用户名: 密码: 验证码:
H6N1亚型禽流感对哺乳动物的传播与致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感病毒分为A、B、C三个属,唯有A型流感病毒属的病毒能引起流感大流行。低致病性H6亚型禽流感病毒在北美和亚洲鸟群中普遍存在,而且其感染宿主范围很广,能够直接感染鸡、小鼠和水貂等,甚至有感染人的报道,其流行和传播趋势呈上升趋势,对人类健康和公共卫生安全构成潜在威胁。
     目前,国内外对人流感病毒、H5N1亚型高致病性禽流感病毒和H9N2亚型禽流感病毒研究较多,而对H6亚型低致病性禽流感病毒的研究相对较少,人们往往会因为其对禽的低致病性,而忽略其对人类健康的潜在危害性。H6亚型禽流感病毒A/teal/HongKong/W312/97(tl/HK/97)与1997年大流行的H5N1流感病毒有很高的同源性,这说明低致病性的H6亚型的流感病毒具有与其它亚型的流感病毒发生重配,且能突破物种的种间障碍在人群大流行的潜在能力。
     本研究重点探讨了H6亚型低致病性禽流感病毒对哺乳动物的致病性、在哺乳动物间进行水平传播的能力以及致病性变异的分子机制。首先,我们对本实验室保存的一株野鸭源A/H6N1亚型禽流感病毒(A/Mallard/SanJiang/275/2007,简称A/H6N1)进行全基因组测序和遗传进化分析,结果发现,A/H6N1具有低致病性禽流感病毒所特有的分子特征。然后,我们分别以小鼠、豚鼠和犬作为模式动物,对A/H6N1的生物学特性进行进一步的分析研究,结果发现,该病毒能够感染小鼠、豚鼠和犬,但不会导致感染动物死亡;该病毒也不能在豚鼠间进行水平传播。同时,为了评估H6亚型禽流感病毒的潜在传播性,我们将A/H6N1与曾在2009年引起全球流感大流行的甲型H1N1流感病毒(简称A/H1N1)同时感染豚鼠,让两者在豚鼠体内进行自然重配,并采用细胞生物学和分子生物学的方法筛选H6亚型重配病毒,结果发现,A/H6N1和A/H1N1之间具有良好的遗传兼容性,两者同时感染豚鼠能够产生具有稳定遗传表型的子代H6亚型重配病毒,且子代H6亚型重配病不具备在豚鼠间进行水平传播的能力。最后,为研究H6亚型禽流感病毒致病性变异分子机制,我们将A/H6N1感染BALB/c小鼠,经肺脏连续传代获得3株致病性显著增强的鼠适应株;通过全基因组测序和序列比对,初步筛选出3个可能决定A/H6N1致病性的毒力决定子;应用反向遗传技术、点突变技术和动物实验,最终确定导致A/H6N1致病性增强的关键性氨基酸位点。本研究获得以下结果:
     1.本研究完成对一株野鸭源A/H6N1亚型禽流感病毒(A/Mallard/SanJiang/275/2007,简称A/H6N1)的全基因组测序,并对该株病毒进行了遗传进化分析。结果发现,该株病毒遗传背景较复杂;
     2.本试验对A/H6N1亚型禽流感病毒的基本生物学特性进行了研究,并成功构建了A/H6N1亚型禽流感病毒BALB/c小鼠感染模型和A/H6N1亚型禽流感病毒犬感染模型,初步发现A/H6N1亚型禽流感病毒能够有效感染多种哺乳动物,具有跨种传播的潜力;
     3.本研究成功构建了A/H6N1亚型禽流感病毒反向遗传操作平台,为研究A/H6N1亚型禽流感病毒传播性和致病性分子机制夯实了基础;
     4.本研究以豚鼠为哺乳动物模型,对A/H6N1亚型禽流感病毒的传播性和遗传兼容性进行了初步探索,结果发现:A/H6N1亚型禽流感病毒不能通过直接接触途径在豚鼠间进行有效传播;经三轮噬斑纯化获得的H6/H1重配病毒(血凝素为H6)不能通过直接接触途径在豚鼠间进行有效传播;A/H6N1亚型禽流感病毒与A/H1N1人流感病毒能共同感染哺乳动物并发生基因重配,说明这两种亚型的流感病毒在哺乳动物体内具有良好的遗传兼容性。以上结果说明,H6亚型禽流感病毒虽然具有在人间大流行的潜力,但是还需要不断的演化和适应。
     5.本研究成功筛选出影响A/H6N1亚型禽流感病毒致病性的关键性氨基酸位点:小鼠是研究流感病毒致病性的理想动物模型,本研究将A/H6N1亚型禽流感病毒在BALB/c小鼠肺脏连续传代获得3株A/H6N1亚型禽流感病毒的变异株,并对3株变异株进行了全基因组测序和生物学特性分析初步筛选出可能导致变异株致病性增强的关键性氨基酸位点;然后通过反向遗传技术、点突变技术和小鼠感染模型确定PB2-E627K和PA-T97I是导致A/H6N1亚型禽流感病毒对小鼠致病性增强的关键性氨基酸位点。
There are three types of influenza viruses (A, B and C).The type A can cause influenza pandemic. Low pathogenic avian influenza virus H6subtype is one of the most commonly recognized subtypes in birds in North America and Europe. This subtype has a broad host range, the epidemic and spread show upward. It can infect chickens, mice and mink directly, even can infect people. Thus, H6subtype AIV could constitute a potential pandemic threat to public health.
