中温α-淀粉酶编码基因剂量对其生产水平提升的重要作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中温α-淀粉酶是重要的工业酶制剂之一,广泛用于淀粉糖生产、味精生产、啤酒和酒精生产中辅料的加工、织物退浆、以及其它酿造、有机酸和医药行业。目前,国内主要的工业生产菌株为BF-7658和Bacillus sp. M13。近20年来,我国学者一直未对中温α-淀粉酶生产菌株进行有效的遗传改良,使得其发酵生成水平落后于世界先进水平。因此,通过现代育种技术对中温α-淀粉酶工业生产菌株进行遗传改良,将有助于提升我国中温α-淀粉酶的发酵生产水平,实现其高效低成本制备。
     本课题以中温α-淀粉酶工业生产菌株B. amyloliquefaciens CICIM B2125为研究对象,纯化了该菌株产生的中温α-淀粉酶并进行了酶学性质研究;克隆了中温α-淀粉酶全长基因并验证了该基因的功能;对中温α-淀粉酶基因进行了定点突变,改变了中温α-淀粉酶的酶学性质;建立了中温α-淀粉酶工业生产菌株的遗传转化方法,并通过提高中温α-淀粉酶基因拷贝数显著增强了α-淀粉酶的分泌。
     1.纯化了B. amyloliquefaciens CICIM 2125产生的α-淀粉酶(BAA)并首次确定了纯酶的酶学性质。通过纯化,从发酵液中获得了电泳纯的BAA。酶回收率为20.1%,纯化倍数为26.9。对纯化的BAA的酶学性质进行了测定,该酶的分子量为58 kDa,最适反应温度为55℃,最适反应pH为6.0-9.0。pH稳定范围为7.0-10.0。添加10 mmoL/L Ca2+,可以使酶在55℃下保温1 h,还残留85%左右的活力。无Ca2+情况下,该酶在55℃下保温15 min,丧失活力。Ca2+,Mn2+,Co2+可以显著增强酶的活力。薄层层析分析表明:酶的淀粉水解产物主要为糊精和一些寡糖。
     2.克隆了BAA全长编码基因amyQ。该基因由启动子区(220 bp),结构基因(1544 bp)及终止序列(320 bp)构成。在启动子区有3个碱基序列发生了改变,分别位于-49位的碱基发生改变(C→T),-79和-80位的碱基由(TA→AT),结构基因与已报到的BAA编码基因(GenBank登录号:J01542)一致。
     3.克隆的amyQ基因在大肠杆菌和枯草芽孢杆菌中获得活性表达。将无信号肽的BAA结构基因(amyQ')克隆入表达载体pET-28a,构建了重组载体pET-28a-amyQ',通过IPTG诱导,在大肠杆菌中表达,重组菌的α-淀粉酶活力为2.8 U/mL培养液。重组酶的相对分子量为58 kDa。将携带有全长基因amyQ的重组载体pLY-amyQ,转化B. subtilis 1A510后,实现amyQ的分泌表达,所表达的重组BAA经纯化后,分析其酶学性质,发现其与天然BAA在酶学性质上没有明显差异。
     4.进一步选取了BAA中Ca2+结合位点上的3个氨基酸残基(231,233,438)进行定点突变,对突变体的酶学性质进行比较。与天然BAA相比,突变体D233N的比酶活下降了的84.8%;Km上升了55.6%,Kcat值下降了85%;热稳定性明显下降,最适反应温度范围也减小了10℃;最适反应pH下降了0.5个单位,pH稳定范围下降了3-4个单位。与对照相比,突变体D231N和D438G的比酶活分别下降了6.3%和3.5%,Km和Kcat值与对照相比没有显著变化;最适反应温度,热稳定性及最适反应pH及pH稳定性变化不显著。
     5.成功构建了重组BAA工业生产菌株,产酶水平显著提升。建立了BAA生产菌株优化的电转化方法,转化效率可达4.8×102。将pLY-amyQ转化B. amyloliquefaciens CICIM B2125,获得了携带多拷贝BAA编码基因的重组菌。重组菌在无选择压的培养基上传代100代,质粒稳定性保持在80%左右,可以基本满足工业生产对菌株的遗传稳定性的要求。重组菌的BAA分泌能力与出发菌株相比,在摇瓶水平上提高了50%以上,在30吨生产规模提高了30%左右,发酵周期缩短了8-12 h左右。
Mesophilicα-Amylase is one of important industrial enzymes, which has extensive applications in starch processing, brewing, desizing, organic acid and pharmaceutical industries. BF-7658 and Bacillus. sp M13 are the two main mesophilicα-amylase industrial producing strains by far in china. The production ability of the strain was not effectively improved during these twenty years and was very low compared with the most advanced technology in the world. Therefore, it is very important to enhance the secretion ability of the industrial producing strain by genetic improving the strain through modern breeding technology and lower the cost of production.
     The mesophilicα-amylase was purified to homogeneity from theα-amylase industrial producing strain B. amyloliquefaciens CICIM B2125 and the enzyme characterizations were studied in this project. The full length gene encoding forα-amylase was cloned and the function of the gene was validated. More over, the enzyme properties were changed by site-directed mutagenesis. An optimized eletroporation transformation method was developed for B. amyloliquefaciens CICIM B2125. The secretion ability was improved significantly by increasing theα-amylase gene copies of the industrial strain.
     1. Theα-amylase from B. amyloliquefaciens CICIM B2125 (BAA) was purified to homogeneity and the enzyme properties were revealed for the first time. The recover rate of the enzyme was 20.1% and fold of purification was 26.9. The molecular weight of the enzyme was 58 kDa. The optimum temperature and pH were 55℃and 6.0-9.0, respectively. The enzyme was stable at the pH range of 7.0-10.0. It kept stable at 55℃for 1 h in the presence of 10 mmoL/L Ca2+ and remained 85% residue activity. The enzyme activities were significantly activated by Ca2+, Mn2+ and Co2+. The main endo-products to soluble starch were oligosaccharides and dextrin analyzed by thinner layer chromatography.
     2. The full-length gene encoding for mesophilicα-amylase (amyQ) was cloned from B. amyloliquefaciens CICIM B2125. The gene consists of 220 bp of promoter region, 1544 bp of structural gene fragment and 320 bp of terminal sequence. Three bases were altered in the promoter region at the site of -49 (C→T) and -79,-80 (TA→AT), however, the structural gene sequence of amyQ was the same as the amylase gene (GenBank accession No. J01542).
     3. The clonedα-amylase gene was expressed in E. coli and B. subtilis. Theα-amylase gene fragment devoid of signal peptide sequence (amyQ′) was cloned into the plasmid pET-28a. The degenerated plasmid pET28a-amyQ′was introduced into E. coli to expressα-amylase and induced with IPTG. The enzyme activity was 2.8 U/mL in the supernatant of culture medium. The full-length gene (amyQ) was cloned into plasmid pLY121 and the recombinant plasmid pLY-amyQ was transformed into B. subtilis 1A510. Theα-amylase gene was expressed and the recombinant enzyme was purified by two-phase system. The characterizations of the recombinant enzyme were almost same compared with the native enzyme.
     4. Role of the calcium-binding residues Asp231, Asp233 and Asp438 of Bacillus amyloliquefaciensα-amylase (BAA) on the enzyme properties was investigated by site-directed mutagenesis. The calcium-binding residues Asp231, Asp233 and Asp438 were replaced with Asn, Asn and Gly to produce muants D231N, D233N and D438G, respectively. The specific activity for D233N was decreased by 84.8%, while D231N, D438G showed a decrease of 6.3%, 3.5% to that of the wild-type enzyme respectively. No significant changes in the Km value, thermo-stability, optimum temperature and optimum pH were observed in the mutations of D231N and D438G, while substitution of Asp233 with Asn resulted in a dramatic reduction in the value of catalytic efficiency (Kcat/Km) and thermo-stability at 60oC. The ranges of optimum temperature and optimum pH for D233N were also reduced about 10oC and 3~4 units respectively.
     5. The enzyme secretion ability was significantly enhanced by the recombinant strain B. amyloliquefaciens CICIM B2125. An optimized electroporation transformation method was established for B. amyloliquefaciens CICIM B2125. The transformation efficiency was satisfied for genetic manipulating the strain. The recombinant plasmid pLY-amyQ was transformed into B. amyloliquefaciens CICIM B2125. About 80% of the recombinant plasmid pLY-amyQ was kept in B. amyloliquefaciens CICIM B2125 during 100 generation growth in the medium without antibiotic. It could meet the requirement of genetic stability of recombinant strain during industrial production. The secretion ability of the recombinant strain was increased by 50% and 30% in flask and 30 ton fermentor respectively, compared with the parental strain. The process of theα-amylase production was reduced about 8-12 h.
引文
1. Pandey A, Nigam P, Soccol CR, et al. Advances in microbial amylases[J]. Biotechnol Appl Biochem, 2000, 31:135-152
    2. van der Maarel MJ, van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the alpha-amylase family[J]. J Biotechnol, 2002, 94:137-155
    3. Gupta R, Gigras P, Mohapatra H, et al. Microbial alpha-amylases: a biotechnological perspective[J]. Process Biochem, 2003, 38:1599-1616
    4.谷军.淀粉酶的生产与应用[J].生物技术, 1994, 4:1-5
    5. MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes[J]. Biochim Biophys Acta, 2001, 1546:1-20
    6. Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases[J]. Biochim Biophys Acta, 2000, 1543:253-274
    7. Kuriki T, Imanaka T. The concept of the alpha-amylase family: Structural similarity and common catalytic mechanism[J]. J Biosci Bioeng, 1999, 87:557-565
    8. Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability[J]. Plant Mol Biol, 1994, 25:141-157
    9. Swetha S, Dhanya G, Kesavan M, et al.α-Amylases from microbial sources[J]. Food Tech Biotechnol, 2006, 44 173-184
    10. Yabuki M, Ono N, Hoshino K, et al. Rapid induction ofα-amylase by non-growing mycelia of Aspergillus oryzae[J]. Appl Environ Microbiol, 1977, 34:1-6
    11. Domingues C, Peralta R. Production of amylase by soil fungi and partial biochemical characterization of amylase of a selected strain (Aspergillus fumigatus fresenius)[J]. Can J Microbiol, 1993, 39:681-685
    12. Ramachandran N, Skreekantiah K, Murthy V. Studies on the thermophilic amylolytic enzymes of a strain of Aspergillus niger[J]. Starch, 1978, 30:272
    13. Iefuji P, Chino M, Kato M, et al. Raw-starch-digesting and thermostable a-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing[J]. Biochem J, 1996, 318:989-996
    14. Mishra RS, Maheshwari R. Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and response to heat[J]. J Biosci, 1996, 21:653-672
    15. Manning GB, Campbell LL. Thermostableα-amylase of Bacillus stearothermophilus I: Crystallization and some general properties.[J]. J Biol Chem, 1961, 236:2952-2957
    16. Hayashida S, Teramoto Y, Inoue T. Production and characteristics of raw potato starch digesting a-amylase from Bacillus subtilis 65[J]. Appl Environ Microbiol, 1988, 54:1516-1522
    17. Mamo G, Gashe B, Gessesse A. A highly thermostable amylase from a newly isolated thermophillic Bacillus sp.WN11[J]. J Appl Microbiol, 1999, 86:557-560
    18. McMahon H, Kelly CT, Fogarty WM. High maltose producing amylolytic system of a Streptomyces sp.[J]. Biotechnol Lett 1999, 21:23-26
    19. Sardar M, Gupta MN. Alginate beads as an affinity material for alpha amylases[J]. Bioseparation, 1998, 7:159-165
    20. Safarikova M, Roy I, Gupta MN, et al. Magnetic alginate microparticles for purification of alpha-amylases[J]. J Biotechnol, 2003, 105:255-260
    21. Teotia S, Lata R, Khare SK, et al. One-step purification of glucoamylase by affinity precipitation with alginate[J]. J Mol Recognit, 2001, 14:295-299
    22. Rao MD, Ratnam BVV, VenkataRamesh D, et al. Rapid method for the affinity purification of thermostable alpha-amylase from Bacillus licheniformis[J]. World J Microbiol Biotechnol, 2005, 21:371-375
    23. Zhi WB, Deng QY, Song JG, et al. One-step purification of alpha-amylase from the cultivation supernatant of recombinant Bacillus subtilis by high-speed counter-current chromatography with aqueous polymer two-phase systems[J]. J Chromatogr A, 2005, 1070:215-219
    24. Zhi WB, Song JM, Bi JX, et al. Partial purification of alpha-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems[J]. Bioprocess Biosyst Eng, 2004, 27:3-7
    25. Zhi WB, Song JN, Ouyang F, et al. Application of response surface methodology to the modeling of alpha-amylase purification by aqueous two-phase systems[J]. J Biotechnol, 2005, 118:157-165
    26.罗志刚,杨景峰,罗发兴.α-淀粉酶的性质及应用[J].食品研究与开发, 2007, 28:163-167
    27.姜锡瑞.酶制剂应用手册[M].北京:中国轻工出版社,1999. 33-66
    28. Palva I. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis[J]. Gene, 1982, 19:81-87
    29. Palva I, Pettersson RF, Kalkkinen N, et al. Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the alpha-amylase gene from Bacillus amyloliquefaciens[J]. Gene, 1981, 15:43-51
    30. Takkinen K, Pettersson RF, Kalkkinen N, et al. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene[J]. J Biol Chem, 1983, 258:1007-1013
    31. Lehtovaara P, Ulmanen I, Palva I. In vivo transcription initiation and termination sites of an alpha-amylase gene from Bacillus amyloliquefaciens cloned in Bacillus subtilis[J]. Gene, 1984, 30:11-16
    32. Kallio P. The effect of the inverted repeat structure on the production of the cloned Bacillus amyloliquefaciens alpha-amylase[J]. Eur J Biochem, 1986, 158:491-495
    33. Kallio P, Ulmanen I, Palva I. Isolation and characterization of a 2.2-kb operon preceding the alpha-amylase gene of Bacillus amyloliquefaciens[J]. Eur J Biochem, 1986, 158:497-504
    34. Gorozhankina TF, Beburov M, Sorokin AV, et al. Expression of the alpha-amylase gene of Bacillus amyloliquefaciens in Saccharomyces cerevisiae yeasts[J]. Dokl Akad Nauk SSSR, 1985, 285:717-720
    35. Ruohonen L, Hackman P, Lehtovaara P, et al. Efficient secretion of Bacillus amyloliquefaciens alpha-amylase by its own signal peptide from Saccharomyces cerevisiae host cells[J]. Gene, 1987, 59:161-170
    36. Smith MD, Flickinger JL, Lineberger DW, et al. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum[J]. Appl Environ Microbiol, 1986, 51:634-639
    37. Jones S, Warner PJ. Cloning and expression of alpha-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum[J]. Lett Appl Microbiol, 1990, 11:214-219
    38. Elanskaia IV, Morzunova IB. Cloning the alpha-amylase gene of Bacillus amyloliquefaciens in cyanobacteria cells[J]. Mol Gen Mikrobiol Virusol, 1989:7-11
    39. Conrad B, Hoang V, Polley A, et al. Hybrid Bacillus amyloliquefaciens X Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants[J]. Eur J Biochem, 1995, 230:481-490
    40.储炬,李友荣.现代生物工艺学[M].上海:华东理工大学出版社,2007. 38-58
    41. Smirnova NA, Sorokin AV, Iomantas Iu V, et al. Mutations in the alpha-amylase gene of Bacillus amyloliquefaciens, leading to a decrease in the temperature of protein inactivation[J]. Mol Biol (Mosk), 1988, 22:1257-1264
    42. Smirnova NA, Sorokin AV, Laptev DA, et al. Two-codon mutagenesis of alpha-amylase gene of Bacillus amyloliquefaciens[J]. Mol Biol (Mosk), 1988, 22:1265-1271
    43. Lee S, Mouri Y, Minoda M, et al. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus alpha-amylase[J]. J Biochem, 2006, 139:1007-1015
    44. Simonen M, Palva I. Protein secretion in Bacillus species[J]. Microbiol Rev, 1993, 57:109-137
    45. Ling Lin F, Zi Rong X, Wei Fen L, et al. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion[J]. Biotechnol Adv, 2007, 25:1-12
    46. Tjalsma H, Antelmann H, Jongbloed JD, et al. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome[J]. Microbiol Mol Biol Rev, 2004, 68:207-233
    47. Diderichsen B, Christiansen L. Cloning of a maltogenic alpha-amylase from Bacillus stearothermophilus[J]. FEMS Microbiol Lett, 1988, 56:53-60.
    48. Vitikainen M, Pummi T, Airaksinen U, et al. Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of alpha-amylase in Bacillus subtilis[J]. J Bacteriol, 2001, 183:1881-1890
    49. Kontinen VP, Sarvas M. The Prsa lipoprotein Is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion[J]. Mol Microbiol, 1993, 8:727-737
    50. Lindholm A, Ellmen U, Tolonen-Martikainen M, et al. Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA[J]. Appl Microbiol Biotechnol, 2006, 73:904-914
    51. Kallio P, Palva A, Pavla I. Enhancement ofα-amylase production by integrating and amplifying theα-amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis[J]. Appl Microbiol Biotechnol, 1987, 27:64-71
    52.牛丹丹,石贵阳,王正祥.通过同源介导α-淀粉酶基因扩增改良地衣芽孢杆菌α-淀粉酶生产菌株[J].生物工程学报, 2009, 25:375-380
    53.姚婷婷,王衍敏,顾建龙,等.携多拷贝glaA的重组黑曲霉过量合成糖化酶的研究[J].生物工程学报, 2006:567-571
    54. Furusato T, Takano J, Jigami Y, et al. Two tandemly located promoters, artificially constructed, are active in a Bacillus subtilis alpha-amylase secretion vector[J]. J Biochem, 1986, 99:1181-1190
    55. Yamagata H, Adachi T, Tsuboi A, et al. Cloning and characterization of the 5' region of the cell wall protein gene operon in Bacillus brevis 47[J]. J Bacteriol, 1987, 169:1239-1245
    56. Vigal T, Gil JA, Daza A, et al. Effects of replacement of promoters and modification of the leader peptide region of the amy gene of Streptomyces griseus on synthesis and secretion of alpha-amylase by Streptomyces lividans[J]. Mol Gen Genet, 1991, 231:88-96
    57. Stephenson K, Harwood CR. Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis[J]. Appl Environ Microbiol, 1998, 64:2875-2881
    58. Stephenson K, Jensen CL, Jorgensen ST, et al. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of alpha-amylase[J]. Lett Appl Microbiol, 2002, 34:394-397
    59. Stephenson K, Jensen CL, Jorgensen ST, et al. The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis[J]. Biochem J, 2000, 350 Pt 1:31-39
    60. Vehmaanpera J, Steinborn G, Hofemeister J. Genetic manipulation of Bacillus amyloliquefaciens[J]. J Biotechnol, 1991, 19:221-240
    61. Vitikainen M, Hyyrylainen HL, Kivimaki A, et al. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation[J]. J Appl Microbiol 2005, 99:363-375
    62. Bolhuis A, Sorokin A, Azevedo V, et al. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled
    53.姚婷婷,王衍敏,顾建龙,等.携多拷贝glaA的重组黑曲霉过量合成糖化酶的研究[J].生物工程学报, 2006:567-571
    54. Furusato T, Takano J, Jigami Y, et al. Two tandemly located promoters, artificially constructed, are active in a Bacillus subtilis alpha-amylase secretion vector[J]. J Biochem, 1986, 99:1181-1190
    55. Yamagata H, Adachi T, Tsuboi A, et al. Cloning and characterization of the 5' region of the cell wall protein gene operon in Bacillus brevis 47[J]. J Bacteriol, 1987, 169:1239-1245
    56. Vigal T, Gil JA, Daza A, et al. Effects of replacement of promoters and modification of the leader peptide region of the amy gene of Streptomyces griseus on synthesis and secretion of alpha-amylase by Streptomyces lividans[J]. Mol Gen Genet, 1991, 231:88-96
    57. Stephenson K, Harwood CR. Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis[J]. Appl Environ Microbiol, 1998, 64:2875-2881
    58. Stephenson K, Jensen CL, Jorgensen ST, et al. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of alpha-amylase[J]. Lett Appl Microbiol, 2002, 34:394-397
    59. Stephenson K, Jensen CL, Jorgensen ST, et al. The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis[J]. Biochem J, 2000, 350 Pt 1:31-39
    60. Vehmaanpera J, Steinborn G, Hofemeister J. Genetic manipulation of Bacillus amyloliquefaciens[J]. J Biotechnol, 1991, 19:221-240
    61. Vitikainen M, Hyyrylainen HL, Kivimaki A, et al. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation[J]. J Appl Microbiol 2005, 99:363-375
    62. Bolhuis A, Sorokin A, Azevedo V, et al. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled
    72.无锡酶制剂厂.枯草杆菌BF-7658α-淀粉酶高产菌株209的选育和投产[J]. 遗传学报, 1976, 9:216-223
    1. Safarikova M, Roy I, Gupta MN, et al. Magnetic alginate microparticles for purification of alpha-amylases[J]. J Biotechnol, 2003, 105:255-260
    2. