BMP-2因素对血管内皮细胞共培养干细胞成骨分化以及相关基因表达的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景及目的]
     由各类先天或后天原因造成的骨缺损是临床上的常见疾病之一,而此类骨缺损的修复一直是较难解决的问题。运用组织工程技术体外成骨后移植是这类骨缺损除手术外新的修复方法。骨髓间充质干细胞(bone marrow Mesenchymal stem cells, BMSCs)作为体内一种较易获得的干细胞,其具有分化为多种不同类型细胞的潜能。BMSCs在适当诱导条件下能够分化为骨细胞、软骨细胞、脂肪细胞等各类相关细胞。目前关于体外培养单一种类的骨髓间充质干细胞并诱导其成骨分化的研究取得了很多进展,但仍然存在细胞增殖慢、成骨效率低、成骨周期长等缺点。
     目前有研究发现血管内皮细胞(vein endothelial cells, VECs)在与BMSCs共培养可以通过骨形态发生蛋白(Bone morphogenetic protein, BMP),促进成骨分化的同时刺激成骨细胞及成骨前细胞释放血管内皮生长因子(vascular endothelial growth factor, VEGF),而VEGF在促进内皮细胞的增殖的同时,也在血管发生和形成过程中发挥着重要作用。但目前从基因水平研究血管内皮细胞对骨髓间充质干细胞成骨分化作用仍未见报道。
     本研究采用RNAi技术原理静默hUVECs的BMP-2基因,分别采用正常hUVECs和BMP-2基因静默的hUVECs与hBMSCs构建联合培养体系,利用荧光定量PCR技术定量检测培养体系中各组hUVECs对hBMSCs的Bmi-1和Runx2基因的影响;验证hUVECs对hBMSCs内增殖和成骨诱导促进作用;探讨hUVECs的BMP-2因子对hBMSCs的Bmi-1和Runx2基因的影响,明确BMP-2是否是hUVECs调控hBMSCs的Bmi-1和Runx2基因表达的主要因素。本研究为hUVECs共培养hBMSCs在骨组织工程中的种子细胞体外培养分化提供理论依据,并期望研究成果能够探索出新的方法从而解决组织工程种子细胞在支架材料上增殖、黏附和成骨分化的难题。
     [方法]
     (1)抽取志愿者骨髓液,使用密度梯度离心法分离骨髓单个核细胞,并借助hBMSCs(?)壁生长的特性进行纯化,在相差显微镜观察干细胞形态变化。将hBMSCs传代扩增培养至第三代,流式细胞仪检测CD34、CD29、CD44表面抗原表达,鉴定hBMSCs;
     (2)取hUVECs细胞进行体外培养,并运用免疫组化染色方法鉴定hUVECs细胞,培养至第三代后用Western Blotting蛋白检测方法分别检测第4、6、8、10天BMP-2蛋白的表达情况。
     (3)设计四组BMP-2基因的shRNA干扰序列,将所设计好的shRNA序列插入质粒载体,运用脂质体转染法将构建的干扰基因序列转染到血管内皮细胞内,并采用荧光显微镜观察质粒转染的效果。Western Blotting检测血管内皮细胞BMP-2蛋白的表达,鉴定对hUVECs细胞BMP-2的RNA静默的效果。
     (4)将hUVECs细胞用ECM+10%新生胎牛血清扩增至第三代后与第三代hBMSCs细胞按1:1比例建立以DMEM+10%胎牛血清为培养基的联合培养组。将经RNAi处理的hUVECs细胞和第三代hBMSCs细胞按1:1比例建立以DMEM+10%胎牛血清为培养基的联合培养干扰组。设置单独hBMSCs培养组、单独hUVECs培养组为阴性对照组。分别于第4、6、8、10天相差显微镜观察形态变化,用计数板计数各组hBMSCs数量;用SPSS17.0软件对各项检测值进行统计学分析。
     (5)分别于第4、6、8、10天每组每个时间点取6孔检测单独hBMSCs组、联合培养组和联合培养干扰组中碱性磷酸酶(Alkaline phosphatase, ALP)及骨钙素(Osteocalin, OC)含量。用SPSS17.0软件对各项检测值进行统计学分析。
     (6)分别于第4、6、8、10天每组每个时间点取6孔应用Western Blotting方法检测单独hUVECs组、联合培养组和联合培养干扰组中hUVECs的BMP-2蛋白表达情况。
     (7)采用荧光定量PCR法(fluorescence quantitative PCR, FQ-PCR)检测第4、6、8、10天单独hBMSCs组、联合培养组和联合培养干扰组中hBMSCs的Bmi-1和Runx2基因表达的情况,每组每个时间点取6孔。用SPSS17.0软件对各项检测值进行统计学分析。
     [结果]
     (1)采用密度梯度离心法结合贴壁培养法分离、提纯hBMSCs,所获得细胞的纯度较高,达到实验要求。用流式细胞仪对提取纯化的第3代hBMSCs进行细胞表型分析鉴定,CD34低表达,CD29、CD44高表达,符合hBMSCs的表型特征。
     (2)对所培养hUVECs行免疫组化染色鉴定,符合该细胞表型,Western Blotting检测结果显示hUVECs能正常表达BMP-2蛋白。
     (3)2号质粒转染后的细胞BMP-2蛋白表达量明显降低,本研究设计合成的shRNA干扰质粒对hUVECs细胞BMP-2蛋白表达的静默是有效的。质粒3ug、脂质体10ul,转染6小时是最佳转染条件,转染效率约为60%。
     (4)培养体系中hBMSCs的形态变化结果显示各时间点联合培养组hBMSCs呈现出一定的成骨分化表现,联合培养干扰组hBMSCs成骨分化的形态表现弱于联合培养组,单独hBMSCs组未见成骨分化表现。
     (5)各组别细胞数目随时间延长先增高后降低,各时间点联合培养组细胞数目最高,联合培养干扰组次之,单独hBMSCs最低。各组之间两两比较,差异均有显著统计学意义(P<0.01)。
     (6)Western Blotting检测结果显示联合培养组hUVECs对BMP-2的表达较单独hUVECs组增高。联合培养干扰组对BMP-2的表达显著降低,达到实验对RNA干扰的要求。
     (7)联合培养组和联合培养干扰组内碱性磷酸酶检测量随时间延长先增高后降低,单独hBMSCs组的碱性磷酸酶含量在各时间点变化较小。各时间点联合培养组ALP最高,联合培养干扰组次之,单独hBMSCs最低。各组之间两两比较,差异均有显著统计学意义(P<0.01)。
     (8)联合培养组和联合培养干扰组内骨钙素检测量随时间延长先增高后降低;单独hBMSCs组的骨钙素含量在各时间点变化较小;各时间点联合培养组骨钙素检测量最高,联合培养干扰组次之,单独hBMSCs组最低。各组之间两两比较,差异有显著统计学意义(P<0.01)。
     (9)干细胞Bmi-1基因表达量在联合培养组和联合培养干扰组内按时间增长逐渐上升;单独hBMSCs组的Bmi-1基因表达量在各时间点变化较小;各时间点联合培养组和联合培养干扰组Bmi-1基因表达较高,单独hBMSCs组最低;相同时间点联合培养组和联合培养干扰组之间比较,差异无统计学意义(P>0.05);单独hBMSCs组与联合培养组和联合培养干扰组之间比较,差异有显著统计学意义(P<0.01)。
     (10)联合培养组和联合培养干扰组内Runx2基因表达量随时间延长逐渐增高;单独hBMSCs组的Runx2基因表达量在各时间点变化较小;各时间点联合培养组Runx2基因表达量最高,联合培养干扰组次之,单独hBMSCs组最低;各组之间两两比较,差异均有显著统计学意义(P<0.01)。
     [结论]
     (1)采用密度梯度离心法分离以及贴壁法纯化的hBMSCs,经流式细胞仪表型鉴定为骨髓来源的干细胞,可在后期联合培养中应用。
     (2)脐静脉血管内皮细胞能正常表达BMP-2蛋白。实验中构建的质粒序列正确有效,能够达到实验对BMP-2的RNA干扰要求。
     (3)联合培养体系中骨髓间充质干细胞和脐静脉血管内皮细胞有相互促进增殖的作用。两种细胞联合培养相容性好,未见抑制现象。
     (4)联合培养体系中骨髓间充质干细胞分泌碱性磷酸酶和骨钙素增加,向成骨细胞方向分化速度显著加快。
     (5)血管内皮细胞能提高联合培养体系中骨髓间充质干细胞的Bmi-1表达,这与骨髓间充质干细胞的增殖密切相关。
     (6)联合培养体系对骨髓间充质干细胞Bmi-1的表达有促进作用,但此信号通路上游的调控并不是通过BMP-2而完成。
     (7)骨髓间充质干细胞在联合血管内皮细胞培养时成骨分化速度加快,这与其Runx2基因表达增加重要相关。
     (8)骨髓间充质干细胞Runx2基因的表达与血管内皮细胞分泌的BMP-2密切相关,这证明在联合培养体系中存在BMP-2/Runx2通路。但BMP-2不是联合培养体系中Runx2通路上游唯一的影响因子。
[Objective and background] Bone defect which were caused by various types of congenital or acquired reasons is a common disease in plastic surgery. The rehabilitation of maxillary defects has been a difficult problem in clinical. The current and new treatment of this disease is constructing tissue engineered bone in vitro.Bone marrow Mesenchymal stem cells have the potential of multiline differentiation and are the early development of the mesoderm cells. They can not only differentiate into mesoderm from the same Mesenchymal cells, but also break mesoderm boundaries, differentiate into mesodermal tissue, such as fat cells, bone cells, cartilage cells, cardiac cells, nerve cells, muscle cells, tendon cells and astrocytes, etc. Currently, we have make great progress in the study that induce pure BMSCs to osteoblastic differentiation.However, this way exist some problems, such as a long cycle into bone, low efficiency to formation bone, cells easy to aging and other shortcomings.
     Researchers found VECs have the ability of secreting bone morphogenetic protein, stimulating osteoblasts and their precursor cells to secrete vascular endothelial growth factor when it promotes osteoblast differentiation, and the vascular endothelial growth factor play a very important role in the process of angiogenesis and the formation of vascular. It can promote endothelial cells proliferation and angiogenesis. These studies have shown that endothelial cells can support bone marrow Mesenchymal stem cells to change into bone. However, there is still lack of research from the level of genes in vascular endothelial cells of bone marrow mesenchymal stem cells into osteoblasts differentiation with specific gene signaling mechanism.
