苎麻的分子育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高苎麻育种效率,创造高产优质的苎麻新种质材料,本研究探索了将植物
    基因工程技术和外源总DNA导入技术应用于苎麻品种改良的可行性,并获得了如下结
    果。
    1.建立了高效的苎麻转基因植株再生体系
     对“湘苎3号”苎麻的茎段、子叶、带柄子叶、下胚轴等外植体的不定芽分化能
    力进行了比较,结果认为下胚轴分化频率高,材料制备容易,适宜用作苎麻遗传转化
    的受体,但从下胚轴上产生丛生芽的频率比较低。不同的组织培养条件下,下胚轴上
    不定芽分化频率高低依次为昼夜变温光照培养(日温26-28℃,夜温18-20℃)>恒温暗
    培养(26-28℃)>恒温光照培养(26-28℃),说明下胚轴再分化对温度变化的敏感性高于
    光照。研究还表明,苎麻外植体极易分化出根,但这个过程仍需要外源生长素的诱导。
    在仅添加了BA的分化培养基上,下胚轴脱分化和再分化都比较困难,而BA和IAA
    配合使用时却能很好地促进下胚轴的脱分化和再分化。不同BA和IAA配比组合中下
    胚轴的不定芽分化率存在差异,其中以BA2.0-3.0mg/l+IAA0.5mg/l组合的不定芽分
    化率最高,均达到了70%左右。此外,分化培养基中添加1mg/lAgNO_3在一定程度上
    也可以促进下胚轴上不定芽的分化。
    2.实现了农杆菌介导抗除草剂基因转化苎麻
     通过对影响根癌农杆菌转化效率的因素进行优化,建立了农杆菌介导外源抗除草
    剂Bar基因转化苎麻的遗传转化体系。结果表明,苎麻是一种对除草剂很敏感的植物,
    其耐除草剂“Basta”的临界浓度约为0.3mg/l,而且Basta对不定芽分化的抑制尤为明
    显。羧苄青霉素可以促进下胚轴上丛生芽的发生,但对不定芽生根的抑制作用不明显。
    同时苎麻下胚轴对根癌农杆菌菌株的敏感性高,容易被感染和转化,下胚轴与农杆菌
    共培养1-2d后其GUS瞬间表达率均接近100%。EHA105菌株比较适宜用于苎麻下胚
    轴的遗传转化,其合适的感染方式是将下胚轴外植体在用1/2MS液体培养基重新悬浮
    并稀释至浓度为OD_(600)=0.1-0.2的菌液中感染5min。下胚轴的预培养时间以及下胚轴
    与农杆菌的共培养时间对转化效率的促进作用都比较大,其中以预培养6-9d和共培养
    4d的转化效果达到最佳。试验还表明GUS瞬间表达率和GUS稳定表达率以及抗性愈
    伤组织中阳性转化体的百分率三者之间并不总是呈紧密的平行关系,因此综合考虑这
    三个参数来优化苎麻遗传转化体系是很有必要的。此外,本研究发现通过在X-Gluc缓
    冲液中加入6%PVP,可以有效地防止GUS组织化学显色过程中苎麻材料的严重褐化,
    而对其显色效果无不良影响。通过筛选培养,最后获得了21株抗性植株,经GUS组
    
    
     织化学显色和DNA点杂交鉴定出8株含有抗除草剂草丁磷的Bar基因同源片段的转基
     因芒麻植株。
     3.棉花总 DNA导入芒麻引起了性状变异
     应用超干胚浸渍法,成功地将棉花总DNA导入到芒麻细胞内,在D;代获得了两
     株叶型发生奇特变异的新材料97-24和97-25。其中97-24的D。代发生分离,大部分子
     代植株恢复了受体性状,只有少数子代植株叶型的变异比D;代植株更加明显。而由
     97.24地下茎发生的分株上则呈现自下而上叶型变异逐渐恢复的趋势。在另一植株
     97-28的D。代中又筛选到一株叶背无茸毛的变异株,其生长势弱,叶色黄绿,易受虫
     害。它在D。代也发生了分离,只有约l/4的子代植株仍保持了上一代的变异。但从97-28
     的D。代植株地下茎发生的分株却均能稳定地保持这些变异性状,说明外源总DNA导
     入引起的变异在低世代即可通过无性繁殖方式固定下来,这非常有利于缩短芒麻育种
     周期。在试管苗快速繁殖中,大多数变异材料在H基本培养基上生根良好,但在MS
     基本培养基上则生根困难,这从细胞学的角度证明变异后代在遗传基础上确实发生了
     改变。IEInPD分析结果也证明部分棉花DNA片段已经整合入芒麻基因组,并导致芒麻
     基因组序列发生了一定的变化。
In order to improve the efficiency of ramie breeding and to create new germplasm, it was
     studied to improve ramie cultivars with the plant gene engineering or the total exogenous
     DNA introducing. The results are as follows.
    
