草酸盐高效降解菌的筛选及其酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草酸盐降解菌及其降解酶的研究具有很多潜在的应用价值。一方面可用于致病真菌Sclerotinia sclerotiorum所引起的重要经济作物菌核病的防治,及抗病性转基因植物的生产:另一方面,草酸盐降解酶被用于诊断和治疗与草酸盐相关的疾病,如肾结石,以及环境的生物治理。本论文分离筛选出具有较强草酸盐降解能力的新菌,并对该菌降解酶的酶学性质及降解机理进行了研究。
     在酸性介质中草酸能够催化重铬酸钾对次甲基蓝的氧化脱色反应,这种催化效率与草酸浓度呈正相关,据此建立了次甲基蓝-重铬酸钾体系测定草酸的方法。实验证明,在660 nm处不加草酸与加草酸的次甲基蓝-重铬酸钾体系反应后的吸光度差值△A在0~80μg/mL范围内与草酸浓度呈线性关系,线性方程为:△A=0.0984ρ_(草酸)-0.0044,相关系数为0.9986。反应的最适条件为3.752×10~(-5)mol/L次甲基蓝、0.12mol/L H_2SO_4和2×10~(-3)mol/L K_2Cr_2O_7。
     以草酸盐为唯一碳源和能源,从土壤中分离筛选获得一株能够降解草酸及其盐类的细菌,命名为OXJ-11。该菌在形态培养基形成的菌落为乳白色,圆形;革兰氏阴性染色为阴性杆菌;经电镜观察,为端生双鞭毛。接触酶阳性:不还原硝酸盐。能够在温度25℃-35℃范围内和pH6.0-10.0范围内好氧生长。根据其形态特征、生理生化特征及16SrRNA序列同源性分型,OXJ-11为Pandoraea属的一株新菌。这种菌能够合成草酸盐降解酶。OXJ-11产酶的最适发酵培养基配方为:0.5%草酸钠,0.3%酵母浸粉,0.05%MgSO_4·7H_2O,最适温度为30℃,pH为6.0-7.0。
     Pandoraea sp.OXJ-11的草酸盐降解酶为底物草酸盐诱导酶。以次甲基蓝-重铬酸钾氧化还原法测定反应体系草酸盐的减少量,建立了草酸盐降解酶的酶促反应体系。该酶为胞壁酶,超声破碎的条件为:输出功率200w-300w,超声破碎0.5s、间歇5s,破碎总时间7min。草酸盐降解酶的最适初始底物浓度为0.7mg/mL;最适反应温度为30℃;30℃下保温酶活力较稳定;酶反应的最适pH范围较宽为5.5-8.0;粗酶液在pH7.0-8.0范围内保温比较稳定;不同浓度的Fe~(2+)和Cr~(3+)对酶均有抑制作用;SDS对酶有很强的抑制作用;10mmol/L的Mg~(2+)对酶有一定的激活作用;NaCl对酶活力有较大的影响,0.15mol/L NaCl可使酶活力下降约50%,浓度达到0.3mol/L时酶活力完全丧失。
     草酸盐降解酶的酶解产物之一为二氧化碳,当反应体系中含有阳离子时,二氧化碳会与阳离子反应生成碳酸盐。而过氧化氢不是酶反应产物。甲酸盐为酶解反应的另一产物,但由于OXJ-11菌中含有甲酸盐脱氢酶,因此,甲酸盐被进一步降解生成二氧化碳。OXJ-11菌的草酸盐降解酶所催化的反应,必须在有氧条件下才能进行。草酸和琥珀酸为草酸盐降解酶的可替换底物。ATP和ADP对草酸钠降解酶活性均有不同程度的抑制作用。
Oxalate-degrading strains and oxalate-degrading enzymes have a number of potential applications, including the control of sclerotinia stem rot in economically important plants caused by fungus Sclerotinia sclerotiorum, and in making plants resistant to the white mold disease by oxalate-degrading enzyme transgene, including medical diagnosis and treatments for hyperoxaluria and other oxalate-related diseases, bioremediation of the environment. The paper is to isolate the bacteria that can degrade oxalate, study degrading enzyme characteristics and the degrading mechanism.
     A method for the determination of oxalic acid with methylene blue - dichromate system had been developed. It was based on the catalytic effect of oxalic acid on the oxidation of methylene blue by dichromate in acidic media. The absorbance of methylene blue at the maximum wavelength of 660 nm was recorded at fixed reaction times. The absorbance differences (△A ) of the methylene blue - dichromate system with and without oxalic acid were linearly correlated with the oxalic acid concentration. The linear range of the calibration graph for oxalic acid was 0 - 80μg/mL with a correlation coefficient of 0.9986. The optimum concentrations for methylene blue, H_2SO_4 and K_2Cr_2O_7 were 3.752×10~(-5) mol/L, 0.12 mol/L and 2 mmol/L, respectively. The developed method was simple, sensitive and inexpensive.
     One new strain designated as OXJ-11 was isolated from soil samples, which could grow in the medium with oxalate as the sole carbon and energy source. The bacteria colonies on plate appeared milky, circular and the isolate OXJ-11 was Gram-negative straight rod. It occured singly and was motile by means of a double polar flagellum. Catalase was positive and nitrate was not reduced. It growed aerobically at 25℃-30℃and pH 6.0 - 10.0, respectively. The polyphasic taxonomic data along with 16S rRNA sequence comparison demonstrated that the isolate OXJ-11 should belong to the genus Pandoraea and represented a new member in this family. The optimal fermentation medium composition was 0.5% sodium oxalate, 0.3% yeast extract powder, 0.05% MgSO_4·7H_2O. And the optimal temperature and pH for the bacterium's enzyme production were 30℃and pH 6.0-7.0.
     Pandoraea sp.OXJ-11 had been shown to produce the degrading enzyme which could be induced by the oxalate in medium. Quantitating the reduction of oxalate by the methylene blue - dichromate system, a method to assay the oxalate-degrading activity was constructed. The key enzyme was cell wall enzyme, the conditions of ultrasonic cell-break were: output power 200w - 300w, ultrasonic time 0.5s、intermission time 5s, total working time 7min. Tests showed that the optimal initial substrate concentration for oxalate-degrading enzyme was 0.7mg/mL, while the optimal temperature and pH was 30℃and 5.5 - 8.0; the enzyme activity was stable below 30℃and 7.0-8.0. The enzyme activity was inhibited by Fe~(2+) , Cr~(3+) and SDS had strong inhibition on it, while 10mmol/L Mg~(2+) could increase the enzyme activity. 0.15mol/L and 0.3mol/L NaCl reduced the enzyme activity by 50% and 100%, respectively.
     An enzymatic hydrolysate of the oxalate-degrading was carbon dioxide, and carbonate was formed by reaction between CO_2 and the cation in the system. Hydrogen peroxide was not the enzymatic hydrolysate. Formate was another enzymatic hydrolysate and it was degraded into carbon dioxide by formate dehydrogenase. Oxalate-degrading enzyme in OXJ-11 required molecular oxygen for catalytic turnover. Oxalate-degrading enzyme could use oxalic acid and succinic acid as exchangeable substrate. Both ATP and ADP could inhibit the enzyme activity.
引文
[1]于炎湖.饲料中草酸盐的危害及其预防.饲料研究,2000,28(8):32-34.
    