     Very little is known about the replicative capacity, immunogenicity, and correlates of protective immunity for H6AIV in mammals. People often because of its low pathogenicity ignore the potential harm to human health. The high level of homology of the internal protein genes of H6N1A/teal/Hong Kong/W312/97(teal/HK/97)-like viruses to those of the1997human H5N1viruses raises concerns about W312-like H6viruses. The continuing prevalence of H6viruses and frequently reasserts in avian populations highlight the potential for H6viruses and H6reassortants to cross the species barrier to infect humans and cause human-to-human transmission.
     In this study, we focus on the molecular mechanism of transmission and pathogenicity of H6subtype AIV to mammals. First, we analy the whole genome sequencing and evolution of the A/H6N1subtype avian influenza virus (A/Mallard/SanJiang/275/2007) and the biological characteristics of H6subtype AIV using mice and dogs for mammalian model. Second, H6subtype AIV cannot spread effectively in mammals, in order to study the transmission about H6subtype AIV further and potential pandemic threat to public health, we observe the reassortment of H1N1AIV which pandemic in2009and H6subtype AIV in mammals. Third, in order to investigate the genetic basis of H6subtype AIV pathogenicity in mammals, we generated a mouse-adapted H6subtype AIV that possessed significantly higher virulence than wide-type virus. Increased virulence was detectable after8sequential lung passages in mice. The amino acid which is critical for the increased pathogenicity of H6subtype AIV is detected in vivo and in vitro. This research obtains the following results:
     1. This study successfully sequence the completed genomes of A/H6N1subtype avian influenza virus (A/Mallard/SanJiang/275/2007) from duck and analy the origin and evolution of the strain, the source of this strain is complicated and easy to reassortant with other subtype influenza virus. Also, we found the mammalian model of A/H6N1subtype AIV by mice and dogs, analy the biological characteristics of A/H6N1subtype AIV. The A/H6N1subtype AIV can infect mammals and has the potential to cross the species barrier.
     2. We successfully establish the A/H6N1subtype AIV reverse genetics system, which settled the foundation for further research on pathogenicity and transmission mechanism.
     3. The transmission of A/H6N1subtype avian influenza virus is studied:The A/H6N1subtype AIV cannot spread effectively in mammals by the guinea pig model. A/H6N1AIV and A/H1N1have good genetic compatibility in mammals, can reassortant in mammals. The H6subtype reassortant virus also cannot effectively contact transmission in mammals. This suggest the A/H6N1subtype AIV has the potential to spread, but needs the continue evolution and adaptation.
     4. The pathogenicity of A/H6N1subtype avian influenza virus is studied:Mice are ideal animal models for investigating pathogenic mechanisms of influenza viruses. We obtain3strains mouse-adapted H6subtype AIV after8lung passages in mice and analyze the whole genome sequence and biological characteristics. Two amino acid substitutions can enhance pathogenicity in the genome of H6subtype AIV. Assessments of replication in mice showed that PB2-E627K and PA-T97I increased virus replication, The PB2-E627K and PA-T97I amino acid substitution enhanced viral polymerase activity and replication. Thus, our results show that the combination of PB2-E627K and PA-T97I are critical for the pathogenicity of H6subtype AIV in mammalian host.
引文
[1]Ghedin E, Sengamalay N A, Shumway M, et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution [J]. Nature,2005,437(7062):1162-6.
    [2]Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1influenza virus [J]. Nature,2009,459(7249):931-9.
    [3]Johnson N P, Mueller J. Updating the accounts:global mortality of the1918-1920"Spanish" influenza pandemic [J]. Bull Hist Med,2002,76(1):105-15.
