splash. Seience,2002, 298(5602):2296-2297.
    59http://nobeIPrize.org/nobel prizes/medieine/laureates/2006/announcement.html
    60 Maliyekkel A,Davis BM.Roninson IB cell cycle arrest drastically extends the duration of gene silencing after transient expression of short hairpin RNA.Cell Cycle,2006,5(20):2390-5.
    61 Cheng TL,Chang WT.Construction of simple and sfficient DNA vector-based short hairpin RNA expression system for specific gene silencing in mammalian cells.Methods Mol Biol,2007,408:223-41.
    62 Meister G,Tuschl T.Mechanisms of gene silencing by double-stranded RNA.[j] Nature.2004;431(7006):343-349.
    63 Morris KV,RNA-mediated transcriptional gene silencing in human cells[J].Curr Microbiol Immunol.2008;320:211-224.
    64 Racz Z,Hamar P.SiRNA technology,the gene therapy of the future[J].Orv Hetil.2008; 149(4):153-159
    65 Gomase VS,Tagore S.RNAi-a tool for target finding in new drug development[J].Curr Drug Metab.2008;9(3):241-244.
    66 Elbashir SM, Lendeckel W, Tusehi T.RNA interference is mediated by 21 and 22-nucleotide RNAs.Genes Dev,2001,15(2):188-200.
    67黄坊,赵颖海.RNAi干扰技术在鼻咽癌研究中的应用进展.肿瘤防治研究,2009,36(1):73-75.
    68李秀梅,刘光泽.慢病毒载体介导的肝细胞基因转移.国际病毒学杂志,2007,14(1):24-26.
    69 Ramezani A,Hawley RG.Overview of the HIV-Ⅰ lentiviral vector system. Curr-protocMol Biol,2002,16(21):1-15.
    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-267.
    2. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study:a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-713. discussion 829-730.
    3. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study:baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:714-720.
    4. Le A, Mukesh BN, McCarty CA, et al. Risk factors associated with the incidence of open-angle glaucoma:the visual impairment project. Invest Ophthalmol Vis Sci 2003;44:3783-3789.
    5. Savinova OV, Sugiyama F, Martin JE, et al. Intraocular pressure in genetically distinct mice:an update and strain survey. BMC Genet 2001;2:12.
    6. Thanos S, Naskar R. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Experimental eye research 2004;79:119-129.
    7. John SW, Hagaman JR, MacTaggart TE, et al. Intraocular pressure in inbred mouse strains. Investigative ophthalmology & visual science 1997;38:249-253.
    8. Jia L, Cepurna WO, Johnson EC, et al. Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. Invest Ophthalmol Vis Sci 2000;41:3415-3419.
    9. Johnson TV, Fan S, Toris CB. Rebound tonometry in conscious, conditioned mice avoids the acute and profound effects of anesthesia on intraocular pressure. J Ocul Pharmacol Ther 2008;24:175-185.
    10. Filippopoulos T, Matsubara A, Danias J, et al. Predictability and limitations of non-invasive murine tonometry:comparison of two devices. Exp Eye Res 2006;83:194-201.
    11. Senatorov V, Malyukova I, Fariss R, et al. Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci 2006;26: 11903-11914.