    [2] Hodgkinson A. Oxalic acid in Biology and Medicine. London: Academic Pr., 1977.
    
    [3] Graustein W C, Cromack K,Sollins P. Calcium oxalate: occurrence in soils and effect onnutrient and geochemical cycles. Science, 1977,198(4323):1252-1254.
    
    [4] Anand R, Dorrestein P C, Kinsland C et al. Structure of oxalate decarboxylase fromBacillus subtilis at 1.75 A resolution. Biochemistry, 2002, 41(23):7659-7669.
    
    [5] Mehta A, Datta A. Purification, characterization and cDNA cloning of inducible oxalatedecarboxylase from Collybia velutipes. J. Biol. Chem., 1991, 266(35):23548-23553.
    
    [6] Zindler-Frank E. Oxalate biosynthesis in relation to photosynthetic pathway andproductivity: A survey. Z Pflanzenphysiol, 1976, 80(1):1-3.
    
    [7] Franceschi VR. Oxalic acid metabolism and calcium oxalate formation in Lemna minorL. Plant Cell Environment, 1987, 10(10):397-406.
    
    [8]俞乐,彭新湘,杨崇等.反相高效液相色谱法测定植物组织及根分泌物中草酸.分析化学,2002,30(9):1119-1122.
    
    [9]刘拥海,彭新湘,俞乐.荞麦与大豆叶片中草酸含量差异及其可能的原因.植物生理与分子生物学学报,2004,30(2):201-208.
    
    [10] Ensafi A, Abbasi S, Rezaei B. Kinetic spectrophometric method for the determination of oxalicacid by its catalytic effect on the oxidation of safranine by dichromate. Spectrochimica Acta, Part A 2001,57:833-1838.
    
    [11]徐锐,彭新湘.草酸在提高大豆磷吸收利用及抗铝性中的作用[J].西北植物学报,2002,22(2):291-295.
    
    [12] Milardovic S, Grabaric Z. Rapid determination of oxalate by an amperonetric oxalate oxidase-based electrode. Electroanalysis 2000,13:1051-1058.
    
    [13]张锦鹏,彭新湘,李明启.草酸对黄瓜根中铁还原的促进作用.植物生理学报,2000,26(4):311-316.
    
    [14] Peng X X, Zhang J P, Li M Q. Reduction of ferric oxalate by cucumber leaves. Acta Phytophysiol Sin, 2001, 27(6):505-508.
    
    [15] Bruggemann W,Maas Kantel K,Moogp R. Iron uptake by leaf mesophyll cell:the role of the plasma membrane-bound ferric2chelate reductase. Planta, 1993, 190(3):151-155.
    
    [16]张宗申,彭新湘,姜子德,等.非生物诱抗剂草酸对黄瓜叶片中过氧化物酶的系统诱导作用.植物??病理学报,1998,28(1):145-150.
    
    [17] Ma J F, Zheng S J, Matsumoto H. Detoxifying aluminumwith buckwheat. Nature, 1997,390(6660): 590 -592.
    
    [18] Peng X X, Yu L, Yang C et al. Genotypic difference in Al resistance and oxalate exudationof buckwheat. J. Plant Nutrition, 2003, 26(9):1767-1777.
    
    [19] Yang Y Y, Jung J Y, Song W Y et al. Identification of rice varieties with high toleranceor sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol,2000,124 (3):1019-1026.
    
    [20] Violante A, Gianfreda L. Competition in adsorportion between phosphate and oxalateon an aluminum hydroxide montmorillonite complex. Soil Sci Soc AmJ, 1993,57(5):1235-1241.
    
    [21]徐锐,彭新湘.草酸在提高大豆磷吸收利用及抗铝性中的作用.西北植物学报,2002,22(2):291-295.
    
    [22] Margo P, Margiano P, Di Lenna P. O-Diphenol oxidase inhibition-an additional role foroxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and Sclerotiumrolfsii. Physiol Mol Plant Pathol, 1993 43: 415-422.
    
    [23] Conn K L, Tewari J P, Awasthi R P. A disease assessment key for alternaria black spotin rapeseed and mustard. Can Plant Dis Surv, 1990, 70(1):19-22.
    
    [24] Godoy G S, Dickman J R , Dam R. Use of mutants to demonstrate the role of oxalic acidin pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol PlantPathol, 1990,37:179-191.
    
