利用原生质体非对称融合转移胡萝卜瓣化型细胞质不育性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡萝卜瓣化型细胞质雄性不育性常规回交转育一般至少需要5-6年的
    时间,原生质体非对称融合方式转移这种雄性不育性可使时间大大缩短,
    从而加快育种的进程。本试验在Tanno Suenaga等的研究基础上,对胡萝
    卜原生质体非对称融合的基础体系进行了较广泛的研究;进行了61次胡
    萝卜种内原生质体非对称融合,从19次融合中获得愈伤和胚状体,从6
    个组合获得了植株再生;对再生植株进行了形态学、细胞学和分子生物学
    鉴定。主要研究结果如下:
     1.基因型是影响胡萝卜固体培养和细胞悬浮培养中愈伤组织状态的重
    要因子,并由此影响到分离原生质体的产量和质量,进而影响原生质体的
    愈伤再生和植株再生,因此,在进行胡萝卜原生质体非对称融合前首先对
    基因型进行筛选是必要的。
     2.通过麦芽提取物和谷氨酰胺两种物质的添加,可以起到抑制非胚性
    愈伤生长的作用,使培养物主要以胚性愈伤为主;通过液体培养基2,4-D
    浓度的改变,可调节胚性愈伤处于合适的发育时期,便于原生质体的分离。
     3.通过胡萝卜原生质体培养愈伤和胚状体发生过程的观察,认为胡萝
    卜原生质体培养胚状体的直接来源是愈伤组织,而不是原生质体细胞本
    身。
     4.UV和X-射线的作用机制相似,原生质体对UV射线更为敏感。UV
    辐射可以很好地起到抑制原生质体再生和愈伤组织生长的作用,可以用作
    胡萝卜的供体处理;UV和X-射线辐射处理供体原生质体都存在处理效
    果不稳定的情况,因此在融合杂种筛选中应着重注意淘汰供体基因型;
    IOA抑制胡萝卜原生质体细胞分裂的适宜剂量是15mM浓度处理10min,
    其处理效果稳定。
     5.Ca~(2+)离子浓度过高,使原生质体在交流电场下不能串珠状连接,从而
    影响电融合,胡萝卜原生质体电融合Ca~(2+)离子的适宜浓度为0.5mM;优
    化的胡萝卜原生质体电融合参数是:交流电场(AC)70V/cm,作用时间
    
    
    60s;直流电场(DC)1500V/。m,5次脉冲,间隔卜,直流脉冲印加时间
    50 K
     6.STS。标记与胡萝卜瓣化型胞质雄性不育性密切相关,可以用作胡萝
    卜体细胞杂种瓣化型胞质雄性不育性的分子鉴定,并可用于胡萝卜一代杂
    种的纯度鉴定。
     7.愈伤组织的植株再生是制约胡萝一卜对称融合转移胡萝卜雄性不育
    性最终能否成功的一个重要环节,内源激素的调控与植株再生相关。此外,
    原生质体预处理的后效应也是值得考虑的因素。影响胡萝卜融合体愈伤植
    株再生的因子是今后研究的重要内容。
     8.温度是影响胡萝卜再生植株移栽成活的主要因素。胡萝卜组培苗较
    耐低温,10度左右的平均温度下仍能移栽成活,但是对于高温忍耐性较
    差,平均温度为30度以上的高温情况下,难于移栽成活。
     9.通过形态学、细胞学和分子生物学鉴定,确认组合7-0-8-4+66-3的再
    生植株为胞质杂种,成功通过非对称融合方式将供体7.0.8.4的瓣化型胞
    质雄性不育性转移到受体66-3中,认为原生质体非对称融合可以成为转
    育胡萝卜瓣化型胞质雄性不育性的补充手段。
     论文对影响胡萝卜原生质体非对称融合的若干因子、组培茵的先期
    抽墓、利用非对称融合转移胡萝卜瓣化型雄性不育性的可行性、本研究存
    在的问题及改进方案以及非对称原生质体融合在胡萝卜资源创新中的应
    用价值等进行了讨论。
Transfer of petaloid cytoplasmic male sterility (CMS) in carrot with the routine backcross method needs at least 5-6 years, while the time could be saved largely by using the asymmetric protoplast fusion method to transfer this male sterility, and breeding progress could be speeded up. Based on the study of Tanno Suenaga et al, much research work was conducted on the carrot asymmetric protoplast fusion basic systems; 61 times of asymmetric protoplast fusion in carrot had been made, callus and embryoid were obtained in 19 times of fusion, and the plantlets were regenerated from 7 combinations; identification was done on the regenerated plants by using morphological, cytological and molecular methods. The main results of this research were as follows:
    
     1. Genotype was an important factor affecting the callus status in solid culture and suspension cell culture, which could further affect the quality and yield of the isolated protoplast, and in the last, the regeneration of calli and plantlets from protoplast culture would be influenced, so the selection of genotype before fusion is necessary.
    
     2. The addition of malt extract and glutamine could inhibit non-embryonic calli, and make the culture be mainly composed of embryonic calli; change of the 2,4-D concentration in liquid culture medium could adjust the status of embryonic calli to the suitable developmental stage for protoplast isolation.
    
     3. According to the observation of the genesis of calli and embryoid in protoplast culture, the direct source of embryoid was considered to be callus, rather than the protoplast cell.
    