    12. Ahmed E, Ma J, Rigas I, et al. Non-invasive tonometry in the mouse. Invest Ophthalmol Vis Sci 2003;44:3336.
    13. Lim KS, Wickremasinghe SS, Cordeire MF, et al. Accuracy of intraocular pressure measurements in new zealand white rabbits. In-vest Ophthalmol Vis Sci.2005;46:2419-2423
    14. Morris CA, Crowston JG, Lindsey JD,et al. Comparison of invasive and non-invasive tonometry in the mouse. Exp. Eye Res.2006;82:1094-1099
    15.栾春生,陈晓明,邓应平,等.兔眼中央角膜厚度与Perkins压平眼压的关系的研究.中华眼科杂志.2005;41:642-646
    16.张虹,李贵刚,胡军,等TonoPenl眼压计对兔眼不同部位眼压测量值的相研究.眼科新进展.2006;26:744-746
    17. 李奇根,陈龙山,陈家祺,等TonoPen眼压计与Goldmann眼压计的对比研究Chin Ophthal Res.2000;18:191-192
    18. Dalkea C, Pleyerb U, Grawa J. On the use of Tono-Pen XL for the meas-urement of intraocular pressure in mice. Exp.Eye.Res.2005;80:295-296
    19. Kontiola Al, Goldblum D, Mittag T,et al. The induction/impact tonometer:a new instrument to measure intraocular pressure in the Exp.Eye.Res.2001; 73:781-785
    20. Leiva M, Naranjo C, Pena MT. Comparison of the rebound tonometer (ICare)to the applanation tonometer (Tnonpen XL) in normotensive dogs.Vererinary Ophthalmology.2006;9:17-21
    21. Moore CG, Milne ST, Morrison JC. Noninvasive measurement of rat intraocular pressure with the Tono-Pen. Invest Ophthalmol Vis Sci.1993;34:363-369
    22. Pease,ME,Hammond JC,Quigley HA. Manometric calibration and comparison of TonoLab and TonoPen tonometers in rats with experimental glaucoma and in normal mice.J Glaucom2006; 15:512-519
    23. Danias J, Kontiola Al, Filippopoulos T,et al. Method for the non-in-vasive measurement intraocular pressure in mice.Invest Ophthalmol Vis Sci.2003;44:1138-1141
    24.李美玉主编.青光眼学.北京:人民卫生出版社,2004.121-122
    25. Chidlow G, Nash MS, Crowhurst C,et al. The ocular blood flow tonograph:a new instrument for the measurement of intraocular pressure in rabbits. Exp.Eye.Res.1996;63:463-469
    26. Abrams LS, Vitale S, Jampel H. Comparison of three tonometers for Measuring intraocular pressure in rabbits. Invest Ophthalmol Vis Sci.1996;37:940-944.
    27. Coban BE, Bohr DF. Measurement of intraocular pressure in awake mice Invest Ophthalmol Vis Sci.2001;42:2560-2562
    28. Jose M. Martinez-d-1-C, Julian G-F, et al. Reproducibility and clinical Evaluation of rebound tonometry. Invest Ophthalmol Vis Sci.2005; 46:4578-4580
    29. Cervino A.Rebound tonometry:new opportunities and limitations of non-invasive determination of intraocular pressure. Br.J.Ophthalm-ol.2006;90:1444-1446
    30. Wang WH, Millar JC,Pang IH,et al. Non-invasive measurem-ent of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci.2005;46:4617-4621
    31. Coban BE, Bohr DF. Goldmann applanation tonometry in the conscious rat.Invest Ophthalmol Vis Sci.2001;42:340-342
    32. Filippopoulos T, Matsubara A, Danias J,et al. Predictability and limitation of non-invasive murine tonometry:Comparison of two devices. Exp. Eye.Res.2006;83;194-201
    33. Avila MY, Munera A, Guzman A,et al. Non-invasive intraocular pressure measurements in mice by pneumotonome-try. Invest Ophthalmol Vis Sci.2005:46:464-469
    34. Moore CG, Milne ST, Morrison JC. Noninvasive measurement of rat intraocular pressure with the Tono-Pen. Investigative ophthalmology& visual science 1993;34:363-369.
    35. Saeki T, Aihara M, Ohashi M,et al. The efficacy of TonoLab in detecting physiological and pharmacological changes of mouse intraocular pressure- -comparison with TonoPen and microneedle manometery. Curr Eye Res 2008;33:247-252.
    36. Pease ME, Hammond JC, Quigley HA. Manometric calibration and comparison of TonoLab and TonoPen tonometers in rats with experimental glaucoma and in normal mice. J Glaucoma 2006; 15:512-519.
    37. Morrison JC, Johnson E, Cepurna WO. Rat models for glaucoma research. Progress in brain research 2008;173:285-301.
    38. Libby RT, Anderson MG, Pang IH, et al. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Visual neuroscience 2005;22:637-648.
    39. Anderson MG, Smith RS, Hawes NL, et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature genetics 2002;30:81-85.