    [25] Stephen G C. Oxalic Acid, a pathogenicity factor for Sclerotinia sclerotiorum,suppresses the oxidative burst of the host plant. Plant Cell,2000,12(12):2191-2200.
    
    [26] Dutton M V, Evans C S. Oxalate producion by fungi:Its role in pathogenicity and ecologyin the soil environment. Can. Microbiol, 1996, 42(9):881-895.
    
    [27] Noyes R D, Hancock JG. Role of oxalic acid in the sclerotinia wilt of sunflower. PhysiolPlant Pathol, 1981,18:123-132.
    
    [28] Mayer A M, Harel E. Polyphenol oxidase in plants. Phytochem, 1979, 18(9):193-215.
    
    [29] Dickman M B, Mitra A. Arabidopsis-thaliana as a model for studying sclerotinia--sclerotiorum oathogeneses. Physiol Mol Plant Pathol, 1992,41:255-263.
    
    [30] Spencer P S, Ludolph A, Dwivedi M P et al. Lathyrism: evidence for role of theneutoexcitatory aminoacid BOAA. Lancet,1986,11(2):1066-1067.
    
    [31] Sidhu H, Hoppe B, Hesse A et al. Absence of oxalobacter formigenes in cystic fibrosis??patients: A risk factor for hyperoxaluria. Lancet, 1998, 352(9138):1026-1029.
    
    [32] Williams H E, Wandzilak T R. Oxalate synthesis, transport and the hyperoxaluricsyndromes. Urol, 1989,141(3):742-747.
    
    [33] Strzelecki T, Menon M. The uptake of oxalate by rat liver and kidney mitochondria.J. Biol Chem, 1986, 261(26): 12197-12201.
    
    [34]杨巍译.含水溶液中草酸钙垢的抑制方法.水处理信息报,2000,92:18-19.
    
    [35] Kher K K, Makker S P. Clinical pediatric nephrology-2th ed. McGraw-Hill Inc. 1992:699-701.
    
    [36] Sigmon D, Kumar S, Carpenter B et al. Oxalate transport in renal tubular cells fromnormal and stone-forming animals. Am J. Kindney Dis, 1991, 17(4):376-378.
    
    [37]张培萍,刘丽华,徐学明.红外光谱法测定结石成分及临床意义.岩矿测试,1996,15(1):157-160.
    
    [38]刘国栋,刘晓.泌尿系结石的饮食治疗.临床泌尿外科杂志,1999,14(7):277-279.
    
    [49] Brinkley L, McGurie J, Gregory J et al. Bioavailability of oxalate in foods. Urol,1987,17:534.
    
    [40] Reginato A J, Kurinik B R. Calcium oxalate and other crystals associated with kidneydiseases and arthritis. Ssmin Arthritis Rheum, 1989(4), 18:198.
    
    [41] Homer H T, Wagner B L. in: S. R. Khan (Ed). Calcium Oxalate in Biological Systems. CRCPress:Boca Raton FL, 1995, 53-71.
    
    [42] Strasser H, Burgstaller W, Schinner F A. High-yield production of oxalic acid for metalleaching processes by Aspergillus niger. FEMS Microbiol. Lett, 1994,119 (3) :365-370.
    
    [43] Tsao G T. Production of oxalic acid by a strain of Agaricus campestris. Appl. Microbiol.,1963b, 11 (3) : 255.
    
    [44] Shimada M, Akamtsu Y, Tokimatsu T et al. Possible biochemical roles of oxalic acidas a low molecular weight compound involved in brown-rot and white-rot wood decays.J. Biotechnol, 1997,53(1):103-113.
    
    [45] Tsunoda K, NagashimaK, Takahashi M. High tolerance of wood-destroying brown-rot fungito copper-based fungicides. Mater Org, 1997, 31(1): 31-41.
    
    [46] Ma JF, Zheng S J, Matsumoto H. Mosaicism in Turner' s syndrome. Nature, 1997, 390(6657):569-570.
    
    [47] Trinchant J C. Guerin V, Rigaud J. Acetylene reduction by symbiosomes and free bacteroidsfrom broad bean (vicia faba L). nodules (role of oxalate). Plant Physiol, 1994, 105(3): 555-561.
    [48] Duchesne L C, Ellis BE, Peterson R L. Disease suppression by the ectomycorrhizal fungus Paxillus involutus: contribution of oxalic acid. Can. J. Bot.,1989, 67(9):2726-2730.
    
    [49] 蔡磊, 刘亚君, 张克勤.菌根行为及应用. 山东林业科技, 2001, 135 (4) :52-54.
    
    [50] Cromack K Jr,Sollins P, Graustein W C et al. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum.Soil Biol. Biochem, 1979,11(5):463-468.
    
    [51] Griffiths R P, Baham J E, Caldwell B A. Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol. Biochem, 1994, 26(3):331-337.
    [52] Jones D, Mchardy W J, Wilson M J et al. Scanning electron microscopy of calium oxalate on mantle hyphae of hybrid larch roots from a farm foresty experimental site. Micron Microsc.Acta, 1992,23(3) :315-317.
    [53] Malajczuk N, Cromack K Jr. Accumulation of calcium oxalate in the mantle of ectomycorrhizal roots of Pinus radiata and Eucalyptus marginata. New Phytol.,1982, 92(3):527-531.
    [54] Snetselaar K M, Whitney K D. Fungal calcium oxalate in mycorrhizae of Monotroa uniflora. Can. J. Bot., 1990, 68(3):533-543.
    [55] Fox T R , Comerford N B, McFee W W. Kinetics of phosphorus release form spodosols : Effects of oxalate and formate. J.Soil Sci. Soc. Am, 1990, 54(3):1441-1447.
    [56] Sutter H P, Jones G E B. Interactions between copper and wood degradaing fungi. Rec. Annu. Conv. Br. Wood Preserv., 1985, Assoc. :29-41.
    [57] Sutter H P, Jones G E B. ,Walchli O. The mechanism of copper tolerance in Poria placenta(Fr. )Cke. and Poria vaillantii(Pers.)Fr. Mater. Org., 1983,18(4):241-262.
    
    [58] Murphy R J. Levy J F. Production of copper oxalate by some copper tolerant fungi. Trans. Br. Mycol. Soc, 1983, 81 (1):165-168.
    [59] Levin L, Forchiassin F. Ligninolytic enzymes of the white rot basidomycete Trametes trogii. Acta Biotechnol, 2001, 21(2):179-186.
    [60] Ming Tien, T Kent Kirk. Lignin degrading enzyme from the hymenomycete Phanetochaete Chrysosporium Burds. Science, 1983, 221(4607):661-665.
    [61] Cowling E B. Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials. Biotechnol. Bioeng.Symp, 1975,5:163-181.
    [62] Evans C S, Gallagher I M, Atkey P T et al. Localisation of degradative enzymes in white-rot decay of lignocellulose. Biodegradation, 1991, 2(4):93-106.
    [63] Flournoy D S, Kirk K T, Highley T L. Wood decay by brown-rot fungi:changes in pore structure and cell wall volume. Holzforschung, 1991, 45(5):383-388.
    
    [64] Dutton M V, Evans C S, Atkey P T et al. Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol., 1993, 39(2):5-10.
    [65] Green F, Larsen M J, Winandy J E et al. Role of oxalic acid in incipient brown-rot decay. Mater. Org. ,1991, 26 (3): 191-213.
    [66] Schmidt C J, Whitten B K, Nicholas D D. A proposed role for oxalic acid in non-enzymatic wood decay by brown-rot fungi. Proc. Annu. Meet. Am. Wood Pres. Assoc, 1981,77:157-164.
    [67] Kirk T k, Ibach R, Mozuch M D et al. Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung, 1991, 45(4):239-244.
    [68] Agosin E, Jarpa S, Rojas E et al. Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyne Microb. Technol., 1989, 11(4):511-517.
    [69] Johansson M. Pectic enzyme activity of spruce and pine strains of Heterobasidion annosum. Bref. Physiol. Mol. Plant Pathol, 1988, 33(3):333-349.
    [70] Koenigs J W. Hydrogen peroxide and iron:a proposed system for decomposition of weed by brown-rot basidiomycetes. Wood Fiber, 1974a, 6(1):66-80.
    [71] Akamatsu Y, Ohta A, Takahashi M et al. Enzymatic formation of oxalate from oxaloacetate with cell-free extracts of the brown-rot fungus Tyromyces paluystris in relation to the biodegradation of cellulose. Mokuzai Gakkaishi, 1991, 37(6):575-577.
    [72] Bech-Anderson J. Production, function and neutralization of oxalic acid produced by the dry rot fungus and other brown rot fungi. International Research Group on Wood Preservation(Doc). Denmark: Centre of Biotechnologyh Technology Institute,1987.
    [73] Shimada M, Ma D B, Akamatsu Y et al. A propose role of oxalic acid in wood decay systems of wood-rotting basidiomycegtes. FEMS Microbiol. Rev, 1994, 13(2-3):285-295.
    [74] Espejo E, Agosin E.Production and degradation of oxalic acid by brown rot fungi. Appl Environ. Microbiol, 1991, 57(7):1980-1986.
    [75] Akamatsu Y,Ma D B, Higuchi T et al. A novel enzymatic decarboxylation of oxalic acid by the ligin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Lett, 1990, 269(1):261-263.
    [76] Ma D, Hattori T, Akamatsu Y .Kinetic analysis of the noncompetitive inhibition of the ligninperoxidase-catalyzed reaction by oxalic acid. Biosci. Biotech. Biochem,1992, 56 (9):1378-1381.
    [77] Popp J L, Kalyanaraman B, Kirk T K. Lignin peroxidase oxidation of Mn~(2+) in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry, 1990,29(13):10475 -10480.
    
    [78] Goodwin D C, Barr D P, Aust S D et al. The role of oxalate in lignin peroxidase-catalyzed reduction:protection from compound III accumulation. Arch. Biochem. Biophys, 1994, 315(2): 267-272.
    
    [79] Kuan R C, Tien M. Stimulation of Mn peroxidase activity:a possible role for oxalate in ligin biodegradation. Proc. Natl. Acad. Sci. U. S. A. 1993, 90:1242-1246.
    