     4. The modes of the action of UV (Ultra Violet rays) and X-rays were similar, but the protoplast was more sensitive to UV irradiation. The protoplast regeneration and callus growth could be inhibited well by UV irradiation, so it could be used to pre-treat the donor protoplast in asymmetric protoplast fusion. The treatment effect on donor protoplast of UV and X-ray irradiation was not stable, so more attention should be paid to the elimination of the donor genotypes in the selection of the somatic hybrid. 10 mm treatment with 15 mM IOA was suitable to inhibit recipient protoplast cell division, and the effect of IOA treatment was stable.
    
     5. Extremely high concentration of Ca2~ would prevent the protoplast from connection with each other under AC field, and affect the electronic fusion, 0.5 mM Ca2~ was the favorite concentration in the carrot protoplast electronic fusion. The optimum parameters for carrot
    
    
    3
    
    
    
    electronic protoplast fusion was as follows: Alternative current fleld(AC), 7OVIcm, exerting time, 60s; Direct current field(DC), 1 500V/cm,S pulses, is interval, DC pulse exerting time, 50~s.
    
     6. STS4 marker was closely related to petaloid cytoplasmic male sterility in carrot, it could be used as molecular marker in the identification of the carrot somatic hybrids on the petaloid cytoplasmic male sterility, and also could be used in the purity identification of F1 hybrid variety.
    
     7. Plantlet regeneration from callus was an important step in the transfer of carrot male sterility by asymmetric protoplast fusion, the regulation of endogenous hormone was related to plantlet regeneration. In addition, the post-effect of the pretreatment of protoplast also should be considered. The influencing factors on the regeneration of fusion product were the important content in the future research work.
    
     8. Temperature was the main factor affecting the transplanting of the regenerated plantlets in carrot. The carrot plantlets in vitro was tolerant to lower temperature, and could be successfully transplanted into the soil and survived under the average temperature about bC, however they were intolerable to high temperature conditions, difficult to survive when the average temperature is above 30C.
    
     9. According to the results of morphological, cytological and molecular identification, it was proved that cybrids were obtained from 7-0-8-4+66-3 fusion combination, and the petaloid cytoplasmic male st
引文
1. Production, FAO Year Book, 1999, 53: 141.
    2. Stein M. and Th. Nothnagel. Some remarks on carrot breeding (Daucus carota sativus Hoffm.). Plant Breeding 1995, 114: 1-11.
    3. Thompson D. J. Studies on the inheritance of male sterility in carrot (Daucus carota L.var. saliva). Proc. Amer. Soc. Hort. Sci. 1961, 78: 332-338.
    4. Hanschke P. E., and W. H. Gabelman. Phenotypic stability of pollen sterile carrots (Daucus carota L.) Proc. Amer. Soc. Hort. Sci. 1963, 82: 341-350.
    5. Welch, J. E. and E. L. Grimball, Jr Male sterility in the carrot. Science. 1947, 106: 594.
    6. Banga O., J. Petiet, and J. L. Van Bennekom. Genetical analysis of male sterility in carrots (Daucus carota L.). Euphytica 1964,19: 263-269.
    7. Zenkteler, M. Microsporogenesis and tapetal development in normal and male-sterile carrots (Daucus carota). Amer. J. Bot. 1962,49(4) : 341-348.
    8. Struckmeyer E., and P. Simon. Anatomy of fertile and male-sterile carrot flowers from different genetic sources. J. Amer. Soc. Hort. Sci. 1986, 111: 965-968.
    9. Timin N.I. Features of the segregation of hybrid progenies of carrot for cytoplasmic male sterility (CMS). Doklady TSKhA. 1980,266: 93-98.
    10. Timin N. I. Methodological aspects of producing male-sterile and male-fertile lines of carrot for heterosis breeding. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno Issledovatel'skogo Instituta Rastenievodstva imeni N. I. Vavilova. 1986,161: 19-23.
    11. Park,Y.and Pyo.H. K. Genetical study of male sterility in carrots, Daucus carota L. I. Inheritance of male sterility. Journal of the Korean Society for Horticultural Science. 1988, 29(3) : 178-190.
    12. Eisa, H. M. and D. H. Wallace. Morphological and anatomical aspects of petaloidy in the carrot (Daucus carota L.). J. Amer. Soc. Hort. Sci. 1969,94: 545-548.
    13. McCollum, G. D. Occurrence of petaloid stamens in wild carrot(Daucus carota) from Sweden Econ. Bot. 1966,20: 361-367.
    14. Morelock T. E. etc. Wisconsin Wild: another petaloid male-sterile cytoplasm for carrot. HortScience. 1996, 31(5) : 887-888 .
    15. Morelock T. S. Influence of cytoplasmic source on expression of male sterility in carrot (Daucus carota L.). Thesis, Univ. Arkansas, USA. 1974.
    16. Frese.L. Investigation on the inheritance of the petaloid type of male sterility in carrots. XXIst internal, hortic. congr., The Hague, Netherlands 1982, vol. I. 1513.
    17. De Bonte, L. R., B. F. Mathews and K. G. Wilson. Variation of plastids and milochondrial DNAs in the genus Daucus. Amer. J. Bol. 1984, 71: 932-940.
    