    40. Jakobs TC, Libby RT, Ben Y, et al. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. The Journal of cell biology 2005;171:313-325.
    41. Bayer AU, Neuhardt T, May AC, et al. Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Investigative ophthalmology & visual science 2001;42:1258-1265.
    42. Nagaraju M, Saleh M, Porciatti V. IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci 2007;48:4573-4579.
    43. Li Y, Seman SJ, Schlamp CL, et al. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice. BMC neuroscience 2007;8:19.
    44. Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS genetics 2005;1:17-26.
    45. Ahmed F, Brown KM, Stephan DA, et al. Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Investigative ophthalmology & visual science 2004;45:1247-1258.
    46. Stasi K, Nagel D, Yang X, et al. Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Investigative ophthalmology & visual science 2006;47:1024-1029.
    47. Steele MR, Inman DM, Calkins DJ, et al. Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Investigative ophthalmology & visual science 2006;47:977-985.
    48. Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007;131:1164-1178.
    49. Anderson MG, Libby RT, Gould DB, et al. High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proceedings of the National Academy of Sciences of the United States of America 2005; 102:4566-4571.
    50. Bosco A, Inman DM, Steele MR, et al. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008;49:1437-1446.
    51. Zhou X, Li F, Ge J. Retinal ganglion cell protection by 17-beta-estradiol in a mouse model of inherited glaucoma. Developmental neurobiology 2007;67:603-616.
    52. Zhong L, Bradley J, Schubert W, et al. Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci 2007;48:1212-1218.
    53. Ward MS, Khoobehi A, Lavik EB, et al. Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres. Journal of pharmaceutical sciences 2007;96:558-568.
    54. Zhou Y, Grinchuk O, Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Investigative ophthalmology & visual science 2008;49:1932-1939.
    55. Alward WL, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). The New England journal of medicine 1998;338:1022-1027.
    56. Malyukova I, Lee HS, Fariss RN, et al. Mutated mouse and human myocilins have similar properties and do not block general secretory pathway. Investigative ophthalmology & visual science 2006;47:206-212.
    57. Fingert JH, Stone EM, Sheffield VC, et al. Myocilin glaucoma. Survey of ophthalmology 2002;47:547-561.
    58. Gould DB, Reedy M, Wilson LA, et al. Mutant myocilin nonsecretion in vivo is not sufficient to cause glaucoma. Molecular and cellular biology 2006;26:8427-8436.
    59. Mabuchi F, Lindsey JD, Aihara M, et al. Optic nerve damage in mice with a targeted type I collagen mutation. Investigative ophthalmology & visual science 2004;45:1841-1845.
    60. Ittner LM, Schwerdtfeger K, Kunz TH, et al. Transgenic mice with ocular overexpression of an adrenomedullin receptor reflect human acute angle-closure glaucoma. Clin Sci (Lond) 2008;114:49-58.
    61. Harada T, Harada C, Nakamura K, et al. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. The Journal of clinical investigation 2007; 117:1763-1770.
    62. Takeshi, I.; Zai-Long, C.; Fumie, Y., et al. Three potential mouse model for glaucoma. International Congress for Eye Research; Beijing, China.2008. [ICER abstract GL1]
    63. Gould DB, Smith RS, John SW. Anterior segment development relevant to glaucoma.The International journal of developmental biology 2004;48:1015-1029.
    64. Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye (London, England) 2007;21:1310-1318.
    65. Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme:new insights from mouse models and human diseases. Bioessays 2004;26:374-386
    66. Smith RS, Zabaleta A, Kume T, et al. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Human molecular genetics 2000;9:1021-1032.
    67. Libby RT, Smith RS, Savinova OV, et al. Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science (New York, NY 2003;299:1578-1581.
    68. Sasaki T, Watanabe W, Muranishi Y, et al. Elevated intraocular pressure, optic nerve atrophy, and impaired retinal development in ODAG transgenic mice. Investigative ophthalmology & visual science 2009;50:242-248.
    69. De Marco N, Buono M, Troise F, et al. Optineurin increases cell survival and translocates to the nucleus in a Rab8-dependent manner upon an apoptotic stimulus. The Journal of biological chemistry 2006;281:16147-16156.70. Wang WH, McNatt LG, Pang IH, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. The Journal of clinical investigation 2008; 118:1056-1064.
    71. Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 1974; 13:455-457.
    72. WoldeMussie E, Feldman B. Effect of chronically elevated intraocular pressure on loss of retinal ganglion cells in rats. [ARVO Abstract] Invest Ophthalmol Vis Sci 1997;38:S159. Abstract 787.
    73. Wijono M, WoldeMussie E, Ruiz G. Process of retinal ganglion damage by elevated intraocular pressure in rat eyes. [ARVO Abstract] Invest Ophthalmol Vis Sci 1999;40:S672. Abstract 3545.
    74. Gross RL, Ji J, Chang P, et al. A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 2003; 101:163- 169. discussion 169-171.
    75. Ueda J, Sawaguchi S, Hanyu T, et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Japanese journal of ophthalmology 1998;42:337-344.
    76. Levkovitch-Verbin H, Quigley HA, Martin KR, et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002;43:402-410.
    77. Grozdanic SD, Betts DM, Sakaguchi DS, et al. Laser-induced mouse model of chronic ocular hypertension. Tnvest Ophthalmol Vis Sci 2003:44:4337-4346.
    78. Ji J, Chang P, Pennesi ME, et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res 2005;45:169-179.
    79. Aihara M, Lindsey JD, Weinreb RN. Experimental mouse ocular hypertension: establishment of the model. Invest Ophthalmol Vis Sci 2003;44:4314-4320.
    80. Morrison JC, Moore CG, Deppmeier LM,et al. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;64:85-96.
    81. Fortune B, Bui BV, Morrison JC, et al. Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 2004;45:1854-1862.
    82. Johnson EC, Cepurna WO, Jia L, et al. The use of cyclodialysis to limit exposure to elevated intraocular pressure in rat glaucoma models. Exp Eye Res 2006;83:51-60.
    83. Johnson EC, Jia L, Cepurna WO, et al. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Investigative ophthalmology & visual science 2007;48:3161-3177.
    84. Shareef SR, Garcia-Valenzuela E, Salierno A,et al. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379-382.
    85. Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 1998;784:100-104.
    86. Garcia-Valenzuela E, Shareef S, Walsh J, et al. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995;61:33-44.
    87. Ruiz-Ederra J, Verkman AS. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res 2006;82:879-884.
    88. Morrison JC, Johnson EC, Cepurna W,et al. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 2005;24:217-240.
    89. Goldblum D, Mittag T. Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye. Vision Res 2002;42:471-478.
    90. Moreno MC, Marcos HJ, Oscar Croxatto J, et al. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Exp Eye Res 2005;81:71-80.
    91. Urcola JH, Hernandez M, Vecino E. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res 2006;83:429-437.
    92. Mermoud A, Baerveldt G, Mickler DS, et al. Animal model for uveitic glaucoma. Graefes Arch Clin Exp Ophthalmol 1994;232:553-560.
    93. Levkovitch-Verbin H, Harris-Cerruti C, Groner Y, et al. RGC death in mice after optic nerve crush injury:oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 2000;41:4169-4174.
    94. Berkelaar M, Clarke DB, Wang YC, et al. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 1994;14:4368-4374.
    95. Blair M, Pease ME, Hammond J, et al. Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Investigative ophthalmology& visual science 2005;46:884-890.
    96. Schwartz M. Optic nerve crush:protection and regeneration. Brain research bulletin 2004;62:467-471.
    97. Fisher J, Levkovitch-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic nerve:implications for optic neuropathies. J Neurosci 2001;21:136-142.
    98. Beirowski B, Babetto E, Coleman MP,et al. The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur J Neurosci 2008;28:1166-1179.
    99. Whitmore AV, Libby RT, John SW. Glaucoma:thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005;24:639-662.
    100. Vrabec JP. Levin LA. The neurobiology of cell death in glaucoma. Eye 2007;21(Suppl 1):S 11-14.
    101 Sun Q, Ooi VE, Chan SO. N-methyl-D-aspartate-induced excitotoxicity in adult rat retina is antagonized by single systemic injection of MK-801. Exp Brain Res 2001;138:37-45.
    102 Yang XL. Characterization of receptors for glutamate and GAB A in retinal neurons. Progress in neurobiology 2004;73:127-150.
    103. Li Y, Schlamp CL, Poulsen GL,et al. p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-D-aspartate. Mol Vis 2002;8:341-350.
    104 Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996;37:1618-1624.
    105 Dreyer EB, Zurakowski D, Schumer RA,et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996; 114:299-305.
    106. Honkanen RA, Baruah S, Zimmerman MB, et al. Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy. Arch Ophthalmol 2003; 121:183-188.
    107 Wamsley S, Gabelt BT, Dahl DB, et al. Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 2005; 123:64-70.
    108 Levkovitch-Verbin H, Martin KR, Quigley HA, et al. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection. J Glaucoma 2002; 11:396-405.
    109 Chaudhary P, Ahmed F, Sharma SC. MK801-a neuroprotectant in rat hypertensive eyes. Brain Res 1998;792:154-158.
    110 Yoles E, Muller S, Schwartz M. NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 1997;14:665-675.
    111 Ju WK, Kim KY, Angert M, et al. Memantine blocks mitochondrial OPA1 and cytochrome c release, and subsequent apoptotic cell death in glaucomatous retina. Investigative ophthalmology & visual science.2008
    112 Buchi ER.Cell death in rat retina after pressure-induced ischaemia-reperfusion insult:electron microscopic study. Ⅱ. Outer nuclear layer. Japanese journal of ophthalmology 1992;36:62-68.
    113 Chi ER. Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult:an electron microscopic study. Ⅰ. Ganglion cell layer and inner nuclear layer. Exp Eye Res 1992;55:605-613.
    114 uchi ER, Suivaizdis I, Fu J. Pressure-induced retinal ischemia in rats:an experimental model for quantitative study. Ophthalmologica 1991;203:138-147.
    115 abo ME, Droy-Lefaix MT, Doly M,et al. Ischemia and reperfusion-induced histologic changes in the rat retina. Demonstration of a free radical-mediated mechanism. Invest Ophthalmol Vis Sci 1991;32:1471-1478.
    116 Wilson CA, Schoen T, Kuwabara T. Experimental ischemia induces cell mitosis in the adult rat retina. Invest Ophthalmol Vis Sci 1988;29:1050-1055.
    117 Mosinger JL, Olney JW. Photothrombosis-induced ischemic neuronal degeneration in the rat retina. Exp Neurol 1989; 105:110-113.
    118 Chauhan BC, LeVatte TL, Jollimore CA, et al. Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 2004;45:144-152.
    119 Chauhan BC, Levatte TL, Gamier KL, et al. Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. Invest Ophthalmol Vis Sci 2006;47:634-640.
    120 Taniguchi T, Okada K, Haque MS,et al. Effects of endothelin-1 on intraocular pressure and aqueous humor dynamics in the rabbit eye. Curr Eye Res 1994; 13:461-464.
    121 Otori, Y. Use of purified retinal ganglion cells for an in vitro model to study glaucoma. Ophthalmology Research:Mechanisms of the Glaucomas. Totowa, NJ: Humana Press; 2008. p.601-607.
    122 Meyer-Franke A, Kaplan MR, Pfrieger FW, et al. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 1995;15:805-819.
    123 Barres BA, Silverstein BE, Corey DP, et al. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988;1:791-803.
    124 Krishnamoorthy RR, Agarwal P, Prasanna G, et al. Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 2001;86:1-12.
    125 Agarwal N, Agarwal R, Kumar DM, et al. Comparison of expression profile of neurotrophins and their receptors in primary and transformed rat retinal ganglion cells. Mol Vis 2007;13:1311-1318.
    126 Frassetto LJ, Schlieve CR, Lieven CJ, et al. Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest Ophthalmol Vis Sci 2006;47:427-438.
    127Zhang SS, Fu XY, Barnstable CJ. Tissue culture studies of retinal development. Methods 2002;28:439-447.
    128 Seigel GM. The golden age of retinal cell culture. Mol Vis 1999;5:4.
    129Johnson TV, Martin KR. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 2008;49:3503-3512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700