    [4]Basler C F, Reid A H, Dybing J K, et al. Sequence of the1918pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the1918NS genes [J]. Proc Natl Acad Sci U S A,2001,98(5):2746-51.
    [5]Tumpey T M, Basler C F, Aguilar P V, et al. Characterization of the reconstructed1918Spanish influenza pandemic virus [J]. Science,2005,310(5745):77-80.
    [6]Tumpey T M, Maines T R, Van Hoeven N, et al. A two-amino acid change in the hemagglutinin of the1918influenza virus abolishes transmission [J]. Science,2007,315(5812):655-9.
    [7]Kobasa D, Jones S M, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the1918influenza virus [J]. Nature,2007,445(7125):319-23.
    [8]Weingartl H M, Albrecht R A, Lager K M, et al. Experimental infection of pigs with the human1918pandemic influenza virus [J]. J Virol,2009,83(9):4287-96.
    [9]Van Hoeven N, Pappas C, Belser J A, et al. Human HA and polymerase subunit PB2proteins confer transmission of an avian influenza virus through the air [J]. Proc Natl Acad Sci U S A,2009,106(9):3366-71.
    [10]Scholtissek C, Rohde W, Von Hoyningen V, et al. On the origin of the human influenza virus subtypes H2N2and H3N2[J]. Virology,1978,87(1):13-20.
    [11]Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1gene of influenza A viruses in the1957and1968pandemics [J]. J Virol,1989,63(11):4603-8.
    [12]Nakajima K, Desselber G U, Palese P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in1950[J]. Nature,1978,274(5669):334-9.
    [13]Rambaut A, Pybus O G, Nnlson M I, et al. The genomic and epidemiological dynamics of human influenza A virus [J]. Nature,2008,453(7195):615-9.
    [14]Manicassamy B, Medina R A, Hair, et al. Protection of mice against lethal challenge with2009H1N1influenza A virus by1918-like and classical swine H1N1based vaccines [J]. PLoS Pathog,2010,6(1):e1000745.
    [15]Dunham E J, Dugan V G, Kaser E K, et al. Different evolutionary trajectories of European avian-like and classical swine H1N1influenza A viruses [J]. J Virol,2009,83(11):5485-94.
    [16]Garten R J, Davis C T, Russell C A, et al. Antigenic and genetic characteristics of swine-origin2009A(H1N1) influenza viruses circulating in humans [J]. Science,2009,325(5937):197-201.
    [17]G N Rogers, J C Paulson.Receptor determinants of human and animal influenza virus isolates:differences in receptor specificity of the H3hemagglutinin based on species of origin[J].Virology,1983,127(2):361-373
    [18]G N Rogers, J C Paulson, R S Daniels, et al.Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity [J]. Nature,1983,304(5921):76-78
    [19]J N Couceiro, J C Paulson,L G Baum.Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity[J]. Virus Res,1993,29(2):155-165
    [20]T Ito, J N Couceiro, S Kelm, et al.Molecular basis for the generation in pigs of influenza A viruses with pandemic potential [J].J Virol,1998,72(9):7367-7373
    [21]H Kida, T Ito, J Yasuda, et al.Potential for transmission of avian influenza viruses to pigs[J].J Gen Virol,1994,75(Pt9)(2183-2188
    [22]E C Claas, A D Osterhaus, R Van Beek, et al.Human influenza A H5N1virus related to a highly pathogenic avian influenza virus[J].Lancet,1998,351(9101):472-477
    [23]K Subbarao, A Klimov, J Katz, et al.Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J].Science,1998,279(5349):393-396
    [24]R A Fouchier, P M Schneeberger, F W Rozendaal, et al.Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome [J].Proc Natl Acad Sci U S A,2004,101(5):1356-1361
    [25]M N Matrosovich, T Y Matrosovich, T Gray, et al.Human and avian influenza viruses target different cell types in cultures of human airway epithelium[J].Proc Natl Acad Sci U S A,2004,101(13):4620-4624
    [26]K Shinya, M Ebina, S Yamada, et al.Avian flu:influenza virus receptors in the human airway[J].Nature,2006,440(7083):435-436
    [27]M Matrosovich, N Zhou, Y Kawaoka, et al.The surface glycoproteins of H5influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties[J].J Virol,1999,73(2):1146-1155