    
    18. Boblenz K., T. Nothnagel and M. metzlaff. Paternal inheritance of plastids in genus Daucus. Mol. Gen. Genet. 1990,220:489-491.
    19. Ichikawa H., Tanno-Suenaga and J. Imamura. Mitochondial genome diversity among cultivars of Daucus carota (ssp. sativus) and their wild relatives. Theor. Appl. Genet. 1989, 77: 39-43.
    20. Steinbom R., A. Weihe and T. Boemer. Mitochondrial genome diversity within a cultivar of Daucus carota(ssp. sativus)revealed by restriction fragment analysis of single plants. Plant Breeding. 1992, 109: 75-77.
    21. Scheike R. etc. Unique patterns of mitochondrial genes, transcripts and proteins in different male-sterile cytoplasms of Daucus carota. Theoretical and Applied Genetics. 1992, 83(4) : 419-427.
    22. Pingitore, M., Matthews, B., Bottino, P. J. Analysis of the mitochondrial genome of Daucus carota with male sterile and male fertile cytoplasm. Journal of Heredity. 1989, 80(2) : 143-145.
    23. Tanno Suenaga L. Basic studies on transfer of cytoplasmic male sterility by means of cytoplasmic hybridization in carrot (Daucus carota L.). Journal of the Faculty of Agriculture, Hokkaido University. 1991, 65(1) : 62-118.
    24. Ronfort J., Saumitou Laprade P., Cuguen J., Couvet D. Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp. carota. Theoretical and Applied Genetics. 1995,91(1) : 150-159.
    25. Schulz B., L. Westphal and G. Wricke. Linkage groups of isozyme, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 1994, 74: 67-76.
    26. Nakajima Y., Yamamoto T., Oeda K. Genetic variation of mitochondrial and nuclear genomes in carrots revealed by random amplified polymorphic DNA (RAPD). Euphytica., 1997, 95(3) : 259-267.
    27. Nakajima Y, Yamamoto T, etc. Genetic variation of petaloid male-sterile cytoplasm of carrots revealed by sequence-tagged sites (STSs). Theoretical and Applied Genetics. 1999, 99(5) : 837-843.
    28. Galuszka H., Tworek K., Goral M Studies of pollination by bees (Apis mellifera L.) in flowers of male-sterile and male-fertile lines of carrot (Daucus carota L.). Biuletyn-Warzywniczy. 1989, 33: 35-58.
    29. Erickson E.H., Garment M. B., Peterson C. E. Structure of cytoplasmic male-sterile and fertile carrot flowers. Journal of the American Society for Horticultural Science. 1982, 107 (4) : 698-706.
    30. Hrasko I., Bujdoso G. Observations on flowering habit and seed yield of petaloid type male sterile carrots. Zoldsegtermesztesi Kutato Intezet Bulletinje. 1989, 22: 51-57.
    31. Kitagawa J., Posluszny U., Gerrath J. M., Wolyn D. J. Developmental and
    
    morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sexual Plant Reproduction. 1994 , 7(1) : 41-50.
    32. Chadha,M.L., Frese L. Observations on a petaloidy type of male sterility in carrots (Daucus carota L.). Gartenbauwissenschaft. 1981,46(1) : 21-24.
    33. Michalik B. Breeding carrots for heterosis in Poland. Tagungsbericht, Akademie der-Landwirtschaftswissenschaften der Deutschen Demokratischen Republik. 1980, 168: 389-392.
    34. Litvinova M. K. Using spontaneous and experimentally induced mutants in breeding root vegetables for heterosis. Selektsiya ovoshchnykh kul'tur. Moscow, USSR. 1985, 100-109.
    35. Litvinova M. K. etc. Physiological and biochemical features of the seeds in male-sterile and fertile forms of carrot. Selektsiya ovoshchnykh kul'tur. Moscow, USSR 1986, 29-38. .
    36. Litvinova M. K. etc. Yield of carrot seed plants with cytoplasmic male sterility (CMS). Semenovodstvo ovoshchnykh kul'tur: Sbomik nauchnykh trudov. Moscow, USSR 1988, 50-57. .
    37. Litvinova M. K. etc. Anatomical and morphological features of plant structure in carrots with cytoplasmic male sterility (CMS) and their seed production. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina I Ordena Druzhby Narodov Nauchno Issledovatel'skogo Instituta Rastenievodstva Imeni N.I. Vavilova. 1989, 192: 33-36. .
    38. Bujdoso G., Hrasko I. Hybrid carrot breeding. Zoldsegtermesztesi Kutato Intezet-Bulletinje. 1990, 23: 39-46.
    39. Bunin M. S., Yoshikawa H. Heterosis breeding in carrot in USSR and Japan. Japanese Journal of Breeding 1989, 39(2) : 235-241.
    40. Bonnet A. Studies on carrot. Rapport d'activite, Station d'Amelioration des Plantes Maraicheres, 1985-1986. 1987, 29-33.
    41. Zhidkova N.I. Mikheev Yu G. Evaluation of carrot varieties and lines with cytoplasmic male sterility (CMS) for resistance to Phoma. Kartofel'i Ovoshchi. 1983, 12: 29.
    42. Zhidkova N.I. Shtein M. Stein M. Collaboration in carrot breeding. Mezhdunarodnyi Sel'skokhozyaistvennyi Zhurnal. 1986,4: 68-69.
    43. Zhidkova N.I., Kvasnikov B.V., Tarasenkov I.I., Sidorova A.M. Experience of collective work on the production of carrot hybrids for different soil and climatic zones. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno Issledovatel'skogo Instituta Rastenievodstva Imeni N.I. Vavilova. 1989, 192: 3-6.
    44. Sycheva L.V., Zhidkova N.I. Heterotic F1 variety-line carrot hybrids based on CMS
    
    lines. Selektsiya i semenovodstvo ovoshchnykh kurl'tur v Tsentral'no Chemozemnoi zone. Moscow, USSR. 1985, 64-67.
    45. Kvasnikov B.V. Zhidkova N.I. Source material and methods of breeding F1 hybrids of culinary carrot. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno Issledovatel'skogo Instituta Rastenievodstva
    imeni N. I. Vavilova. 1986, 161: 26-28..
    46. Gauchene, O. Yu. Use of cytoplasmic male sterility and the production of heterotic carrot hybrids in the Lithuanian SSR. Nauchno Tekhnicheskii Byulleten'Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno
    Issledovatelskogo Instituta Rastenievodstva-imeni N. I. Vavilova. 1986, 161: 71-72.
    47. Gauchene O Yu. Breeding carrot hybrids in the Lithuanian SSR. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Drnzhby Narodov Nauchno-Issledovatelskogo Instituta Rastenievodstva Imeni N.I. Vavilova. No.1989, 192: 24-25.
    48. Ugarova S. V. Producing male-sterile analogues of culinary carrot varieties for heterosis breeding. Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno Issledovatel'skogo Instituta Rastenievodstva Imeni N.I. Vavilova. 1989, 192: 36-37.
    49. Timin N.I., Vasilevskii V. A. Carrot lines for heterosis breeding using cytoplasmic male sterility (CMS). Kartofel'i Ovoshchi. 1995, 3: 27-28.
    50. Timin N.I., Mokhov A. I. etc. Expression of cytoplasmic male sterility (CMS) in carrot under different growing conditions. Tr. VNII selektsii i semenovod, ovoshch.kul'tur. 1980, 12: 89-94..
    51. Kravtsova M. V. Breeding carrot hybrids for increased yield and root quality.Nauchno Tekhnicheskii Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno-Issledovatel'skogo Instituta Rastenievodstva imeni N.I. Vavilova.1986, 161: 38-41.
    52. Michalik B., Zabaglo A., Zukowska E. Culinary carrot breeding in the Krzeszowice Horticultural Plant Breeding Station. Zeszyty Naukowe Akademii Rolniczej im. Hugona Kollataja w Krakowie, Ogrodnictwo. 1984, 11:11-20.
    53. Park Y. Breeding of brown anther type male sterile lines with high phenotypic stability in carrots. Journal of the Korean Society for Horticultural Science. 1995,36(1): 1-9.
    54.吴光远等。胡萝卜雄性不孕研究初报。园艺学报,1964。
    55.相元萍,马立跃等。胡萝卜雄性不育研究初报。中国蔬菜,1990(1):23
    56.张夙芬 瓣化型雄性不育胡萝卜的开发与利用。农牧产品开发 1998(6):3,7
    57.王勇等 胡萝卜新品种金红1号、金红2号的选育。中国蔬菜1998(1):19—21
    
    
    58. Nothnagel T.: Results in the development of alloplasmic carrots (Daucus carota sativus Hoffm.). Plant Breeding 1992,109: 67-74.
    59. Carlson P. S., Smith H. H., Bearing R. D. Parasexual interspecific somatic hybridization. Proc.Natl Acad Sci USA. 1972,69: 2292-2294
    60. Kisaka H et al Production and analysis of plants that are somatic hybrids of barley (Hordeum Vulgare L.) and carrot (Daucus carrot L.) Theor Appl Genet. 1997, 94: 221-226
    61. Hoffmann F, Adachi T. "Arabidobrassica": chromosomal recombination and morphogenesis in asymmetric intergeneric hybrids. Planta, 1981,153:586-893
    62. Pijnacher L P, Ferwerda M A, Puite K J et al.. Elimination of Solanum phureja nucear chromosome in S. Tuberosum + S. Phureja somatic hybrids. Theor Appl Genet. 1990,222: 97-103
    63. Gillissen L J W, Staveren M J, Verhoeven H A et al. Somatic hybridization between potato and Nicotiana plumbaginifolia 1. Spontaneous biparental chromosome elimination and production of asymmetric hybrids. Theor Appl Genet. 1992, 84: 73-80
    64. Zelcer A, Aviv D, Galun E. Interspecific transfer of cytoplasmic male sterility by fusion between protoplasts of normal Nicotiana sylvestris and X-irradiated protoplasts of male sterile N. Tabacum. Z. Pflanzenphysiol. 1978, 90: 397-407
    65. Dudits D, Fejer O, Hadlaczky G, et al. Intergeneric gene transfer mediated by plant protoplast fusion. Mol Gen Genet. 1980,179:283-288
    66. Forsberg J, Lagercrantz U, Glimelius K. Comparison of UV light, X-ray and restriction enzyme treatment as tools in production of asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana. Theor Appl Genet. 1998, 96: 1178-1185
    67. Ramulu K S et al Phenorypic variation and ploidy level of plants regenerated from protoplasts of tetroploid potato (Solanum tuberosum L. cv. 'Bintje') Theor. Appl. Genet. 1983, 65(4) :329-335.
    68. Vlahova M et al. UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana Plumbaginifolia and Lycopersicon esculentum. Theor Appl Gnenet, 1997, 94: 184-191
    69. Forsberg J et al. UV dose-dependent DNA elimination in asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana.Plant Sci, 1998, 131: 65-76
    70. Hall R D et al. Asymmetric somatic hybridization in plants I. The early effects of (sub)ethal doses of UV and gamma radiation on the cell physiology and DNA integrity of cultured sugarbeet (Beta vulgaris L.) protoplasts. Mol Gen Genet, 1992, 234: 306-314
    
    
    71. Hall R D et al Asymmetric somatic hybridization in plants Ⅱ. Electrophoretic analysis of radiation-induced DNA damage and repair following the exposure of sugarbeet (Beta vulgaris L.) protoplasts to UV and gamma rays. Mol Gen Genet,1992, 234:315-234
    72. Sidorov V A, et al Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts Planta, 1981,152:341-345
    73. Somers D A et al. Immunological evidence for transfer of barley nitrate reductase structural gene to Nicotiana tabacum by protoplast fusion. Mol Gen Genet, 1986,204:296-301
    74. Sacristan M D et al Incorporation of hygromycin resistance in Brassica nigra and its transfer to Brassica napus through asymmetric protoplast fusion. Theor Appl Genet, 1989, 78:194-200
    75. Vardi A et al. Citrus cybrids: Production by donor-recipient protoplast fusion and verification by mitochondrial DNA restriction profiles. Theor Appl Genet, 1987, 75:51-58
    76. Atanassov I I et al. A new CMS source in Nicotiana developed via somatic cybridization between N. Tabacum and N. alata. Theor Appl Genet, 1998, 97:982-985
    77. Kaimori N et al. Asymmetric somatic cell hybrids between alfafa and birdsfoot trifoil. Breeding Sci, 1998, 48:29-34
    78. Bonnema A B et al. Tomato cybrids with mitochondial DNA from Lycopersicon pennellii. Theor Appl Genet, 1991, 81:339-348
    79.刘宝,刘大钧。通过“供体-受体”原生质体融合将裸燕麦部分核基因转移给普通小麦。实验生物学报,1995,28(1):95-101
    80.刘宝,谢航,何孟元等。烟草种间的体细胞杂交Ⅰ通过原生质体融合将波缘烟草的部分核基因组转移给普通烟草。遗传学报,1995,22(6):463-469
    81.周爱芬,夏光敏,陈惠民。普通小麦与簇毛麦不对称体细胞杂交的研究。中国科学,1996,26(1):31-37
    82.葛台明等。小麦+多花黑麦草不对称体细胞杂交获得杂种再生植株。华中农业大学学报,1997,16(2):105-111
    83. Wolters A M A et al. Limited DNA elimination from irradiated potato parent in fusion products of albido Lycopersicon esculentum. Theor. Appl Genet, 1991, 83:225-232
    84. Tempelaar M J et al. Spontaneous and induced loss of chromosomes in slow-growing somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia. Euphytica, 1998, 56:287-296
    85. Bonnema A B et al. Non-random inheritance of organellar genomes in symmetric
    
    and asymmetric somatic hybrids between Lycopersicon esculentum and L. pennellii. Theor Appl Genet, 1992, 84: 435-442
    86. Spangenberg G, Valles M P, Wang Z Y et al. Asymmetric somatic hybridization between tall fescue (Festuca arundinaceae Schreb) and irradiated Italian ryegrass (Lolium multiforum Lam) protoplast. Theor Appl Genet, 1994, 88: 509-519
    87. Maliga B et al. Cytoplast protoplast fusion for interspecific chloroplast transfer in Nicotaina. Mol. Gen. Genet, 1982, 185: 211-215.
    88. Sakai T, Imamura J et al. Intergeneric transfer of cytoplasmic sterility between Raphanus sativus(cms lines) and Brassica napus through cytoplast-protoplast fusion. Theor Appl Genet, 1991, 80: 421-427.
    89. Ramula K S et al. Intergeneric transfer of a partial genome and direct production of monosomic addition plants by microprotoplast fusion. Theor. Appl Genet, 1996, 92: 316-325
    90. Gear A R C. Rhodamin 6G, a potential inhibitor of mitochondrial oxidative phosphorylation. The J of Biological Chemistry, 1974, 249(1) : 3628-3637
    91. Ichikawa H, Tanno Suenaga L et al. Selection of Daucus cybrids based on metabolic complementation between X-irradiated D. Capillifolius and iodoacetamide treated D. Carota by somatic fusion. Theor Appl. Genet, 1987, 74:746-752
    92. Dudits D, Maroy E et al. Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: regeneration of fertile plants. Proc. Natl Acad Sci USA, 1987, 84: 8434-8438
    93. M A Smith, A Pay and D Dudits. Analysis of chloroplast and mitochondrial DNAs in Asymmetric somatic hybrids between tabacco and carrot. Theo. Appl. Genet, 1989, 77: 641-644
    94. Tanno Suenaga L. H. Ichikawa and J. Imamura Transfer of the CMS trait in Daucus carota L. by donor-recipient protoplast fusion Theo Appl Genet. 1988, 76: 855-860.
    95. Tanno Suenaga L. Edna Nagao and Jun Imamura Transfer of the petaloid-type CMS in carrot by donor-recipient protoplast fusion. Japan J Breed. 1991, 41: 25-33
    96. H. Kisaka, H. Lee, M. Kisaka et al. Production and analysis of asymmetric hybrid plants between monocotyledon (Oryza saliva L.) and dicotyledon (Daucus carota L.) Theor. Appl Genet, 1994, 89: 365-371.
    97. Fahleson J, Ericksson I et al. Intertribal somatic hybrids between Brassica napus and Thlaspi perfoliatum with high content of the T. Perfoliatum-specific nervonic acid. Theor. Appl. Genet, 1994, 87: 795-804
    98. Skarzhinskaya M, Landgren M, Glimelius K. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor. Appl. Genet, 1996, 93: 1242-1250.
    
    
    99. Kihara M, Cai K et al. Asymmetric somatic hybrid calli between Leguminous species of Lotus corinculatus and Glycine max and regenerated plants from the calli. Jpn J Breed, 1992, 42:55-64
    100.夏光敏,王槐,陈惠民。小麦与新麦草及高冰草属间不对称体细胞杂交的植株再生。科学通报,1996,41(15):1423-1426
    101. Li Y G, Tanner J ct al. Asymmetric somatic hybrid plants between Medicago sativa L. (Alfalfa, lucerine) and Onobrychis viciifolia Scop (sainfoin). Theor Appl Genet,1993, 87:455-463
    102. Xia G M, Chen H M. Plant regeneration from intergeneric somatic hybridization between Tricicum aestivum L and Leymus Chinensis (Trin) Tzvel. Plant Sci, 1996,120: 197-203.
    103. Gleba Y Y, Kolesnik N N et al. Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Atropa belladonna obtained by gamma fusion. Theor Appl Genet, 1988, 76:760-766
    104. Samoylov Y M et al. The role of irradiation dose and DNA content of somatic hybrid calli in producing asymemetric plants between an interspecific tomato hybrid and eggplant. Theor. Appl. Genet, 1996 92: 850-857.
    105. Samoylov Y M et al. Donor chromosome elimination and organelle composition of asymmetric somatic hybrid plants between an interspecific tomato hybrid and eggplant. Theor Appl Genet, 1996, 93:268-274.
    106. Imamura J, Saul M W, Potrykus I. X-ray irradiation promoted asymmetric somatic hybridization and molecular analysis of the products. Theor Appl Genet, 1987, 74:445-450
    107. Peri A, Aviv D, Galun E. Protoplast fusion mediated transfer of oligomycin resistance from Nicotiana sylvestris to Solanum tuberosum by intergeneric cybridization. Mol Gen Genet, 1991,225:11-16
    108. Kushir S C, Shlunukov L R et al. Functional cybrid plants possessing a Nicotiana genome and Atropa plastome. Mol Gen Genet, 1987, 209:159-163
    109. Hinnisdaels S, Bariller L et al. Highly asymmetric intergeneric nuclear hybrids between Nicotiana and Petunia: evidence for recombination and translocation events in somatic hybrid plants after 'gamma-fusion'. Theor Appl Genet, 1991, 82:609-614
    110. Glimelius K, Bonnett H T Nicotiana cybrids with Petunia chloroplasts. Theor Appl Genet, 1986, 72:794-798
    111. Gupta P P, Schieder O, Gupta M. Intergeneric nuclear gene transfer between somatically and sexually incompatible plants through asymmetric protoplast fusion. Mol Gen Genet, 1984, 197:30-35
    112. Vardi A, Breiman A, Galun E. Citrus cybrids: Production by donor-recipient protoplast fusion and verification by mitochondrial-DNA restriction profiles. Theor triazine resistance in Brassica napus. Theor Appl Genet, 1987, 73:809-814
    
    Appl Genet, 1987,75:51-58
    113. Vardi A, Arzee-Gonen P et al. Protoplast fusion mediated transfer of organelles from Microcitrus into Citrus and regeneration of novel alloplasmic trees. Theor Appl Genet, 1989, 78: 741-747.
    114. Sakai T, Liu H J et al. Introduction of a gene from fertility restored radish (Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasmic male sterile cybrid of B. napus. Theor Appl Genet, 1996, 93: 373-379
    115. Chatterjee C, Sikdar S et al. Intergeneric somatic hybrid production through protoplast fusion between Brassica juncea and Diplotaxis muralis. Theor Appl Genet, 1988,79:915-922
    116. Bauer-Weston B, Keller W, Webb J et al. Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napus. Theor Appl Genet, 1993,86: 150-158
    117. Yamashita Y, Terada R et al. Asymmetric somatic hybrids of Brassica: partial transfer of B. campestris genome into B. oleracea by cell fusion. Theor Appl Genet, 1989, 77: 189-194.
    118. Sjodin C, Glimelius K Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection. Theor Appl Genet, 1989, 78: 513-520
    119. Gerdemann Knorck M, Nielen S et al. Transfer of disease resistance within the genus Brassica through asymmetric somatic hybridization. Euphytica, 1995, 85: 247-253.
    120. Belarmino M M, Toshnori A et al. Asymmetric protoplast fusion between sweet potato and its relatives and plant regeneration. Plant Cell, Tissue and Organ culture, 1996, 46: 195-202
    121. Ratushnyak Y I, Cherep N N et al. Fertile asymmetric somatic hybrids between Lycopersicon esculentum Mill and Lycopersicon peruvianum var. Dentatum Dun. Mol Gen Genet, 1993, 236: 427-432
    122. Wijbrandi J et al Asymmetric somatic hybrids between Lycopersicon esculentum and irradiated Lycopersicon peruvanum. 1. Cytogenetics and morphology. Theor Appl Genet, 1990,80:305-312
    123. Wijbrandi J et al Asymmetric somatic hybrids between Lycopersicon esculentum and irradiated Lycopersicon peruvanum. 2. Analysis with marker gene. Theor Appl Genet, 1990, 80: 665-672
    124. Wijbrandi J et al. Restriction fragment length polymorphism analysis of somatic hybrids between Lycopersicon esculentum and irradiated L. peruvianum: evidence for limited donor genome elimination and extensive chromosome rearrangements. Mol Gen Genet, 1990, 222: 270-277
    
    
    125. Itoh K, Iwabuchi M. Shimamoto K In-situ hybridization with species-specific DNA probes gives evidence for asymmetric nature of Brassica hybrids obtained by X-ray fusion. Theor Appl Genet, 1991, 81: 356-362
    126. Trick H, Zeleer A, Bates G W. Chromosome elimination in asymmetric somatic hybrids: effect of gamma dose and time in culture. Theor Appl Genet, 1994, 88: 965-972
    127. Bates G W. Asymmetric hybridization in Nicotiana by fusion of irradiated protoplasts. Theor Appl Genet, 1987, 74: 718-726
    128. Bates G W. Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor-recipient protoplast fusion: transfer of TMV resistance. Theor Appl Genet, 1990,80:481-487
    129. Matibiri E A, Mantell J. Cybridization in Nicotiana tabacum L using double inactivation of parental protoplasts and post-fusion selection based on nuclear encoded and chloroplast encoded marker gene. Theor Appl Genet, 1994, 88; 1017-1022
    130. Famelaer I et al. Asymmetric hybridization in Nicotiana by "gamma fusion"and progeny analysis of self-fertile hybrids. Theor Appl Genet, 1990, 79: 513-520
    131. Aviv D and Galun E Restoration of fertility in cytoplasmic male sterile (CMS) Nicotiana sylvestris by fusion with X-irradiated N. tabacum protoplasts. Theor Appl Genet, 1980,58: 121-127
    132. Fluhr R, Aviv D et al Cybrids containing mixed and sorted-out chloroplasts following interspecific somatic fusions in Nicotiana. Theor Appl Genet, 1983, 65: 289-294
    133. Aviv D, Chen R, Galun E. Does pretreatment by rhodamine 6-G affect the mitochondrial composition of fusion-derived Nicotiana cybrids? Plant Cell Rep, 1986, 3: 227-230
    134. Aviv D et al Novel alloplasmic Nicotiana plants by "donor-recipient" protoplast fusion: cybrids having N. tabacum or N. sylvestris nuclear genome and either or both plastomes and chondriomes from alien species. Mol. Gen Genet, 1984,196: 244-253
    135. Aviv D et al Intersectional cytoplasmic hybrids in Nicotiana: Identification of plastomes and chondriomes in N. sylvestris+N. rustica cybrids having N. sylvestris nuclear genomes. Theor Appl Genet, 1984, 67:499-504
    136. Menczel L et al. Fusiom mediated transfer of triazine resistant chloroplasts: characterization of Nicotiana tabacum cybrid plants. Mol Gen Genet, 1986, 205; 201-205
    137. Feher A et al. Characterization of chromosome instability in interspecific somatic hybrids obtained by X-ray fusion between potato (Solanum tuberosum) and S. Brevidens Phil. Theor Appl Genet, 1992, 84: 880-890
    