     1.Establishing the receptor system for ramie genetic transformation.
    
     The redifferentiation abilities of different explants of ramie were compared, and the
     hypocotyl was considered as a favorable receptor for genetic transformation because of its
     high redifferentiation potential and easy preparation. Under different tissue culture
     conditions, the regeneration frequency of adventitious shoots from hypocotyls varied as: that
     of light culture in alternating temperatures of day 26-28X2 and night 18-20C > that of dark
     culture in constant temperature of 26-28XD > that of light culture in constant temperature of
     26-28 0C, which revealed that the differentiation of shoots was more sensitive to temperature
     than to illumination. The only addition of BA in medium was not benefit for
     dedifferentiation of hypocotyls. However, the combination of BA with IAA promoted the
     dedifferentiation and redifferentiation, though the regeneration frequency differed in kinds
     of combinations, among which the combinations of 2.0-3.0 mg/i BA + 0.5 mg/I IAA
     produced a highest differentiation frequency of 70 % or so. The addition of 1 mg/I AgNO3 in
     medium also improved the regeneration of shoots.
    
     2. Producing herbicide-tolerant transgenic ramie via A. tumefaciens mediated
     transformation.
    
     A system for genetic transformation of ramie was developed by systematically optimizing
     the factors affecting A. tumefaciens mediated transformation efficiency. It was showed that
     ramie was a kind of plant susceptiable to herbicide, whose critical tolerance concentration to
     herbicide asta was 0.3 mg/I or so, and that the herbicide inhibited the regeneration of
     shoots especially. N4eanwhile, the carbecillin facilitated the emergency of clustered shoots
     but had no obvious repression for rooting of adventitious shoots. Hypocotyls had a high
     sensitivity to the strains of A. tumefaciens, with a GUS instantaneous expression frequency
     close to 100 % when co-cultivated 1 or 2 days with the bacteria. The strain of E1-1A105 was
     suitable for transformation of hypocotyl by inoculating 5 minutes in a bacterial
     concentration of 0D600=0.1-0.2 (the bacteria were resuspended and diluted with 1/2MS
    
    
     liquid medium). The preculture of hypocotyis and their co-cultivation with the bacteria
     improved greatly the transformation efficiency, and a preculture duration of 6-9 days and a
     co-cultivation duration of 4 days were the best choices for hypocotyl of ramie. In addition,
     the GUS instantaneous expression frequency was not closely positively correlated to the
     GUS stable expression frequency and to the ratio of positive transformants to
     herbicide-tolerant calli, which indicated it necessary to combine these three indexes for the
     optimization of transformation system of ramie. The oxidization of ramie materials in
     histochemical GUS assay could be effectively reduced by adding 6 % PVP in the X-GIuc
     solution. Through histochemical GUS assay and DNA dot blotting, 8
     phophinothricin-tolerant transgenic plants were obtained.
    