    [80] Warishi H, Khadar V, Gold M H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J.Biol. Chem,1992, 267(33):23688-23695.
    [81] Khindaria A, Grover T A, Aust S D. Oxlatate-dependant reductive activity of mangamese peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys, 1994, 314(2):301-306.
    [82] Allison M J, Daniel S L, Cornick N A. in: S. R. Khan (Ed.). Calcium Oxalate in Biological Systems. CRC Press: Boca Raton FL, 1995:131 - 168.
    [83] Chandra T S,Shethna Y I. Microbial metabolism of oxalate and one carbon compounds. J. Indian Inst. Sci, 1977A,59(4):26-52.
    [84] Tamer A U. Oksalati karbon ve enerji kaynagi olarak kullanan bakteriler uzerinde taksonomik ve f izyolojik bir arastirma: Ph. D. Thesis. Turkey: Ege Oniversitesi, Izmir, 1982.
    [85] Chandra T S, Shethna Y I. Oxalate and formate metabolism in Alcaligenes and Pseudomonas species. Antonie van Leeuwenhoek, 1975,41(4):465-477.
    [86] Chandra T S, Shethna Y,I. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellas. J. Bacteriol, 1977, 131(3):389-398.
    [87] Cornick N A, Allison M J. Assimilation of oxalate, acetate and CO2 by Oxalobacter formigenes. Can. J. Microbiol, 1996, 42(2):1081-1086.
    [88] Tamer A U, Aragno M, Sahin N. Isolation and characterization of a new type of aerobic, oxalic acid utilizing bacteria, and proposal of Oxalicibacterium flavum gen. nov., sp. nov., Syst. Appl. Microbiol, 2002, 25(3):513-519.
    [89] Zaitsev G M, Tsitko I V, Rainey F A et al. alkinoja-Salonen. New aerobic ammoniumdependent obligately oxalotrophic bacteria: Description of Ammoniphilus oxalaticus gen. nov., sp. nov.and Ammoniphilus oxalivorans gen. nov. sp. nov., Int. J. Syst. Bacteriol, 1998, 48(4):151-163.
    [90] Dimroth P, Schink B. Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch. Microbiol,1998,170(6):69-77.
    [91] Allison M J, Dawson K A, Mayberry W R et al. Oxalobacter formigenes gen. nov., sp. nov. : Oxalate-degrading anaerobes that inhabit the gastrointestinal tract, Arch. Microbiol, 1985, 141:1-7.
    [92] Dawson K A, Allison M J, Hartman P A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol, 1980, 40(2): 833 - 839.
    [93] Dehning I, Schink B. Two new species of anaerobic oxalatefermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov. from sediment samples. Arch. Microbiol,1989,153(1):79-84.
    [94] Hokama S, Honma Y, Toma C et al. Oxalate-degrading Enterococcus faecal is. Microbiol. Immunol,2000, 44(6):235-240.
    [95] Ito H, Miura N, Masai M et al. Reduction of oxalate content of foods by the oxalate degrading bacterium, Eubacterium lentum WHY-1. Int. J. Urol, 1996, 3(1):31 - 34.
    [96] Kageyama A, Benno Y, Nakase T. Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov.. Int. J. Syst. Bacteriol, 1999, 49(4):1725 - 1732.
    [97] Sidhu H, Hoppe B, Hesse A et al. Absence of Oxalobacter formigenes in cystic fibrosis patiens: A risk factor of hyperoxaluria. Lancet, 1998, 352(9133):1026-1029.
    [98] Smith R L, Oremland R S. Anaerobic oxalate degradation: Widespread natural occurrence in aquatic sediments. Appl. Environ. Microbiol, 1983, 46(1):106-113.
    [99] Postgate J R. in: Krieg N R, Holt J G (Eds.). Bergey's Manual of Systematic Bacteriology. Baltimore:Lippincott-Williams & Wilkins, 1984,1:666-672.
    [100] Smith R L, Strohmaier F E, Oremland R S. Isolation of anaerobic oxalate-degrading bacteria from freshwater lake sediments. Arch. Microbiol, 1985, 141(2):8~13.
    [101] Euzeby J P. Grammatical or orthographical changes prohibited by Rule 61 [Web page], December 26, 2000.
    [102] Daniel S L, Drake H L. Oxalate- and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol, 1993, 59(9):3062-3069.
    [103] Seifritz C, Frostl J M, Drake H L et al. Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica. FEMS Microbiol. Lett, 1999, 170(1):399-405.
    [104] Jenni B, Realini M, AragnoM et al. Taxonomy of non-H2-lithotrophic, oxalate-oxidizing bacteria related to Alcaligenes eutrophus. Syst.Appl. Microbiol, 1988,10:126-133.
    [105] Green P N. in: Balows A, Truper H G, Dworkin M et al (Eds.). The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, and Edition. Springer-Verlag, Berlin/Heidelberg/New York: 1992: pp. 2342-2349.
    [106] Sahin N, Gokler I, Tamer A U. Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria. J. Microbiol, 2002, 40(2):109-118.
    [107] Tamer A U, Aragno M, Jenni B. Genomic relation among nine strains of oxalate utilizing bacteria. Turk J Biol, 1993,17:115 - 119.
    [108] Knutson D M , Hutchins A S, Cromack K. The association of calcium oxalate utilizing streptomyces with conifer ectomycorrhizae. Antonie van Leeuwenhoek, 1980, 46(2):611-619.
    [109] Robbel L, Kutzner H J. Streptomyces taxonomy: Utilization of organic acids as an aid in the identification of species. Naturwissenschaften, 1973, 60(8):351-352.
    [110] Jenni B, Aragno M, Wiegel K W. Numerical analysis and DNA - DNA hybridization studies on Xanthobacter and emendation of Xanthobacter flavus.Syst. Appl. Microbiol,1987,9: 247-253.
    [111] Kelly D P, McDonald I R, Wood A P. Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the proteobacteria, Int. J. Syst. vol. Microbiol, 2000, 50:1797 - 1802.
    [112] Meyer O, Stackebrandt E, Auling G. Reclassification of ubiquinone Q-10 containing carboxydotrophic bacteria:Transfer of "[Pseudomonas] carboxydovorans" OM5T to Oligotropha, gen. nov., as Oligotropha carboxidovorans, comb. nov., transfer of " [Alcaligenes] carboxydus" DSM 1086T to Carbophilus, gen. nov., as Carbophilus carboxydus, comb. nov., transfer of " [Pseudomonas] compransoris" DSM 1231T to Zavarzina, gen. nov., as Zavarzinia compransoris, comb. nov. and amended description of new genera. Syst. Appl. Microbiol, 1993, 16:390-395.
    [113] Sahin N, Isik K, Tamer A U et al. Taxonomic position of "Pseudomonas oxalaticus" strainOxlT (DSM 1105T) (Khambata and Bhat, 1953) and its description in the Genus Ralstonia as Ralstonia oxalatica comb. nov.,Syst. Appl. Microbiol,2000,23(3):206-209.
    [114] Chandra T S, Shethna Y I. Isolation and characterisation of some new oxalate-decomposing bacteria. Antonie van Leeuwenhoek, 1975, 41(4):101 - 111.
    [115] Wayne L G, Kubica G P. in: Krieg N R, Holt J G. (Eds.). Bergey's Manual of Systematic Bacteriology. Lippincott - Williams &Wilkins, Baltimore, 1986, 2: 1436-1457.
    [116] Morris S J, Allen M F. Oxalate-metabolizing microorganisms in sagebrush steppe soil. Biol. Fertil. Soils,1994,18(3):255-259.
    [117] Romanovskaya V A, Stolyar S M, Malashenko Yu R et al. The ways of plant colonization by Methylobacterium strains and properties of these bacteria. Mikrobiologiya,2001, 70 (2) :221-227.
    [118] Jones D L. Organic acids in the rhizosphere-a critical review. Plant Soil, 1998, 205 (1) : 25-44.
    
    [119] Lopez-Bucio J, Nieto-Jacobo M F, Ramirez-Rodriguez V et al. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci, 2000,160 (1) :1-13.
    
    [120] 刘从力.草酸检测方法的研究进展.海洋水产研究, 2004, 25 (4) : 93-96.
    
    [121] Hassouna, M . E. M. Determination of oxalate based on its enhancing effect on the oxidation of Mn(II)by periodate. Talanta, 2002,56 (1) : 193-202.
    
    [122] Nozal De 1. M. J. Determination of oxalate. sulfate and nitrate in honey and honeydew by ion-chromatography. J. Chromatography A, 2000,881 (1-2) :629-638.
    [123]Federica Federici, Beatrice Vitali, Roberto Gotti et al. Characterization and Heterologous Expression of the Oxalyl Coenzyme A Decarboxylase Gene from Bifidobacterium lactis. Applied and Environmental Microbiology, 2004, 70(9): 5066-5073.
    
    [124] Albrecht Hesse, Daniel Bongartz, Herbert Heynck et al. Measurement of Urinary Oxalic Acid:A Comparison of Five Methods. Clinical Biochemistry, 1996, 29(5):467~472.
    [125] Chu SY. Automated Analysis of Urinary Oxalate Using BMC Oxalate Decarboxylase-Based Assay Kit. Clinical Biochemistry, 1997, 30(6):374.
    [126]Peck A. Method and Kit For Detection of Oxalate. Biotechnology Advances, 1997,15(3) :739.
    [127]Thakur M, Goyal L. Pundir C S. Discrete analysis of plasma oxalate with alkylamine glass bound sorghum oxalate oxidase and horse-radish peroxidese. Biochem. Biophys. Methods, 2000,44(1): 77-88.
    [128] Elizabeth F P et al. Bi-enzymatic amperometric biosensor for oxalate. Sensors and Actuators, 2001B,72 (2): 80-85.
    [129] Dunwell M, Khuri S, Gane P J. Microbial Relatives of the Seed Storage Proteins of Higher Plants: Conservation of Structure and Diversification of Function during Evolution of the Cupin Superfamily. Microbiol. Mol. Biol. Rev, 2000, 64(3):153-179.
    [130] Reinhardt L A, Svedruzic D, Chang C H et al. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. Am. Chem. Soc,2003,125(5): 1244-1252.
    
    [131] Quayle J R. Carbon assimilation by Pseudomonas oxalaticus (OX1). Reactions of oxalyl-coenzyme A. Biochem J,1963, 87(2):368 - 373.
    [132] Hodgkinson A. Oxalic Acid in Biology and Medicine.Academic Press, London:1977.
    [133]Koyama H. Purification and characterization of oxalate oxidase from Pseudomonas sp. OX-53. Agric. Biol. Chem, 1988, 52(3):743-748.
    [134] Aguilar C, Urzua U, Koenig C et al. Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies. Arch. Biochem. Biophys, 1999, 366(1):275 - 282.
    [135] Kohlbecker G, Butz M. Direct spectrophotometric determination of serum and urinary. Oxalate with oxalate oxidase. Clin Chem. Clin Biochem, 1981,19:1103-1106.
    [136] Thompson C, Dunwell J M, Johnstone C E et al. Degradation of oxalic acid by trans-genic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85(1-3):169-172.
    [137] Kotsira V P, Clonis Y D. Oxalate oxidase from barley roots: purification to homogeneity and study of some molecular, catalytic and binding properties. Arch Biochem Biophys, 1997, 340(2):239-249.
    [138]Requena L, Bornemann S. Barley (Hordeum vulare)oxalate oxidase is a anganese-containing enzyme.Biochem, 1999, 343(1):185-190.
    [139] Goyal L, Thakur M, Pundir C S . Purification and properties of a membrane bound oxalate oxidase from Amaranthus leaves. Plant Sci,1999,142(2):21 - 28.
    [140] Varalakshmi P, Richardson K E. Studies on oxalate oxidase from beet stems upon immobilization on concanavalin A. Biochem Int,1992,26:153-162.
    [141] Satyapal, Pundir C S. Purification and properties of an oxalate oxidase from leaves of grain sorghum hybrid CSH-5. Biochim Biophys Acta, 1993, 1161(2-3):1-5.
    [142] Vuletic M, Sukalovic V H-T. Characterization of cell wall oxalate oxidase from maize roots. Plant Science, 2000, 157(2):257 - 263.
    [143] Raghavan K G, Devasagayam T P A. Oxalate oxidase from banana peel for determination of urinary oxalate. Clin. Chem, 1985, 31(3):649.
    [144] Wojtaszek P.Oxidative burst: an early plant response to pathogen infection. Biochem, 1997, 322(2):681-692.
    [145] Dumas B, Freyssinet G, Pallet K E. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol,1995, 107 (4):1091-1096.
    [146] Lane B G, Dunwell J M, Ray J H et al. Germin, a protein marker of early plant development, is an oxalate oxidase.Biol. Chem, 1993, 268(17):12239 - 12242.
    [147] Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots. Plant Physiol, 1996, 110(3) :971 -977.
    [148] Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol. Biol, 1999, 39(3):539 - 549.
    [149] Zhou Z, Zhang Z, Gregersen P L et al. Molecular haracterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol, 1998, 117(2) :33-41.
    [150] Lane B G, Cuming A C, Frgeau J et al. Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated in cell walls. Eur. Biochem, 1992, 209(3):961 -969.
    [151] Olson P D, Varner J E. Hydrogen peroxide and lignifi-cation. Plant, 1993, 4(5): 887 - 892.
    [152] Lane B G. Oxalate, germin and the extracelluar matrix of higher plants. FASEB, 1994, 8(3):294-301
    [153] Suguira M, Yamamura H, Hirano K et al. Purification and properties of oxalate oxidase from barley seedling. Chem. Pharm. Bull, 1979, 27(9) :2003 - 2007.
    [154] Satyapal, Pundir C S. Purification and properties of an oxalate oxidase from leaves of grain sorghum hybrid CSH-5. Biochem. Biophys. Acta, 1993,1161:1- 5.
    [155] Leek A E, Berry H, Vernon S B. Oxidation of formate and oxalate in peroxisomal preparations from leaves of spinach beet (Beta 6ulgaris L.). Biochem. Biophys. Acta, 1972, 286(2) :299-311.
    [156] Obsanzky D M, Richardson K E. Quantification of urinary oxalate with oxalate oxidase from beet stems. Clin Chem, 1983, 29(10):1815 - 1819.
    [157] McCubbin W C, Kay C M, Kennedy T D et al. Germin:physicochemical properties of the glycoprotein which signals onset of growth in the germinating wheat embryo. Biochem Cell Biol, 1987, 65:1039- 1048.
    [158] Woo E J, Dunwell J M, Goodenough P W et al. Barley oxalate oxidase is a hexameric protein related to seed storage proteins:evidence from X-ray crystallography. FEBS Lett, 1998, 437 (3): 87-90.
    [159] Hamel F, Breton C, Houde M. Isolation and characterization of wheat aluminium-regulated genes:possible involvement of aluminum as a pathogenesis response licitor. Planta, 1998, 205(4):531-538.
    [160] Zhou F, Zhang Z, Gregersen P L et al. Thordal-Christensen. Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus. Plant Physiology, 1998,117(1): 33-41.
    [161] Le Deunff E, Davoine C, Le Dantec C et al. Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. Plant, 2004, 38(2):421-431.
    [162] Khuri S, Bakker F T, Dunwell J M. Phylogeny, function and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol, 2001,18(4):593-605.
    [163] Whittaker M M, Whittaker J W. Characterization of recombinant barley oxalate oxidase expressed by Pichiapastoris. J Biol Inorg Chem, 2002, 7: 136-145.
    [164] Gane P J, Dunwell J M, Warwicker J. Homology modelling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. Mol. Evol, 1998,46(4): 488-493.
    [165] Magro P, Marciano P, Lenna P D. Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS. Microbiol Lett, 1988, 49:49 - 52.
    [166] Kathiara M, Wood D A, Evans C S. Detection and partial characterization of oxalate decarboxylase from Agaricus bisporus. Mycol Res, 2000,104(3):345 - 350.
    [167] Dutton M V, Kathiara M, Gallagher I M et al. Purification and characterisation of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiology Letters, 1994, 116(3):321 -326. [168] Makela M, Galkin S, Hatakka A et al. Production of organic acids and oxalate decar--boxylase in lignin-degrading white-rot fungi. Enzyme Microb. Technol., 2002, 30(2) :542-549. [l69]Mehta A, Datta A. Purification, characterization and cDNA cloning of inducible oxalate decarboxylase from Collybia velutipes. J. Biol. Chem., 1991, 266(4): 23548-23553,.
    [170] Azam M, Kesarwani M, Chakraborty S et al. Cloning and characterization of 5'-flanking region of oxalate decarboxylase gene from Flammulina velutipes. Biochem J. 2002, 367(3): 67-75.
    [171] Azam M, Kesarwani M, Natarajan K et al. A secretion signal is present in the Collybia velutipes oxalate decarboxylase. Biochem. Biophys. Res. Commn. 2001, 289(1): 807-812.
    [172] Kesarwani M, Azam M, Natarajan K et al. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem., 2000, 275(10): 7230-7238.
    [173] Scelonge C J, Bidney D L. Gene encoding oxalate decarboxylase from Aspergillus phoenices. US Patent 6, 303, 846 B1. 1998.
    [174] Tanner A, Bornemann S. Bacillus subtilis YvrK Is an Acid-Induced Oxalate Decarboxylase. J. Bacteriol., 2000, 182(21): 5271-5273.
    [175] Cotter P D, Hill C. Surviving the acid test: the Gram positive response to low pH. Microbiol. Mol. Biol. Rev. 2003, 67(1): 429-453.
    [176] Tanner A, Bowater L, Fairhurst S A et al. Oxalate decarboxylase requires manganese. and dioxygen for activity: Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem., 2001, 276(12):43627-43634.
    [177] Costa T, Steil L, Martins L O et al. Assembly of an oxalate decarboxylase produced under sK control into the Bacillus subtilis spore coat. J. Bacteriol, 2004,186(21): 1462-1474.
    [178] S. Chakraborty, N. Chakraborty, D. Jain et al. Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Protein Sci., September 1, 2002; 11(9): 2138 - 2147.
    [179] Zaitsev G M, Govorukhina N I, Laskovneva O V et al. Properties of the new obligately oxalotrophic bacterium Bacillus oxalophilus. Microbiology, 1993,62:378-382.
    [180] Baetz A L, Allison M J. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol., 1989 171(8): 2605-2608.
    [181] Baetz A L, Allison M J. Localization of oxalyl-coenzyme A. decarboxylase, and formyl-coenzyme A transferase in Oxalobacter formigenes. cells. Syst. Appl. Microbiol, 1992. 15:167-171.
    [182] Baetz A L, Allison M J. Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes. J. Bacteriol., 1990, 172(7): 3537-3540.
    [183] Cornick N A, Allison M J. Anabolic incorporation of oxalate by Oxalobacter. formigenes. Appl. Environ. Microbiol. 1996. 62(6):3011-3013.
    [184] Maloney P C, Anantharam V, Allison M J. Substrate stabilization of OxlT, the anion exchange protein of Oxalobacter formigenes. J Biol Chem. 1992, 267(15): 10531-10536.
    [185] Kuhner P A, Hartman, Allison M J. Generation of a proton motive force by the anaerobic oxalate-degrading bacterium Oxalobacter formigenes. Appl. Environ. Microbiol, 1996, 62(6): 2494 - 2500.
    [186] Heider J. A new family of CoA-transferases. FEBS Lett., 2001,509(27): 345-349
    [187] Jonsson S, Ricagno S, Lindqvist Y et al. Kinetic and mechanistic characterization of the formyl-CoA transferase from Oxalobacter formigenes. J. Biol. Chem., 2004, 279(37): 36003-36012.
    
    
    [188] Ricagno S, Jonsson S, Richards N G J et al. The crystal structure of formyl-CoA transferase reveals a CoA binding site at the interface of an interlocked dimer. EMBO J., 2003, 22(3): 3210-3219.
    
    [189] YAN Z Y, XING G M, L I Z X. Quantitative Determination of Oxalic Acid Using Victoria Blue. Microchim Acta, 2004, 144(1-3): 199-205.
    
    [190]赵斌,何绍江.微生物学高等实验.北京:科学出版社,2002.
    
    [191] Suslow T V, SchrothMN, IsakaM. Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 1982, 72(2):917-918.
    
    [192]东秀珠,蔡妙英.常见细菌系统鉴定系统手册.北京:科学出版社,2001.
    
    [193] Hort J G. Krieg N R, Sneath P H et al. Bergey' s Manual of Determinative Bacteriology(9th edition). Baltimaore: The Williams and Wilkins Co, 1994,150.
    
    [194] Murray R G E, Doetsch R N, Robinow C F. Determinative and cytological light microscopy.In Methods for General and Molecular Bacteriology, ed. Gerhardt P.Murray R G E, Wood W Aet al. Washington DC: American Society for Microbiology, 1994: 21-41.
    
    [195] Smibert R M, Krieg N. R. Phenotypic characterization. In Methods for General andMolecular Bacteriology ed. Gerhardt P, Murray R G E, Wood W A et al. Washington DC: AmericanSociety for Microbiology, 1994:607 - 654.
    
    [196] Ausubel F M, Brent R, Kingston E et al. Current Protocols in Molecular Biology. NewYork: John Wiley & Sons. 1987.
    
    [197] Li X, Zhang D, Chen F Ma et al. Klebsiella singaporensis sp. nov., a novelisomaltulose-producing bacterium. Int J Syst Evol Microbiol, 2004, 54(6):2131 - 2136.
    
    [198] Altschul S F, Madden T L, Schaffer A A et al. Gapped BLAST and PSI-BLAST: a newgeneration of protein database search programs. Nucleic Acids Res, 1997, 25(17): 3389 - 3402.
    
    [199] Cole J R, Chai B, Marsh T L et al. The Ribosomal Database Project (RDP-II): previewinga new autoaligner that allows regular updates and the new prokaryotic taxonomy. NucleicAcids Res, 2003, 31 (1): 442-443.
    
    [200] Thompson J D, Gibson T J, Plewniak F et al. The CLUSTAL-X windows interface: flexiblestrategies for multiple sequence alignment aided by quality analysis tools. Nucleic AcidsRes, 1997, 25(17): 4876-4882.
    
    [201] Felsenstein J. PHYLIP - Phytogeny Inference Package (Version 3.57c). Seattle:University of Washington, 1995.
    
    [202] Coenye T, Falsen E, Hoste B et al. Description of Pandoraea gen. nov. with Pandoraeaapista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraeasputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol, 2000,50 (2): 887-899.
    
    [203] Daneshvar M I, Hollis D G, Steigerwalt A G et al. Assignment of CDC weak oxidizergroup 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea??genomospecies. J Clin Microbiol, 2001, 39 (5): 1819-1826.
    
    1 Z.-X.Jin, C,Wang. W.Dong and X.Li. Isolation and some properties of newly isolated oxalate-degrading Pandoraea sp. OXJ-11 from soil. Journal of Applied Microbiology, 2007, 103(4): 1066-1073. The Society for Applied Microbiology. ISSN 1364-5072, IDS Number:215QY.(SCI,本博士学位论文第二章,已发表)
    
    2 Zhao-Xia Jin, Changhai Wang, Wenfu Chen, Xiaoyi Chen, and Xianzhen Li. Induction of oxalate decarboxylase by oxalate in a newly isolated Pandoraea sp OXJ-11 and its ability to protect against Sclerotinia sclertiorum infection. Canadian Journal of Microbiology, 2007,53(12):1316-1322.NRC Canada.ISSN 1480-3257,doi:1139/W07-103(SCI,本博士学位论文第二章、第三章,己发表)
    
    3梁磊,谭贺,金朝霞,李宪臻.分析测试学报,2006,25(1):98-101.中国广州分析测试中心中国分析测试协会.ISSN 1004-4957,01-0098-04.(核心,本博士学位论文第一章第一章,已发表)。
    
    4金朝霞,王长海,李宪臻.草酸盐降解酶的研究进展.微生物学通报.中国微生物学会和中国科学院微生物研究所.ISSN 0253-2654.(核心,本博士学位论文引言,已投稿)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700