    
    138. Xu Y S, Pehu E. RFLP analysis of asymmetric somatic hybrids between Solatium tuberosum and irradiated S. brevidens. Theor Appl Genet, 1993 86: 754-760
    139. Puite K, Schaart J. Nuclear genomic composition of asymmetric fusion products between irradiated transgenic Solanum brevidens and S. tuberosum: limited elimination of donor chromosomes and polyploidization of the recipient genome. Theor Appl Genet, 1993, 86:237-244
    140. Perl A, Aviv D, Galun E. Protoplast fusion derived CMS potato cybrids: potential seed parents for hybrid true potato seed. J. Heredity. 1990, 81:438-442
    141. Perl A, Aviv D, Galun E. Protoplast fusion derived Solanum cybrids: application and phylogenetic limitations. Theor Appl Genet, 1990, 79: 632-640
    142. Sidorov V A et al Somatic hybridization in potato: use of Y-irradiated protoplasts of Solanum pinnatisectum in genetic reconstruction. Theor Appl Genet, 1987, 74: 364-368
    143. Oberwalder B et al. Asymmetric fusion between wild and cultivated species of potato (Solanum ssp)-detection of asymmetric hybrid and genome elimination. Theor Appl Genet, 1997, 94: 1104-1112
    144. Oberwalder B et al. Asymmetric protoplast fusions between wild species and breeding lines in potato-effect of recipients and genome stability. Theor Appl Genet, 1998,97:1347-1354
    145. Rasmussen J O, Waara S, Rasmussen O S. Regeneration and analysis of interspecific asymmetric potato-Solanum ssp hybrid plants selected by micromanipulation or fluorescence-activated cell sorting. Theor Appl Genet, 1997,95:41-47
    146. Cremers-Molenaar J, Hall R D, Krens F A. Asymmetric protoplast fusion aimed at intraspecific transfer of cytoplasmic male sterility (CMS) in Lolium perenne L. Theor Appl Genet, 1992, 84(5/6) : 763-770
    147. Yang Z Q, Shikanai T, Yamada Y. Asymmetric hybridization between cytoplasmic male sterile (CMS) and fertile rice (Oryza sativa L) protoplasts. Theor Appl Genet, 1988,76:801-808
    148. Akagi H, Sakamoto M et al. Construction of rice cybrid plants. Mol Gen Genet, 1989,215:501-506
    149. Akagi H, Taguchi T, Fujimura T. Stable inheritance and expression of the CMS traits introduced by asymmetric protoplast fusion. Theor Appl Genet, 1995,91: 563-567
    150. Kyozuka J, Kaneda I, Shimamoto K. Production of cytoplasmic male sterile rice Oryza sativa L by cell fusion. Bio Tech, 1989, 7: 1171-1174
    151. Menczel L, Morgan A et al. Fusion-mediated combination of Ogura-type cytoplasmic male sterility with Brassica napus plastids using X-irradiated CMS protoplasts. Plant Cell Rep, 1987,6: 98-101
    152. Barsby T L, Chuong P V et al. The combination of Polima cms and cytoplasmic
    
    
    153. Raineri D, Jordan P, Kumar A. Restoration of fertility in cytoplasmic male sterile Nicotiana tabacum (cytoplasm N. bigelovii) by protoplast fusion with X-irradiated protoplasts of N. tabacum, SR-1. J. Exp Bot, 1992, 43(247): 195-203
    154. Famelaer I Gleba Y Y, Sidorov V A et al. Intrageneric asymmetric hybrids between Nicotiana plumbaginifolia and N. sylvestris obtained by gamma fusion. Plant Sci, 1989, 61:105-117
    155. Melzer J M, O'Connell M A. Effect of radiation dose on the production of triazine resistant chloroplasts: characterization of Nicotiana tabacum cybrid plants. Theor Appl Genet, 1992, 86:337-344
    156. Kovtun Y Y et al. Amplification of repetitive DNA from Nicotiana plumbaginifolia in asymmetric somatic hybrids between Nicotaina sylvestris and N. plumbaginifolia Theor Appl Genet, 1993, 102: 344-352.
    157.何亚文,贺红,张兰英等。马铃薯栽培种和野生种叶肉原生质体紫外线辐射效应。生物工程学报,1998,14(1):58-63
    158. Sundberg E, Glemelius K. Effects of parental ploidy level and genetic divergence on chromosome elimination and chloroplast segregation in somatic hybrids within Brassicaceae. Theor Appl Genet, 1991, 83:81-88
    159. Murashige T, Skoog F A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol Plant 1962,15:473-497
    160.郭文武 邓秀新 史永忠 柑橘细胞电融合参数选择及种间体细胞杂种植株再生植物学报 1998,40(5):417-424。
    161. Lawrence J. Nea and George W. Bates Factors affecting protoplast electrofusion efficiency. Plant Cell Reports, 1987, 6:337-340
    162.李懋学 植物染色体常规压片技术《植物染色体及染色体技术》科学出版社 1982,42-93.
    163.陆长旬 石炭酸—碱性品红染色液配方的改进 生物学通报1994,29(5):40.
    164. Yamamoto T, Nishikawa A et al. DNA polymorphisms in Oryza sativa L. and Lactuta sativa L. amplified by arbitrary primed PCR. Euphytica 1994 78:143-148
    165.马成 林忠平 赵玉锦等 胡萝卜原生质体摄取玉米叶绿体的研究 植物学报 1981,23(1):27-30
    166.刘继红 柑橘原生质体对称和非对称融合研究 华中农业大学博士研究生学位论文1999年5月。
    167. Walter Halperin In vitro Embryogenesis: some historical issues and unsolved problems. In Vitro Embryogenesis in Plants T. A. Thorpe (ed.) Kluwer Academic Publishers, Dordrecht. 1995, pp. 1-16.
    168.邵俊明 米景九 刘育乐 胡萝卜悬浮细胞原生质体的培养及植株再生的研究 北京农业大学学报 1990,16(4):387-392.
    
    
    169. Wang F D, Wan X S, Ye S F, Xia Z A Somatic hybrids obtained from fusion of protoplasts from carrot and celery. Plant Physiology Communications. 1989, No. 1, 26-29.
    170.张伟丽 大白菜组培繁殖及其部分生理生化方面的研究 中国农业科学院研究生院硕士论文1994,46页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700