     Our research silented hUVECs'BMP-2genes expression with RNAi technology.We used the normal hUVECs、hUVECs with BMP-2gene silented and hBMSCs constructing co-cultue system,Then we analysis influence of each part in training system hUVECs hBMSCs Bmi-1and Runx2genes expression with fluorescence quantitative PCR technology;we confirmed the influence of the hUVECs to hBMSCs in proliferation and bone induction mechanism promotion; discusseed the hUVECs' BMP-2factors on hBMSCs Bmi-1and Runx2genes expression;clear BMP-2is hUVECs regulation hBMSCs Bmi-1and the main factors Runx2gene expression; provide the data and the theoretical basis for For hVECs and hBMSCs co-culture system ueing in bone tissue engineering seed cells research. This study can provide the data and theoretical basis of aplling hBMSCs and hUVECs to the joint co-culture system in bone tissue engineering seed cells research.
     [Method]1We extracted a volunteer's bone marrow fluid and isolated the bone marrow mononuclear cells by the way of density gradient centrifugation. And we purified the MSCs by its characteristic of adhesion to the plastic bottom. In order to identify the MSCs, We cultured MSCs to passage to the third generation and then we detected CD34, CD29, and CD44's surface antigen expression by flow cytometry.
     2. The hUVECs which were ordered were cultured in vitro, were identified by immunohistochemical staining method. Cells were cultured to the third generation,then the expression of BMP-2protein was verifid in4th、6th、8th、10th day by western blot method.
     3. We design four BMP-2gene interfering sequences and decorate it into plasmid Using the method of optimized liposome,we transfect cells with preconstructed interference gene sequence.Then we observed the effect of transfection by fluorescence microscope, detected the expression of BMP-2protein by western blot method, and identied RNA silent effect of hUVECs cells'BMP-2.
     4. The co-culture of the third generation hMSCs and HUVECs was established in the rate of1:1, and DMEM with10percent FBS were used as the medium of the co-culture system. The co-culture of the third generation hMSCs and HUVECs with RNAi treatment was established in the rate of1:1, and DMEM with10percent FBS were used as the medium of the co-culture RNAi system. The separate cultured hBMSCs and hUVECs as a negative control group.We observed the morphological changes by phase contrast microscope in4th、6th、8th,10th day, and counted the number of each hBMSCs group by count plate. We make a statistical analysis about the test value with software SPSS17.0.
     5. Alkaline phosphatase and osteocalin were detected in hBMSCs group, co-culture group and co-culture rnai group at4th、6th、8th、10th day. And we make a statistical analysis about the test value with software SPSS17.0.
     6.The expression of Bmp-2were detected in hUVECs group, co-culture group and co-culture rnai group at4th、6th、8th、10th day by western blot method.4The expression of Bmil and Runx2gene were detected in hBMSCs group, co-culture group and co-culture rnai group at4th、6th、8th、10th day by fluorescence quantitative PCR method. And we make a statistical analysis about the test value with software SPSS17.0.
     [Result] l.We make an analysis and identification on third-generation hMSCs's cell phenotype By flow cytometry, the expression of CD34is negative and the expression of CD29、 CD44are positive; We can get higher purity hBMSCs by the way of Ficoll density gradient centrifugation, which is used to isolate and purify hBMSCs.
     2.The hBMSCs,which are cultured with FBS, are elongated spindle and small. The Primary generation cells grow into groups at4to5days. The third generation of bone marrow Mesenchymal stem cells forms a single, and into the spindle, vortex-like distribution, there is no cell overlap. The hBMSCs grow in logarithmic at4-6days, and into platform at8-10days. HUVECs grow as monolayer, polygonal shape, cobblestone-like arrangement. The hBMSCs have clear boundary and rich cell slurry,nuclei were round or oval. Occasionally.they show dual-core and confluent at5th. From first generation to fourth generation, the hBMSCs grow faster,2-3days can be passage.
     3. The target cells is affirmed as hUVECs by Immunohistochemical staining.Protein test shows they can normally express BMP-2protein.
     4.The cells BMP-2protein expression is decreased obviously after no.2plasmid transfected. The design of the shRNA interference plasmid is effective to silence hUVECs cells BMP-2protein expression. The best tranfection conditions is3ug Plasmid, l0ul liposomes and tranfect6hours, the efficiency is about60%
     5.The form change results of hBMSCs in Culture system are shown that the hBMSCs in co-culture group has a certain osteoblast differentiation performance at Each time point, The co-culture rnai group showed weaker osteoblast differentiation performance,there was not a obviously osteoblast differentiation performance in hBMSCs group.
     6.The number of hBMSCs in each group gradually increased with time, and the co-culture group's cell number was the highest at all time; the co-culture rnai group was lower than co-culture group;the hBMSCs group was lowest.The comparisons between all groups were statistically significant(P<0.01).
     7. Western-blot test shows that Bmp-2expression of hUVECs in the co-culture group was higher than its'in the hUVECs group.
     8. The amount of alkaline phosphatase in co-culture group and co-culture RNAi group gradually increased with time, The amount of alkaline phosphatase in hBMSCs group had a small changes at each time point。 The co-culture group's ALP was the highest at each time point。; the co-culture rnai group was lower than co-culture group;the hBMSCs group was lowest.The comparisons between all groups were statistically significant(P<0.01).
     9.The amount of osteocalcin in co-culture group and co-culture RNAi group gradually increased with time, The amount of alkaline phosphatase in hBMSCs group had a small changes at each time point。 The co-culture group's osteocalcin was the highest at each time point。; the co-culture rnai group was lower than co-culture group;the hBMSCs group was lowest.The comparisons between all groups were statistically significant(P<0.01).
     10.The expression of Bmi-1gene in co-culture group and co-culture RNAi group gradually increased with time, The expression of Bmi-1gene in hBMSCs group had a small changes at each time point。 The expression of Bmi-1gene in co-culture group was the highest at each time point。; the co-culture rnai group was lower than co-culture group; the hBMSCs group was lowest.The comparisons between the hBMSCs group and other groups were statistically significant(P<0.01), but The comparison between the co-culture group and co-culture RNAi group was not statistically significant(P>0.05).
     11.The expression of Runx-2gene in co-culture group and co-culture RNAi group gradually increased with time, The expression of Runx-2gene in hBMSCs group had a small changes at each time point。The expression of Runx-2gene in co-culture group was the highest at each time point。; the co-culture rnai group was lower than co-culture group; the hBMSCs group was lowest.The comparisons between the all groups and other groups were statistically significant(P<0.01).
     [Conclusion]1.We can get higher purity hBMSCs cultured with FBS by the way of Ficoll density gradient centrifugation, which is used to isolate and purify hBMSCs.
     2.hUVECs can normally express BMP-2protein. Four plasmids constructed are all correct and No.2have the best effect.The result is up to standard of RNA interference requirements.
     3.1t shows good compatibility about the co-culture of hBMSCs and hUVECs. hUVECs can promote hBMSCs multiplication.
     4. Alkaline phosphatase and osteocalcin which were secreted by hBMSCs increased in the co-culture system and hBMSCs's Osteogenic Differentiation was speed up.
     5.hUVECs can enhance Bmi-1expression of hBMSCs in co-culture system, this is closely related to hBMSCs multiplication.
     6. Bmi-1gene expression of hBMSCs increased in the co-culture system, but this Signaling pathways is not regulated by Bmp2.
     7.hUVECs can enhance Bmi-1expression of hBMSCs in co-culture system, this is closely related to hBMSCs's Osteogenic Differentiation.
     8.hUVECs can enhance Runx2expression of hBMSCs in co-culture system by Bmp2,this improve that Bmp2/Runx2Signaling pathways exist in co-culture system.but Bmp2is not only one factor in Runx2pathways.
引文
[1]Wollert KC, Drexler H. Clinical applications of stem cells for the heart[J]. Circ Res, 2005,96(2):151-163.
    [2]Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues [J]. Bull Exp Biol Med,2005,139(4):504-509.
    [3]Bosnakovski D, Mizuno M, Kim G, etal. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells[J].Cell Tissue Res2005,319(2):243-253.
    [4]Friedenstein AJ, Gorskaja U, Kalugina NN. Fibroblast Preeursors in normal and irradiated mouse hematopoietic organs[J].Exp Hematol,1976,4:267-274.
    [5]Gronthos S, Franklin DM, Leddy HA, etal. Surface Protein characterization of Human adipose tissue-derived stromal cells[J].J Cell Physiol,2001,189:54-63.
    [6]Igura K, Zhang X, Takahashi K, etal. Isolation and characterization of mesenchymal Progenitor cells from chorionic villi of human placenta[J]. Cytotherapy,2004,6:543-553.
    [7]Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent Mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol[J].Hum Reprod,2004,19:1450-1456.
    [8]Zvaifler NJ, Marinova-Mutafehieva L, Adams G, Edwards CJ, Moss J, Buxger JA,Main I RN.Mesenchymal Precursor cells in the blood of normal individuals[J]. Arthritis Res,2000, 2:477-488
    [9]Anker PS, Noort WA, Scherjon SA,et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential [J]. Haematologica,2003, 88:845-852.
    [10]CamPagnoli C, Roberts IA, Kumar S, et al. Identification of mesenehymal stem/Progenitor cells in human first-trimester fetal blood, liver and bone marrow[J].Blood,2001, 98:2396-2402.
    [11]Chunmeng S, Tianmin C. Effects of plastic-adherent dermal multipotent cells on peripheral blood leukocytes and CFU-GM in rats[J].Transplant Proc,2004,36:1578-81
    [12]Miura M, Gronthos S, Zhao M, et al. SHEED:stem cells from human exfoliated deciduous teeth. Proc Natl Acad sci USA,2003[J],100:5807-5812.
    [13]Fridenstein AJ, Chailakllyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:In vitro cultivation and transplantation in diffusion chambers [J].Cell Tissue Kinet,1987,20:263-72.
    [14]Dazzi F, Ramasamy R, Glennie S, et al. The role of Mesenchymal stem cells in haemopoiesis [J]. Blood Rev,2006,20:161-71.
    [15]Pittenger MF, Mackay AM, Beek SC, et al. Multineage Potential of adult human Mesenchymal stem cells[J].Science,1999,284:143-7.
    [16]Devine SM, Hoffman R. Role of Mesenchymal stem cell in hematopoietic stem cell transplantation [J]. Curr Opin Hematol,2000,7:358-363.
    [17]Jeong JA, Hong SH, Gang EJ, Ahn C, Hwang SH, Yang lH, Han H, Kim H. Differential gene expression Profiling of human umbilical cord blood-derived Mesenchymal stem cells by DNA microarray[J].Stem Cells,2005,23:584-593.
    [18]Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells [J]. Blood,2001,98(9):2615.
    [19]Pittenger MF, Mackay AM, Beek SC, et al. Multilineage potential of adult human Mesenchymal stem cells[J].Science,1999,284(5411):143.
    [20]Bayes-Genis A, Roura S, Soler-Botija C, et al. Identification of cardiomyogenic lineage markers in untreated human bone marrow-derived Mesenchymal stem cells[J].Transplant Proc,2005,37(9):4077.
    [21]Cognet PA, Minguell JJ. Phenotypical and functional Properties of human bone Marrow Mesenchymal progenitor cells[J].J Cell Physiol,1999,181:67-73.
    [22]Pittenger MF, Maekay AM, Beek SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284:143-147.
    [23]BoiretN, RaPatelC, Veyrat-MassonR, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow [J].Exp Hematol, 2005,33:219-225.
    [1].TS L.Thirty years of bone morphogenetic protein research in;Lindholm TS,eds,bone bone morphogenetic protein sex perimental and clinical spects today[J].Tampere,1996:1-2.
    [2].Hogan BL. Bone morphogenetic proteins:multifunctional regulators of vertebrate development[J]. Genes Dev,1996,10:1580-1594.
    [3].Mehler MF, Mabie PC, Zhang D,et al.Bone morphogenetic proteins in the nervous system[J]. Trends Neurosci,1997,20:309-317.
    [4]. Robert F Service. Tissue engineers build new bone. Science,2000; 289:1498c.Eckhard Lammert,Ondine Cleaver,Douglas Melton.Induction of pancreatic differentiation by signals from blood vessels.Science,2001; 294:564.
    [5].Wozney J, Seeherman H. Protein-based tissue engineering in bone and cartilage repair[J]. Curr Opin Biotechnol,2004,15(5):392.
    [6]. Lieberman JR, Daluiski A, Steverson S,et al. The effect of regional gene therapy with bone morphogenetic protein-2-produ-cing bone-marrow cells on the repair of segmental femoral defect in rats. J Bone Joint Surg (Am),1999; 81(7):905.
    [7].Fire A, Xu S, Montgomery M K, et al.Potent and specific genetic interference by double-stranded RNA in eaenorhabditis elegans. Nature,1998,391(6669):806
    [8].TusehlT.Funetionalgenomies:RNAsetsthestandard.Nature,2003,421(6920):220-221.
    [9].Kumar R,Conklin DS,Mittal V.High-throughput selection of effective RNAi probes for gene silencing[J].Genome Res,2003,13(8):2333-2340.
    [10]. Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, PittmanDD, Hankins GR, Helm GA (2003) Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 10:1735-1743
    [11].Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing:which are the important molecules? Injury 38(Suppl 1):S11-S25
    [12].Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35-51
    [13].Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS(1996) Bone morphogenetic protein-1:the type 1 procollagen Cproteinase.Science 271:360-362
    [14].Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E,Stevenson SL, Cox K, Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of bone density.Nat Genet 27:84-88
    [15].Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DD, Diwan AD (2009) BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci 5:192-200
    [16].Sipe JB, Zhang J, Waits C, Skikne B, Garimella R, Anderson HC(2004) Localization of bone morphogenetic proteins (BMPs)-2,-4,and-6 within megakaryocytes and platelets. Bone 35:1316-1322
    [17].Pecina M, Vukicevic S (2007) Biological aspects of bone,cartilage and tendon regeneration. Int Orthop 31:719-720
    [18].刘流,王福科,赵德萍等.联合培养VECs与ADSCs与部分脱蛋白生物骨体外构建组织工程骨的实验研究.中国生物美容,2010年第1期:1-9
    [19]Wynter CV.The dialectics of cancer:A theory of the initiation and development of cancer through errors in RNAi[J].Med Hypotheses,2006,66(3):612-35.
    [20]. Paddison PJ,Caudy AA,Bernstein E,et a 1.Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells[J].Genes Dev,2002,16(8):948-58.
    [21]. Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C.elegans requires the putative transmembrane protein SID-1.Science,2002,295(5564):2456-2459
    [22].ElbashirSM, LendeekelW, TusehiT.RNAinterferenee15mediatedbyZland22-nueleotide RNAs.GenesDeV,2001,15(2):188 - 200
    [23].Duxbury MS,Whang EE RNA nterference a Practical approach J Surg Res,2004,17(2):339-344.
    [24].Bohula EA,Salisbury AJ,Sohail M,et al.The efficacy of small interfering RNAs targeted to the type I insulin-like growth factor re ceptor(IGFIR) is influenced by secondary structure in the IGFIR transcript[J].J Bio Chem,2003,278(18):15991-15997.
    [25].Donze O, Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J].Nucl Acid Res,2002,30(10):46-50.
    [26].Myers JW,Jones JT,Meyer T,et al.Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing[J].Nat Biotech,2003,21(2):324-328.
    [27].Miyagishi M,Taira K.U6 promoter-driven siRNAs with four uridine3'overhangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotech 2002,19(2):497-500.
    [28].CastanottoD,Li H T,Rossi J J et al.Functional nsiRNA expression from transfected PCR products[J].RNA,2002,8(4):1454-1460.
    [29].Wyatt CA,Geoghegan JC,Brinckerhoff CE.Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-MB-231 cells:effects on matrix destruction and tumor growth[J].Cancer Res,2005,65(23):11101-8.
    [30]. Soriano P, Dijkstra J, Legrand A, et al. Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene. Proc Natl Acad Sci U S A.1983;80(23):7128-7131.
    [31]. De Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease:a progress report on siRNA-based therapeutics. Nat Rev Drug Discov.2007;6(6):443-453.
    [32]. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release.2010;142(3):416-421.
    [33]. Barichello JM, Ishida T, Kiwada H. Complexation of siRNA and pDNA with cationic liposomes:the important aspects in lipoplex preparation. Methods Mol Biol.2010;605:461-472.
    [34]. Spagnou S, Miller AD, Keller M. Lipidic carriers of siRNA:differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry.2004;43(42):13348-13356.
    [35]. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin Dl as an antiinflammatory target. Science.2008;319(5863):627-630.
    [1]Duzonghai, Wanghailong, Songjiang,etal. Biological characteristics and application of adult bone marrow mesenchymal stem cells in tissue engineering and regenerative medicine.Journal of Clinical Rehabilitative Tissue Engineering Research [J].2009,13 (33):6553-6554.
    [2]于德水,吕刚,曹阳,等BMSCs移植对大鼠脊髓损伤后VEGF基因和血管生成的影响[J].中国修复重建外科杂志,2011,25(7):837-841.
    [3]Palmieri D,Camardella L,Ulivi V,et al.Trimer carboxyl Propeptide of collagen I produced by Mature osteoblasts ischemotactic for endothelial cells. Biol Chem.2000;275(42):32658-32663.
    [4]Velazquez OC,Snyder R,Liu ZJ,et al. Fibroblast-dependent differentiation of human Microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J,2002; 16(10):1316-1318.
    [5]Xiao C,Zhou H,Liu G,et al.Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration.Biomed Mater.2011;6(1):015013.
    [6]Philippe P,Frank P,Simone MP,et al.Influences of visualization and osteogenic cells on Heterotopic bone formation within a madreporic ceramic in rats. Plast Reconstr Surg.2003;lll(6):1932-1941.
    [7]Emes Y,Aybar B,Vural P,et al.Effects of bone morphogenetic proteins on osteoblast cells: vascular endothelial growth factor, calcium, inorganic phosphate, and nitric oxide levels. Implant Dent.2010;19(5):419-427.
    [8]孔霞,郑飞,郭凌郧,等VEGF通过细胞外信号调节激酶途径促进骨髓源间充质干细胞的增殖[J].中国实验血液学杂志,2010,18(5):1292-1296.
    [9]Saleh FA,Whyte M,Genever PG,et al.Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater.2011;22:242-257.
    [10]Finkenzeller G,Arabatzis G,Geyer M,et al.Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture mode.Tissue Eng.2006; (10):2889-2903.
    [11]Suda T, Takashi N. Osteoblasts are essential for osteoclast formation. Calcif Tissue Int, 1989:44(1):45-47.
    [12]Caplan AI. Cartilage begets bone versus endochondral myelopoiesis. Clin Orthop Relat Res,1990;(261):257-267.
    [13]Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal cells into Porous hydroxyapatite scaffolds for bone tissue engineering.J Bio sci Bioeng 2007;104(3):171-177.
    [14]Liu TM, Martina M, Hutlnaeher DW, et al. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human Mesenchymal stem cells into three Mesenchymal lineages. Stem Cells,2007;25(3):750-760.
    [15]Noel D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and Mesenchymal-stromal cells despite similar differentiation potentials.Exp Cell Res,2008;314(7):1575-1584.
    [16]Yoshimura H, Muneta T, Nimura A, et al.Comparison of rat Mesenchymal stem cells derived from bone marrow, synovium, Periosteum, adipose tissue, and muscle. Cell Tissue Res,2007;327(3):449-462.
    [17]Dimri GP, Martinez JL, Jacobs JJ,et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells[J]. Cancer Res,2002,62(16):4736-4745.
    [18]Itahana K, Zou Y, Itahana Y, etal. Control of the replicative life span of human fibroblasts by p16 and the poly comb protein Bmi-1 [J].Mol Cell Biol,2003,23(1):389-401.
    [19]Bracken AP, Dietrich N, Pasini D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions [J]. Genes Dev,2006,20(9):1123-1136.
    [20]Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells[J]. Nature,2003,423(6937):302-305.
    [21]Dhawan S. Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arflocus to control pancreatic beta-cell proliferation [J]. Genes Dev,2009,23(8):906-911.
    [22]Moon JH, Yoon BS, Kim B, et al. Induction of neural stem celllike cells (NSCLCs) from mouse astrocytes by Bmil [J]. Biochem Biophys Res Commun,2008,371(2) 267-272.
    [23]王芳,王旸等,Bmi-1基因对于人胚骨髓间充质干细胞增生和衰老的作用,J,首都医科大学学报,2012,32(1),60-66
    [24]Nakauchi H, Oguro H, Negishi M, et al. Poly comb gene product Bmi-1 regulates stem cell self-renewal [J]. Ernst Schering Res Found Workshop,2005,54(1):85-100
    [25]STOCK M, OTTO F.Control of RUNX2 isoform expression:The role of promoters and enhancers[J].J Cell Biochem,2005,95(3):506-517.
    [26]ENOMOTO H, FURU ICH I T, ZANMA A, et al.RUNX2 deficiency in chondrocytes causes adipogenic changes in vitro [J].J Cell Sci,2004,117 (Pt 3):41724251.
    [27]TERRY A, KILBEY A, VAILLANT F, et al. Conservation and expression of an alternative 3 exon of RUNX2 encoding a novel proline-rich C-terminal domain[J].Gene,2004,336 (1): 115-125.
    [28]KOMORI T. Regulation of skeletal development by the RUNX family of transcription factors[J].J Cell Biochem,2005,95(3):445-453.
    [29]LIUW, TOYOSAWA S, FURUICHIT, et al. Over expression of CBFαl in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures [J].J Cell Bio, 2001,155 (1):157-166.
    [30]Alliston T, Choy L, Ducy P, et al. TGF2beta2induced repres2 sion of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibit s osteoblast differentiation. EMBO J,2001,20:225422272.
    [31]Tsuji K, Noda M. Transient suppression of core2binding factor alpha 1 expression by basic fibroblast growt h factor in rat osteo2 blast21ike osteosarcoma ROS17/218 cells. J Bone Miner Metab,2001,19:2132219.
    [32]Gilbert L, He X, Farmer P, et al. Expression of t he osteoblast differentiation factor RUNX2 (Cbfal/AML3/Pebp2alpha A) is inhibited by tumor necrosis facter alpha. J Biol Chem,2002,277:269522701.
    [33]Yoshida K, Oida H, Kobayashi T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA,2002, 99:45802 4585.
    [34]Dang ZC, van Bezooijen RL, Karperien M, et al. Exposure of KS483 cells to est rogen enhances osteogenesis and inhibit s adi2 pogenesis. J Bone Miner Res,2002, 17:3942405.
    [35]Plant A, Samuels A, Perry MJ, et al. Est rogen22induced oste2 ogenesis in mice is associated wit h t he appearance of Cbfa12 expressing bone marrow cells. J Cell Biochem, 2002,84:2852294.
    [36]Jimenez MJ, Balbin M, Alvarez J, et al. A regulatory cascade involving retinoic acid, Cbfal, and mat rix metalloproteinase is coupled to the development of a process of perichondrial inva2sion and osteogenic differentiation during bone formation. J Cell Biol, 2001,155:133321344.
    [37]Lynne CJ,David SH. Osteonecrosis:etiology, diagnosis, and t reatment Rheumatology,2004,16:4432449.
    [1]Friedenstein AJ, Gorskaja U, Kalugina NN. Fibroblast Preeursors in normal and irradiated mouse hematopoietic organs[J].Exp Hematol,1976,4:267-274.
    [2]Gronthos S, Franklin DM, Leddy HA, etal. Surface Protein characterization of Human adipose tissue-derived stromal cells[J].J Cell Physiol,2001,189:54-63.
    [3]Igura K, Zhang X, Takahashi K, etal. Isolation and characterization of mesenchymal Progenitor cells from chorionic villi of human placenta[J]. Cytotherapy,2004,6:543-553.
    [4]Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent Mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol[J].Hum Reprod,2004,19:1450-1456.
    [5]Zvaifler NJ, Marinova-Mutafehieva L, Adams G, Edwards CJ, Moss J, Buxger JA,Main I RN.Mesenchymal Precursor cells in the blood of normal individuals[J].Arthritis Res,2000, 2:477-488
    [6]Anker PS, Noort WA, Scherjon SA,et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential[J]. Haematologica,2003, 88:845-852.
    [7]CamPagnoli C, Roberts IA, Kumar S, et al. Identification of mesenehymal stem/Progenitor cells in human first-trimester fetal blood, liver and bone marrow[J].Blood,2001, 98:2396-2402.
    [8]Chunmeng S, Tianmin C. Effects of plastic-adherent dermal multipotent cells on peripheral blood leukocytes and CFU-GM in rats[J].Transplant Proc,2004,36:1578-81
    [9]Miura M, Gronthos S, Zhao M, et al. SHEED:stem cells from human exfoliated deciduous teeth. Proc Natl Acad sci USA,2003[J],100:5807-5812.
    [10]Fridenstein AJ, Chailakllyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:In vitro cultivation and transplantation in diffusion chambers [J].Cell Tissue Kinet,1987,20:263-72.
    [11]Dazzi F, Ramasamy R, Glennie S, et al. The role of Mesenchymal stem cells in haemopoiesis [J]. Blood Rev,2006,20:161-71.
    [12]Pittenger MF, Mackay AM, Beek SC, et al. Multineage Potential of adult human Mesenchymal stem cells[J].Science,1999,284:143-7.
    [13]Devine SM, Hoffman R. Role of Mesenchymal stem cell in hematopoietic stem cell transplantation [J]. Curr Opin Hematol,2000,7:358-363.
    [14]Jeong JA, Hong SH, Gang EJ, Ahn C, Hwang SH, Yang IH, Han H, Kim H. Differential gene expression Profiling of human umbilical cord blood-derived Mesenchymal stem cells by DNA microarray[J].Stem Cells,2005,23:584-593.
    [15]Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells [J]. Blood,2001,98(9):2615.
    [16]Pittenger MF, Mackay AM, Beek SC, et al. Multilineage potential of adult human Mesenchymal stem cells[J].Science,1999,284(5411):143.
    [17]Bayes-Genis A, Roura S, Soler-Botija C, et al. Identification of cardiomyogenic lineage markers in untreated human bone marrow-derived Mesenchymal stem cells[J].Transplant Proc,2005,37(9):4077.
    [18]Cognet PA, Minguell JJ. Phenotypical and functional Properties of human bone Marrow Mesenchymal progenitor cells[J].J Cell Physiol,1999,181:67-73.
    [19]Pittenger MF, Maekay AM, Beek SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284:143-147.
    [20]Duzonghai, Wanghailong, Songjiang,etal. Biological characteristics and application of adult bone marrow mesenchymal stem cells in tissue engineering and regenerative medicine.Journal of Clinical Rehabilitative Tissue Engineering Research [J].2009,13 (33):6553-6554.
    [21]Suda T, Takashi N. Osteoblasts are essential for osteoclast formation. Calcif Tissue Int, 1989:44(1):45-47.
    [22]Caplan AI. Cartilage begets bone versus endochondral myelopoiesis. Clin Orthop Relat Res, 1990;(261):257-267.
    [23]Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal cells into Porous hydroxyapatite scaffolds for bone tissue engineering J Bio sci Bioeng,2007;104(3):171-177.
    [24]Liu TM, Martina M, Hutlnaeher DW, et al. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human Mesenchymal stem cells into three Mesenchymal lineages. Stem Cells,2007;25(3):750-760.
    [25]Noel D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and Mesenchymal-stromal cells despite similar differentiation potentials.Exp Cell Res,2008;314(7):1575-1584.
    [26]Yoshimura H, Muneta T, Nimura A, et al.Comparison of rat Mesenchymal stem cells derived from bone marrow, synovium, Periosteum, adipose tissue, and muscle. Cell Tissue Res,2007;327(3):449-462.
    [27]Dimri GP, Martinez JL, Jacobs JJ,et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells[J]. Cancer Res,2002,62(16):4736-4745.
    [28]Itahana K, Zou Y, Itahana Y, etal. Control of the replicative life span of human fibroblasts by p16 and the poly comb protein Bmi-1[J].Mol Cell Biol,2003,23(1):389-401.
    [29]Bracken AP, Dietrich N, Pasini D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions [J]. Genes Dev,2006,20(9):1123-1136.
    [30]Park IK, Qian D, KielM , et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells [J]. Nature,2003,423(6937):302-305.
    [31]Dhawan S, Tschen SI. Bhushan A. Bmi-1 regulates the Ink4a/Arflocus to control pancreatic beta-cell proliferation [J]. Genes Dev,2009,23(8):906-911.
    [32]Moon JH, Yoon BS, Kim B, et al. Induction of neural stem celllike cells (NSCLCs) from mouse astrocytes by Bmil [J]. Biochem Biophys Res Commun,2008,371(2) 267-272.
    [33]王芳,王旸等,Bmi-1基因对于人胚骨髓间充质干细胞增生和衰老的作用,J,首都医科大学学报,2012,32(1),60-66
    [34]Nakauchi H, Oguro H, Negishi M, et al. Polycomb gene product Bmi-1 regulates stem cell self-renewal [J]. Ernst Schering Res Found Workshop,2005,54(1):85-100
    [35]STOCK M, OTTO F.Control of RUNX2 isoform expression:The role of promoters and enhancers[J].J Cell Biochem,2005,95(3):506-517.
    [36]ENOMOTO H, FURU ICH I T, ZANMA A, et al.RUNX2 deficiency in chondrocytes causes adipogenic changes in vitro [J].J Cell Sci,2004,117 (Pt 3):41724251.
    [37]TERRY A, KILBEY A, VAILLANT F, et al. Conservation and expression of an alternative 3 exon of RUNX2 encoding a novel proline-rich C-terminal domain [J]. Gene,2004,336 (1): 115-125.
    [38]KOMORI T. Regulation of skeletal development by the RUNX family of transcription factors[J].J Cell Biochem,2005,95(3):445-453.
    [39]LIUW, TOYOSAWA S, FURUICHIT, et al. Over expression of CBFal in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures [J].J Cell Bio, 2001,155(1):157-166.
    [40]Alliston T, Choy L, Ducy P, et al. TGF2beta2induced repres2 sion of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibit s osteoblast differentiation. EMBO J,2001,20:225422272.
    [41]Tsuji K, Noda M. Transient suppression of core2binding factor alpha I expression by basic fibroblast growt h factor in rat osteo2 blast21ike osteosarcoma ROS17/218 cells. J Bone Miner Metab,2001,19:2132219.
    [42]Gilbert L, He X, Farmer P, et al. Expression of t he osteoblast differentiation factor RUNX2 (Cbfal/AML3/Pebp2alpha A) is inhibited by tumor necrosis facter alpha. J Biol Chem,2002,277:269522701.
    [43]Yoshida K, Oida H, Kobayashi T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA,2002, 99:45802 4585.
    [44]Dang ZC, van Bezooijen RL, Karperien M, et al. Exposure of KS483 cells to est rogen enhances osteogenesis and inhibit s adi2 pogenesis. J Bone Miner Res,2002, 17:3942405.
    [45]Plant A, Samuels A, Perry MJ, et al. Est rogen22induced oste2 ogenesis in mice is associated wit h t he appearance of Cbfal 2 expressing bone marrow cells. J Cell Biochem, 2002,84:2852294.
    [46]Jimenez MJ, Balbin M, Alvarez J, et al. A regulatory cascade involving retinoic acid, Cbfal, and mat rix metalloproteinase is coupled to the development of a process of perichondrial inva2sion and osteogenic differentiation during bone formation. J Cell Biol, 2001,155:133321344.
    [47]Lynne CJ,David SH. Osteonecrosis:etiology, diagnosis, and t reatment Rheumatology,2004,16:4432449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700