    [28]M Matrosovich, A Tuzikov, N Bovin, et al.Early alterations of the receptor-binding properties of H1, H2, and H3avian influenza virus hemagglutinins after their introduction into mammals[J].J Virol,2000,74(18):8502-8512
    [29]M N Matrosovich, S Krauss, R G Webster.H9N2influenza A viruses from poultry in Asia have human virus-like receptor specificity[J].Virology,2001,281(2):156-162
    [30]L G Baum, J C Paulson.The N2neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity [J]. Virology,1991,180(1):10-15
    [31]D Kobasa, S Kodihalli, M Luo, et al.Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase[J].J Virol,1999,73(8):6743-6751
    [32]J Blok and G M. Air. Variation in the membrane-insertion and "stalk" sequences in eight subtypes of influenza type A virus neuraminidase [J]. Biochemistry,1982,21(17):4001-4007
    [33]M C Els, G M Air, K G Murti, et al.An18-amino acid deletion in an influenza neuraminidase[J].Virology,1985,142(2):241-247
    [34]G Luo, J Chung,P Palese. Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions[J]. Virus Res,1993,29(2):141-153
    [35]K S Li, Y Guan, J Wang, et al.Genesis of a highly pathogenic and potentially pandemic H5N1influenza virus in eastern Asia[J].Nature,2004,430(6996):209-213
    [36]T Takahashi, Y Suzuki, D Nishinaka, et al.Duck and human pandemic influenza A viruses retain sialidase activity under low pH conditions[J].J Biochem,2001,130(2):279-283
    [37]M D De Jong, V C Bach, T Q Phan, et al.Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma[J].N Engl J Med,2005,352(7):686-691
    [38]P Gao, S Watanabe, T Ito, et al.Biological heterogeneity, including systemic replication in mice, of H5N1influenza A virus isolates from humans in Hong Kong[J].J Virol,1999,73(4):3184-3189
    [39]X Lu, T M. Tumpey, T Morken, et al.A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans [J].J Virol,1999,73(7):5903-5911
    [40]M Hatta, P Gao, P.Halfmann, et al.Molecular basis for high virulence of Hong Kong H5N1influenza A viruses[J].Science,2001,293(5536):1840-1842
    [41]E K Subbarao, W London, B. R. Murphy.A single amino acid in the PB2gene of influenza A virus is a determinant of host range[J].J Virol,1993,67(4):1761-1764
    [42]E K Subbarao, W London,B R Murphy.A single amino acid in the PB2gene of influenza A virus is a determinant of host range[J].J Virol,1993,67(4):1761-1764
    [43]N Naffakh, P Massin, N Escriou, et al.Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses[J].J Gen Virol,2000,81(Pt5):1283-1291
    [44]K Shinya, S Watanabe, T Ito, et al. Adaptation of an H7N7equine influenza A virus in mice [J].J Gen Virol,2007,88(Pt2):547-553
    [45]C Scholtissek, W Rohde, V Von Hoyningen, et al.On the origin of the human influenza virus subtypes H2N2and H3N2[J].Virology,1978,87(1):13-20
    [46]Y Kawaoka, S Krauss, R G Webster. Avian-to-human transmission of the PB1gene of influenza A viruses in the1957and1968pandemics[J].J Virol,1989,63(11):4603-4608
    [47]M H Snyder, A J Buckler-White, W T London, et al.The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79reassortant viruses for monkeys [J].J Virol,1987,61(9):2857-2863
    [48]Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus [J]. Cell,1989,59(6):1107-13.
    [49]Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules [J]. Virology,1994,202(1):477-9.
    [50]Neumann G, Watanabe T, Ito H, et al. Generation of influenza A viruses entirely from cloned cDNAs [J]. Proc Natl Acad Sci U S A,1999,96(16):9345-50.
    [51]Neumann G, Feldmann H, Watanabe S, et al. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture [J]. J Virol,2002,76(1):406-10.
    [52]Hoffmann E, Webster R G. Unidirectional RNA polymerase I-polymerase Ⅱ transcription system for the generation of influenza A virus from eight plasmids [J]. J Gen Virol,2000,81(Pt12):2843-7.
    [53]Chen L M, Davis C T, Zhou H, et al. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1and human H3N2influenza A viruses. PLoS Pathog2008,4:e1000072.
    [54]Sun Y, et al. High genetic compatiblity and increased pathologenicity of reassortants derived from avian H9N2and pandemic H1N1/2009influenza viruses.Proc Natl Acad Sci USA2011,108:4164-4169.
    [55]Sara Jackson, Neal Van Hoeven, Li-Mei Chen, et al.Reassortment between Avian H5N1and Human H3N2Influenz Viruses in Ferrets:a Public Health Risk Assessment Journal of Virology, Aug.2009:8131-8140
    [56]J. Brian Kimble, Erin Sorrell, Hongxia Shao, et al. Compatibility of H9N2avian influenza surface genes and2009pandemic H1N1internal genes for transmission in the ferret model.Proc Natl Acad Sci.2011
    [57]Cheng jun Li, Masato Hatta, Chairul A. et al. Reassortment between avian H5N1and human H3N2influenza viruses creates hybrid viruses with substantial virulence Proc Natl Acad Sci, USA2010,107:4687-4692
    [58]Ca'ssio Pontes Octaviani,Makoto Ozawa,Shinya Yamada, et al.High Level of Genetic Compatibility between Swine-Origin H1N1and Highly Pathogenic Avian H5N1Influenza Viruses. Journal of Virology, Vol.2010,84:10918-10922
    [59]Min-Suk Song et al. virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic(H1N1)2009virus and circulating influenza A viruses. J Virology2011Jul;85(13):6275-86
    [60]Xueli Zhao,Yipeng Sun,Jinhua Liu et al. Characterization of an Artificial Swine-Origin InfluenzaVirus with the Same Gene Combination as H1N1/2009Virus:A Genesis Clue of Pandemic Strain. PLoS ONE2011,6(7):e22091
    [61]WHO.http://www.who.int/en/,2011.
    [62]T Yamanaka, M Nemoto, K Tsujimura.et al. Interspecies transmission of equine influenza virus (H3N8) to dogs by close contact with experimentally infected horses[J].Vet Microbiol.2009.139(3-4):351-355
    [63]Ghedin E, Sengamallay N A, Shumway M, et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution [J]. Nature,2005,437(7062):1162-6.
    [64]Ito T, Couceiro J N, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential [J]. J Virol,1998,72(9):7367-73.
    [65]Ward A C. Virulence of influenza A virus for mouse lung.[J]. Virus Genes,1997,14(3): 187-194.
    [66]Hirst G K. Studies on the mechanism of adaptation of influenza virus to mice [J]. Exp Med.1947,86(5):357-366.
    [67]Raut SJ, Hurd RJ, Cureton G, et al. The pathogenesis of infections of the mouse caused by virulent and avirulent variants of an influenza virus [J]. Med Microbiol,1975,8(1):127136.
    [68]Tscherne DM, Garcia-sastre A. Virulence determinants of pandemic influenza viruses [J]. Clin Invest,2011,121(1):6-13.
    [69]M D De Jong, V C Bach, T Q Phan, et al.Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma [J].N Engl J Med,2005,352(7):686-691
    [70]W Garten, H D Klenk.Understanding influenza virus pathogenicity[J].Trends Microbiol,1999,7(3):99-100
    [71]Y Kawaoka, C W Naeve, R G Webster.Is virulence of H5N2influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?[J].Virology,1984,139(2):303-316
    [72]T Horimoto,Y Kawaoka.Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus [J].J Virol,1994,68(5):3120-3128
    [73]E C Claas, A D Osterhaus, R Van Beek, et al.Human influenza A H5N1virus related to a highly pathogenic avian influenza virus [J].Lancet,1998,351(9101):472-477
    [74]K Subbarao, A Klimov, J Katz, et al.Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J].Science,1998,279(5349):393-396
    [75]R A Fouchier, P M Schneeberger, F W Rozendaal, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome [J].Proc Natl Acad Sci U S A,2004,101(5):1356-1361
    [76]S Chutinimitkul, S Herfst, J Steel, et al.Virulence-associated substitution D222G in the hemagglutinin of2009pandemic influenza A(H1N1) virus affects receptor binding[J].J Virol,2010,84(22):11802-11813
    [77]N A Ilyushina, A M Khalenkov, J P Seiler, et al. Adaptation of pandemic H1N1influenza viruses in mice[J].J Virol,2010,84(17):8607-8616
    [78]J Ye, E M Sorrell, Y Cai, et al.Variations in the hemagglutinin of the2009H1N1pandemic virus:potential for strains with altered virulence phenotype?[J].PLoS Pathog,2010,6(10):e1001145
    [79]K Shinya, S Watanabe, T Ito, et al. Adaptation of an H7N7equine influenza A virus in mice [J].J Gen Virol,2007,88(Pt2):547-553
    [80]M Hatta, P Gao, P Halfmann, et al. Molecular basis for high virulence of Hong Kong H5N1influenza A viruses[J]. Science,2001,293:1840-1842
    [81]Hatta M, Hatta Y, Kim JH, et al. Growth of H5N1influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog2007,3:1374-1379.
    [82]Bogs J, Kalthoff D, Veits J, et al. Reversion of PB2-627E to-627K during replication of an H5N1Clade2.2virus in mammalian hosts depends on the origin of the nucleoprotein. J Virol2011,85:10691-10698.
    [83]Maines T R, Lu X H, Erb S M, et al.(2005) Avian influenza (H5N1) viruses isolated from humans in Asia in2004exhibit increased virulence in mammals. J Virol79:11788-11800.
    [84]Rudneva I A, Kaverin N V, Varich N L, et al. Studies on the genetic determinants of influenza virus pathogenicity for mice with the use of reassortants between mouse-adapted and non-adapted variants of the same virus strain. Arch Virol1986,90:237-248.
    [85]Kaverin NV, Finskaya NN, Rudneva IA, et al. Studies on the genetic basis of human influenza A virus adaptation to mice:degrees of virulence of reassortants with defined genetic content. Arch Virol1989,105:29-37.
    [86]Brown EG, Liu H, Kit LC, et al. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung:identification of functional themes. Proc Natl Acad Sci U S A2001,98:6883-6888.
    [87]Zamarin D, Ortigoza M B, Palese P, et al. Influenza A virus PB1-F2protein contributes to viral pathogenesis in mice. J Virol2006,80:7976-7983.
    [88]Song M S, Pascua P N, Lee J H, et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol2009,83:12325-12335.
    [89]A Garcia-Sastre. et al.Identification and characterization of viral antagonists of type Iinterferon in negative-strand RNA viruses [J].Curr Top Microbiol Immunol,2004,283249-280
    [90]R M Krug, W Yuan, D L Noah, et al.Intracellular warfare between human influenza viruses and human cells:the roles of the viral NS1protein [J].Virology,2003,309(2):181-189
    [91]G K Geiss, M Salvatore, T M Tumpey, et al.Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells:the role of the nonstructural NS1protein in the evasion of the host innate defense and its potential contribution to pandemic influenza [J].Proc Natl Acad Sci U S A,2002,99(16):10736-10741
    [92]C Y Cheung, L L Poon, A S Lau, et al.Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses:a mechanism for the unusual severity of human disease?[J].Lancet,2002,360(9348):1831-1837
    [93]Y Guan, L L Poon, C Y Cheung, et al.H5N1influenza:a protean pandemic threat [J]. Proc Natl Acad Sci U S A,2004,101(21):8156-8161
    [94]S H Seo, E Hoffmann, R G Webster, et al.Lethal H5N1influenza viruses escape host anti-viral cytokine responses [J].Nat Med,2002,8(9):950-954
    [95]S H Seo, E Hoffmann, R G Webster.The NS1gene of H5N1influenza viruses circumvents the host anti-viral cytokine responses [J]. Virus Res,2004,103(1-2):107-113
    [96]Smeenk C A, Brown E G. et al.The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth.J Virol1994,68:530-534.
    [97]Abolnik C S, Bisschop T Gerdes, et al.Outbreaks of avian influenza H6N2viruses in chickens arose by a reassertment of H6N8and H9N2ostrich viruses [J]. Virus Genes.2007,34(1):37-45
    [98]Italo Archetti, Frank L, Horsfall Jr. Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum [J]. Exp Med.1950,92(5):441-462
    [99]Olsen B, Munster VJ, Wallensten A, et al. Global patternsof influenza a virus in wild birds [J]. Science,2006,312(5772):384-388.
    [100]Huang K, Bahl J, Fan X H, et al. Establishment of an H6N2influenza virus lineage in domestic ducks in southern China [J]. J Virol.2010,84(14):6978-6986.
    [101]Hanson B A, Stallknecht D E, Swayne, et al.Avian influenza viruses in Minnesota ducks during1998-2000[J]. Avian Dis.2003.47(s3):867-871.
    [102]Munster V J, Baas C P, Lexmond, et al. Spatial, temporal and species variation in prevalence of influenza A viruses in wild migratory birds [J]. PLoS Pathog.2007,3(5):630-638.
    [103]Chen Z,Santos C,Aspenlund A, et al.Evaluation of live attenuated influenza a virus H6vaccines in mice and ferrets [J]. J Virol.2009.83(1):65-72.
    [104]Hye Ryoung Kim, Kyoung Ki Lee, Jae Ku Oem, et al. Genetic relatedness of H6subtype avian influenza viruses isolated from wild birds and domestic ducks in Korea and their pathogenicity in animals [J]. J Gen Virol.2010,91(1):208-219.
    [105]Myers K P, Setterquist S F,Capuano A W, et al. Infection due to3avian influenza subtypes in United States veterinarians[J]. Clin Infect Dis.200745(1):4-9.
    [106]Sara Jackson, Neal Van Hoeven, Li-Mei Chen, et al.Reassortment between Avian H5N1and Human H3N2Influenz Viruses in Ferrets:a Public Health Risk Assessment [J]. J Virol.2009,83(16):8131-8140
    [107]卡尔克BW.禽病学[M].高福,等译.北京:北京农业大学出版社,1991.
    [108]De Jong J C, Claas EC, Osterhaus AD, et al. A pandemic:warning [J].Nature,1997,389(6651):554.
    [109]Richard J W, Peter R W, Scott L K, et al. Reassortment an interspecies transmission of North American H6N2influenza viruses [J]. Virology,2002,295:44-53
    [110]Hoffmann E,Stech J,Guan Y, et al..Universal primer set the full Length amplification of all influenza A viruses Archives of, Virology2001,146:2275-2289
    [111]Hubalek Z, An annotated checklist of pathogenic microorganisms associated with migratory birds [J]. Journal of Wildlife Diseases,2004,40(4), pp.639-659
    [112]Matumoto M. A note on some points of calculation method of LD50by Reed and Muench [J]. Jpn J Exp Med,1949,20(2):175-9.
    [113]Hoffmann E, Stech J, Leneva I, et al. Characterization of the influenza A virus gene pool in avian species in southern China:was H6N1a derivative or a precursor of H5N1?[J] J Virol2000,74,6309-6315.
    [114]Song D,Lee C, Kang B, et al. Experimental infection of dogs with avian-origin canine influenza A virus (H3N2).[J] Emerg Infect Dis2009,15,56-58.
    [115]Song D,Moon H, Jung K, et al. Association between nasal shedding and fever that influenza A (H3N2) induces in dogs.[J] Virol J2011,8,1.
    [116]Song D, Kang B, Lee C, et al.Transmission of avian influenza virus (H3N2) to dogs.[J] Emerg Infect Dis2008,14,741-746.
    [117]Maas R,Tacken M,Ruuls L, et al. Stockhofe-Zurwieden, N. Avian influenza (H5N1) susceptibility and receptors in dogs.[J] Emerg Infect Dis2007,13,1219-1221.
    [118]Giese M, HarderT C,Teifke J P,et al.Experimental infection and natural contact exposure of dogs with avian influenza virus (H5N1).[J] Emerg Infect Dis2008,14,308-310.
    [119]Chen Y,Zhong G, Wang G, et al.Dogs are highly susceptible to H5N1avian influenza virus.[J] Virology2010,405,15-19.
    [120]Crawford P C, Dubovi E J,Castleman W L, et al.Transmission of equine influenza virus to dogs.[J] Science2005,310,482-485.
    [121]Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3avian influenza virus hemagglutinins after their introduction into mammals [J]. J Virol,2000,74(18):8502-12.
    [122]Yuwei Gao,Ying Zhang,Kyoko Shinya, et al.dentification of amino acids in HA and PB2critical for the transmission of H5N1avian influenza viruses in amammalian host [J]. PLoS Pathog,2009.5(12):e1000709
    [123]Suarez D L, Perdue M L. Multiple alignment comparison of the non-structural genes of influenza A viruses.[J] Virus Res,1998,54(1):59-69
    [124]Webster R G, Yakhno M A, Hinshaw V S, et al.Intestinal in fluenza:replication and charaterization of influenza viruses in duck [J]. Virology,1978,84:268-278.
    [125]Kida H, YAnagawa R, Matsuoka Y. Duck in fluenza lacking evidence of disease signs and immune response.[J]. Infect Immun,1980,30:547-553.
    [126]Wbster R G. Influenaz:an emegring disease[J].Emegring infect Dis,1998,4(3):436-441.
    [127]忻悦,于志君,程凯慧,等.H6亚型流感病毒在小鼠肺内的适应性传代研究[J].中国病原生物学杂志,2012,9(7):641-643.
    [128]Abolnik C S, Bisschop T, Gerdes A, et al.Outbreaks of avian influenza H6N2viruses in chickens arose by a reassortment of H6N8and H9N2ostrich viruses.[J]Virus Genes2007,34:37-45.
    [129]Chin P S, E Hoffmann R, Webby R G, et al. Molecular evolution of H6influenza viruses from poultry in southeastern China:prevalence of H6N1influenza viruses possessing seven A/Hong Kong/156/97(H5N1)-like genes in poultry.[J] J. Virol.2002,76:507-516.
    [130]Kinde H, Read B M, Daft M, et al.The occurrence of avian influenza A subtype H6N2in commercial layer flocks in Southern California (2000-02):clinicopathologic findings.[J] Avian Dis.2003,47:1214-1218.
    [131]Wang C W, Wang C H, Experimental selection of virus derivatives with variations in virulence from a single low-pathogenicity H6N1avian influenza virus field isolate.[J] Avian Dis.2003,47:1416-1422.
    [132]Webby R J, Woolcock S L, Krauss D B, et al.Multiple genotypes of nonpathogenic H6N2influenza viruses isolated from chickens in California[J]. Avian Dis.2002,47:905-910.
    [133]Woolcock P R, Suarez D L, Kuney D. et al.Low-pathogenicity avian influenza virus (H6N2) in chickens in California,2000-02.[J] Avian Dis.2003,47:872-881.
    [134]Fang R, W Min Jou, D Huylebroeck, et al.Complete structure of A/duck/Ukraine/63influenza hemagglutinin gene:animal virus as progenitor of human H3Hong Kong1968influenza hemagglutinin.[J] Cell1982,25:315-323.
    [135]Gething M J, J Bye, J Skehel, et al.Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2andH3strains elucidates antigenic shift and drift in human influenza virus.[J] Nature1980,287:301-306.
    [136]Kawaoka Y, S Krauss, R G Webster..Avian-to-human transmission of the PB1gene of influenza A viruses in the1957and1968pandemics.[J] J. Virol.1989,63:4603-4608.
    [137]Schafer J R, Y Kawaoka, W J Bean, et al.Origin of the pandemic1957H2influenza A virus and the persistence of its possible progenitors in the avian reservoir.[J] Virology1993,194:781-788.
    [138]Neumann G, Whitt M A, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned Cdna what have we learned?[J]. J Gen Virol,2002,83:2635-2662.
    [139]Hatta M, P Gao, P Halfmann et al. Molecular basis for high virulence of Hong Kong H5N1influenza A viruses.[J] Science2001,293:1840-2.
    [140]Li Z, H Chen, P Jiao, et al. Molecular basis of replication of duck H5N1influenza viruses in a mammalian mouse model.[J] J Virol2005,79:12058-64.
    [141]Steel J, A C Lowen, S Mubareka, et al..Transmission of influenza virus in a mammalian host is increased by PB2amino acids627K or627E/701N.[J] PLoS Pathog2009,5: e1000252.
    [142]Gao Y, Y Zhang, K Shinya, et al. Identification of amino acids in HA and PB2critical for the transmission of H5N1avian influenza viruses in a mammalian host [J].PLoS Pathog2009,5:e1000709.
    [143]Li Z, Y Jiang, P Jiao, et al.The NS1gene contributes to the virulence of H5N1avian influenza viruses.[J] J Virol2006,80:11115-23.
    [144]Jiao P, G Tian, Y Li, et al.A single-amino-acid substitution in the NS1protein changes the pathogenicity of H5N1avian influenza viruses in mice.[J] J Virol2008,82:1146-54.
    [145]Zhu Q, H Yang, W Chen, et al.A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1swine influenza virus in chickens.[J] J Virol2008,82:220-8.
    [146]Fan S, G Deng, J Song, et al. Two amino acid residues in the matrix protein M1contribute to the virulence difference of H5N1avian influenza viruses in mice.[J] Virology2009,384:28-32.
    [147]Tian J, Qi W, Li X, et al. A Single E627K Mutation in the PB2Protein of H9N2Avian Influenza Virus Increases Virulence by Inducing Higher Glucocorticoids (GCs) Level [J] PLoS ONE2012,7(6):e38233.
    [148]Tarendeau F, Crepin T, Guilligay D, et al. Host determinant residue lysine627lies on the surface of a discrete, folded domain of influenza virus polymerase PB2subunit.[J] PLoS Pathog2008,4:e1000136.
    [149]Julkunen I, Mele'n K, Nyqvist M, et al. Inammatory responses in inuenza A virus infection.[J] Vaccine2001,19:6.
    [150]Song M S, Pascua P N, Lee J H, et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model.[J] J Virol2009,83:12325-12335.
    [151]Rolling T, Koerner I, Zimmermann P, et al. Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice.[J] J Virol2009,83:6673-6680.
    [152]Ilyushina N A, Khalenkov A M, Seiler J P, et al. Adaptation of pandemic H1N1influenza viruses in mice.[J] J Virol2010,84:8607-8616.
    [153]Zhou B, Li Y, Halpin R, et al. PB2residue158is a pathogenic determinant of pandemic H1N1and H5influenza a viruses in mice.[J] J Virol2011,85:357-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700