     3. Obtaining variants by introducing exogenous cotton DNA into ramie.
    
     The exogenous cotton DNA was successfully introduced into ramie by over-dried seed
     soaking. In the D1 generation, two plants 97-24 and 97-25 whose leave had extraordinary
     morphology, were selected out. The D2 generation of 97-24 segregated, with most of p
引文
1.曹德菊,程备久,李培金等.红麻基因组提取方法研究.中国麻作,1999,21(1):9-11
    2.曹德菊,程备久,徐明照等.花粉管法将外源除草剂基因导入红麻的有效方法及参数研究.中国麻作,2000,22(1):1-5
    3.陈建荣.湖南农业大学硕士论文,1997
    4.陈启锋,陈璋,林学健等.论DNA直接导入植物—一项育种新途径的建立与评述.福建农学院学报,1993,22(1):1-11
    5.陈喜文,陈德富,周朴华等.苎麻原生质体培养及植株再生.植物学报,1996,38(2):118-122
    6.程振东,卫志明,许智宏,根癌农杆菌对甘蓝型油菜的转化及转基因油菜植株的获得.植物学报,1994,36(9):57-663
    7.邓万银,邵启全.酚类化合物能促进致瘤农杆菌对单子叶植物鸭跖草的转化.科学通报,1989,34(10):776-779
    8.丁力,丁月云等.应用农杆菌转化水稻的研究.高技术通讯,1998,8(11):49-52
    9.董延瑜,郑思乡,洪亚辉等.苎麻多倍体诱导的基础研究.湖南农学院学报,1992,18(3):529-538
    10.伏军,严钦泉,徐庆国.导入外源DNA引起水稻性状变异的一种简便方法.湖南农业科学,1990,(4):18-20
    11.郭安平,黄明.几种麻类作物及其近缘种植物总DNA的提取与鉴定.中国麻作,1997,19(4):4-6
    12.蒋金根,肖之平.苎麻杂种优势利用的初步研究.中国麻作,1981,(4):28-34
    13.雷勃钧,李希臣,卢翠华等.外源野生大豆DNA导入栽培大豆及RAPD分子验证.中国科学(B辑),1994,24(6):596-601
    14.李宝健,欧阳学智,许耀.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究.中国科学(B辑),1990,(2):144-149
    15.李宝健,吴敏.以改建的农杆菌Ti质粒转化外源基因于单子叶植物花叶芋的研究.科学通报,1989,34(8):615-617
    16.李宗道.现代苎麻高产栽培.上海科学技术出版社,1997
    17.刘飞虎,梁雪妮,张寿文.我国苎麻育种的成就与问题.中国麻作,1998,20(2):36-40
    18.刘国民,郑思乡,周朴华等.苎麻花药离体培养的研究Ⅰ.雄核发育的细胞学观察.海南大学学报,1994,12(2):121-128
    19.刘明志.酚类化合物促进含双元载体农杆菌对胡萝卜悬浮细胞的转化和植株再生.植物学报,1996,38(3):203-208
    20.刘秋云,贺竹梅,曹俊等.利用农杆菌系统将超甜定基因导入烟草.遗传,1998,20(1):24-27
    21.刘熔山,李方安,杨世民等.减压渗透法将外源DNA导入水稻研究.四川农业大学学报,1993,11(3):350-354
    22.刘双俊.新疆大赖草DNA片段导入春小麦761转化后代的细胞核型分析.西北农业学报,1997,6(4):105
    23.刘燕,王玉富,关凤芝等.亚麻外源DNA导入的适宜时期与方法的研究.中国麻作,1997,19(3):13-15
    24.卢爱兰,陈正华,孔令洁等.抗芜菁花叶病毒转基因甘蓝型油菜的研究.遗传学报,1996,23(1):77-83
    
    
    25.颜昌敬,黄剑华.苎麻花药培养研究初报.上海农业科技,1986,(4):13-17
    26.彭定祥.苎麻自交纯合的选择方法.华中农业大学学报,1993,(10):106-111
    27.郑思乡.湖南农业大学博士论文.1997
    28.吕敬先.玉米DNA导入大麦研究初报.湖南农业大学学报,1994,20(6):546-549
    29.罗来尧.苎麻雄性不育性状及其杂种优势利用研究.遗传,1980,2(3):33-35
    30.潘昌立,李树川,李育君.苎麻体细胞植株再生及其影响因素的研究.中国麻作,1995,17(1):1-6
    31.潘昌立等.苎麻多倍体诱导技术研究.中国麻作,1990,(3):11-14
    32.邵莉,李毅,杨美珠等.查尔酮合酶基因对转基因植物花色和育性的影响.1996,38(7):517-524
    33.施继卫.湖南农业大学博士论文,1998
    34.四川达县地区农科所.苎麻杂种优势利用的研究初报.中国麻作,1979,(1):28-32
    35.万文举,张福泉,董延瑜.玉米DNA导入水稻获得种质变异.湖南农业科学,1992,3:6-7
    36.万文举,邹冬生,彭克勤.论生物诱变.湖南农学院学报,1992,18(4):886-888
    37.洪亚辉主编.植物外源DNA直接导入技术.长沙:湖南科学技术出版社,2000,62-63
    38.王小军,刘玉乐,Huang Yong等.可育的抗除草剂溴苯腈转基因小麦.植物学报,1996,38(12):942-948
    39.王玉富,刘燕,杨学等.亚麻外源DNA导入后代的遗传与变异研究.中国麻作,1999,7-11
    40.王玉富,周思君,刘燕等.亚麻总DNA快速提取方法的研究.中国麻作,1997,19(1):19-21
    41.夏光敏,李忠谊等.根癌农杆菌介导的小麦转基因植株再生.植物生理学报,1999,25(1):22-28
    42.熊和平,蒋金根,喻春明等.苎麻纯系培育和杂种优势预测的研究.中国农业科学,1995,(10)
    43.熊兴耀,甘霖,李宗道等.苎麻原生质体再生植株及影响因子的初步研究.农业生物技术学报,1998,4(2):147-182
    44.许宁,赵南明,章力健等.超声诱导基因转移.生物物理学报,1990,6(2):281
    45.许耀,贾敬芬,郑国昌.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化.科学通报,1988,33(22):1745-1748
    46.许耀,王艇,李宝健,根癌农杆菌介导的外源基因转化植物萌动种胚的研究.实验生物学报,1991,24(2):109-114
    47.杨剑波,许智宏,卫志明等.影响根癌农杆菌附着禾谷类作物培养细胞的因素.实验生物学报,1993,26(1):1-7
    48.尹中朝,杨凡,许耀等.利用根癌农杆菌法获得转基因水稻植株及其后代.遗传学报,1998,25(6):517-524
    49.于静娟,敖光明.水稻10KD富硫醇溶蛋白基因在马铃薯中的表达.植物学报,1997,39(4):329-334
    50.于元杰,尹承佾,马骏等.异科外源DNA导入陆地棉引起性状变异初报.1991,22(4):335-339
    51.于元杰,尹承佾,程立等.超远缘DNA引入普通小麦后代的细胞遗传学研究.见:尹承佾等主编,棉麦分子育种研究,四川科学技术出版社,1994
    52.于元杰,尹承佾,杨欣同等.牛胸腺DNA引入普通小麦(T.aestivum)导致性状变异的研究及细胞学观察.山东农业大学学报,1992,23(3):213-220
    
    
    53.臧巩固,赵立宁,孙敬三.苎麻属无融合生殖细胞胚胎学研究.植物学报,1997,39(3):210-213
    54.臧巩固.赤苎属无融合生殖种质资源初步研究.中国麻作,1991,6(2):6
    55.张富泉,万文举,董延瑜等.胚培法导入外源DNA的试验初报.湖南农业科学,1991,(8):20-22
    56.赵世民,祖国诚,刘根齐等.通过农杆菌介导法将兔防御素NP-1基因导入毛白杨(P.tomentosa).遗传学报,1999,26(6):711-714
    57.赵亚华,茹炳根.转小鼠金属硫蛋白cDNA枸杞的获得及其检测.西北植物学报,1998,18(2):229-236
    58.郑启发,陈大成等.人工合成柞蚕抗菌肽基因转化沙田柚.华南农业大学学报,1999,20(1):103-107
    59.钟爱平.湖南农业大学博士论文,1993
    60.周光宇.植物分子育种概况.见:作物育种与育种新技术,北京:科学出版社.1995,127-130
    61.周光宇主编.农业分子育种研究进展.北京:中国农业科学技术出版社.1993
    62.周冀明,卫志明,许智宏等.根癌农杆菌介导转化诸葛菜子叶获得转基因植株.生物工程学报,1996,12(1):34-39
    63.周建林.湖南农业大学博士论文,1997
    64.朱秀英,陈璋,卢勤等.外源DNA处理蚕豆的细胞学和同工酶的若干效应.福建农学院学报,1988,17(1):15-25
    65.Bakkeren G Z, Keukolikova N, Grimsey N. 1989 Recovery of Agrobacterium tumefaciens T-DNA moleculars from whole plants early after transfer. Cell, 57:847
    66.Block M D, Brouwer D D, Tenning P. 1989 Transformation of Brassica onapus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the trangenic plants. Plant Physiol, 91: 694-701
    67.Bolton G W, Nester E W, Gordon M P. 1986 Plant Phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science, 232:983-985
    68.Bretagne-Sagnard B, Chupeau Y. 1996 Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Research, 5(2): 131-137
    69.Bytebier B, Deboeck F, Greve H D et al. 1987 T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asoaragus officinalis. PNAS USA, 84:5345-5349
    70.Cassells C. 1978 Uptake of charged lipid vesicles by isolated tomato protoplasts. Nature, 275:760
    71.Chan M T, Chang H H, Ho S L et al. 1993 Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glurodase gene. Plant Mol Biol, 22:491-506
    72.Chi G L, Barfield D G, Sim G E et al. 1990 Effect of AgNO_3 and amino-ethoxyvinyl-glycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep, 1990, 9:195-198
    73.Christey M C, Sinclair B K. 1992 Regeneration of transgenic kale(Brassica oleracea var.acephala), rape(B.napus)and turnip(B.campertris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci, 87: 161-169
    74.Crossway A, Oakes J V, Irvine G M et al. 1986 Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet, 202:179-185
    75.De Jong J, Rademaker W, Wordragen M F V. 1993 Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens.
    
    Plant Cell Tiss Org Cult, 32: 263-270
    76. de la Pena A, Lorz H, Schell J. 1987 Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature, 325(15) : 274-276
    77. Dong J Z, McHughen A. 1991 Patterns of transformation intensify on flax hypocotyls inoculated with Agrobacterium tumefaciens. Plant Cell Rep, 10(11) : 555-560
    78. Dong J Z, McHughen A. 1993 An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Science, 88(1) : 61-71
    79. Douglas C, Halperin W, Gordon M et al. 1985 Specific attachment of Agrobacterium tumefaciens to bamboo cell in suspension cultures. J Bacteriol, 161: 764-766
    80. Dylan T, Ielpi L, Stanfield S et al. 1986 Rhizobium melioti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. PNAS USA, 83: 4403-4407
    81. Eimert K, Siegemund F. 1992 Transformation of Cauliflower (Brassica oleracea L. var. botrytis)-an experimental survey. Plant Mol Biol, 19: 485-490
    82. Fromm M E, Taylor L P, Walbot P V. 1985 Expression of genes transferred into monocot and dicot plant cells by electroporation. PNAS USA, 82: 5824-5828
    83. Gheysen G, Raimundo V, Montagu V. 1991 Illegitimate recombination in plants: A model for T-DNA integration. Gene and Devel, 5:287
    84. Gould J, Devey M, Hasegawa O et al. 1991 Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol, 95: 426-434
    85. Graham J, McNicol R J, Kumar A et al. 1990 Use of the GUS gene as a selectable marker for Agrobacterium-mediated transformation of rubus. Plant Cell Tiss Org Cult, 20: 35-39
    86. Graves A C F, Goldman S L, Banks W S et al. 1988 Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea Mays, Gladiolus sp. and Triticum aestivum. J Bacteriol. 170:2395-2400
    87. Graves A C F, Goldman S L. 1986 The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Detection of T-DNA specific enzyme activities. Plant Mol Biol, 7: 43-50
    88. Hiei Y, Ohta S, Komari T et al. 1994 Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J, 6(2) : 271-282
    89. Horsch R B, Fry J E, Hoffmann N L et al. 1985 A simple and general method of transferring genes into plants. Science, 227: 1229-1231
    90. Huang M W, Cangelosi G A, Halperin W et al. 1990 A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol, 172: 1814-1822
    91. Janssen B J, Gardner R C. 1989 Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol, 14: 61-72
    92. Jefferson R A, Kavanagh T A, Bevan M W et al.1987 GUS fusions: P-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 6: 3901-3907
    93. Jia S R, Yang M Z, Ott R et al. 1989 High frequency transformation of kalanchoe lactnita. Plant Cell Rep, 8(6) : 336-340
    94. Jordan M C, McHughen A. 1988 Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Rep, 7(4) : 281-284
    95. Krens A, Molendijk L, Wullems G L et al. 1982 In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 296: 72-74
    96. Ledoux L, Huart R. 1969 Fate of exogenous bacterial DNA in barley seedlings. J Mol Biol, 43: 243-262
    
    
    97. Lippincott T A, Lippincott B B. 1980 Microbial adherence in plants. In: "Bacterial Adherence, Receptors & Recognition", Series B, 6: 375-398, Chapmann & Hall London.
    98. Marton L, Wullems G H, Molendijk L et al. 1979 In vitro transformation of cultured cells from Nicotiana tobacum by Agrobacterium tumefaciens. Nature, 277: 129-131
    99. McHughen A, Holm F A. 1995 Development and preliminary field testing of a glufosinate-ammanium tolerant transgenic flax. Canadian Journal of Plant Science, 75(1) : 117-120
    100. McHughen A, Holm F A. 1995 Transgenic flax with environmentally and agronomically sustainable attributes. Transgenic Research, 4(1) : 3-11
    101. McHughen A, Jordan M C, Feist G. 1989 A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. J Plant Physiol. 135: 245-248
    102. McHughen A, Rowland G G. 1991 The effect of T-DNA on the agronomic performance of transgenic flax plants. Euphytica, 55(3) : 269-275
    103. McHughen A. 1989 Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep, 8(8) : 445-449
    104. Messens E, Dekeyser R, Stachel S E et al. 1990 A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. PNAS USA, 87: 4368-4372
    105. Miljus-Djukie J, Neskovic M et al. 1992 Agrobacterium-mediated transformation and plant regeneration of buckwheat (Fagopyrum esculentum Moench.). Plant Cell Tiss Org Cult, 29: 101-108
    106. Moloney M M, Walker J, M, Sharma K K. 1989 High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep, 8: 238-242
    107. Mooney P A, Goodwin P B, Dennis E S et al. 1991 Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tiss Org Cult, 25: 209-218
    108. Patient R K, Allan. 1989 Active Chromatin. Curr Opin Cell Biol, 1: 454
    109. Pich U, Schubert I. 1993 Miniprep method for isolation of DNA from plants with a high content of polyphenolics. Nucleic Acids Research, 21: 3328
    110. Pueppke S G, Benny U K. 1988 Agrobacterium tumourigenesis in potato: effect of added Agrobacterium Lipopolysacchavides and the degree of methlation added plant galacturonans. Physiological Pathology, 23: 439-446
    111. Pumhauser L, Medgyesy P, Czako M et al. 1987 Stimulation of shoot regeneration in Triticum aestrvum and Nicotiana plumbaginifolia Viv. tissue culture using the ethylene inhibitor AgNO3. Plant Cell Rep, 6: 1-4
    112. Qing L H, Bing D H. 1991 Agrobacterium tumefaciens-mediated transformation in protoplasts of Linum usitatissimum L. and Linum suffruticosum L. Physiologia Plantarum, 82(1) : A34
    113. Raineri D M, Bottino P, Gordon M P et al. 1990 Agrobacterium-mediated transformation of rice (Oryza sativa L.). Biotechnology, 8: 33-38
    114. Sanford J C, Klein T M, Wolf E D et al 1987 Delivery of substance into cells and tissues using a particle bombardment process. Part Sci Tech, 5: 27-37
    115. Songstad D D, Duncan D R, Wildholm J M. 1988 Effect of 1-aminocyclopropane-1-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep, 7: 262-265
    116. Stachel S E, Nester E W, Zambryski PC. 1986 A plant cell factor induces Agrobacterium tumefaciens vir gene expression. PNAS USA, 83: 379-383
    117. Thomashow M F, Karlinsey J, Marks J R et al. 1987 Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell
    
    attachment. J Bacteriol, 169: 3209-3216
    118. Torres C, Cantliffe D J, Laughner B et al. 1993 Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Ceil Tiss Org Cult, 34: 279-285
    119. Vancanneyt G, Schmidt R, O' Connor-Sanchez A et al. 1990 Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet, 220:245-250
    120. Weber G, Monajembashi S, Greulich K O et al. 1988 Genetic manipulation of plant cells and organelles with a laser microbeam. Plant Cell Tiss Org Cult, 12: 219-222
    121. Welsh J, McClelland M. 1990 Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18: 7213-7218
    122. Williams J G K, Kubelik A R, Livak K J et al. 1990 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531-6535
    123. Winans S C, Kerstetter R A, Nester E W. 1988 Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol, 170: 4047-4054
    124. Wirawan I G P, Kang H W, Kojima M. 1993 Isolation and characterization of a new chromosomal virulence gene of Agrobacterium tumefaciens. J Bacteriol, 175: 3208-3212
    125. Woolston C J, Barker R, Gunn H et al. 1988 Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol, 11: 35-43
    126. Yoder J I, Palys J, Alpert K et al. 1988 Ac transposition in transgenic tomato plants. Mol Gen Genet, 213:291-296
    127. Yuan C X, Bai Y Y, Kuang D R. 1993 Transfer of yeast pro B gene into tobacco plants. Acta Phytophysiol Sinica, 19: 306-312
    128. Yuan C X, Bai Y Y. 1993 An improved Agrobacterium-mediated transformation method for flax cotyledon segments. Acta Phytophysiologica Sinica, 19(4) : 387-390
    129. Zhan X C, Jones D A, Kee A. 1988 Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol Biol, 11(5) : 551-559
    130. Zhou G Y, Weng J, Zeng Y S et al. 1983 Introduction of exogenous DNA into cotton embryos. Methods in Enzymelogy, 101: 433-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700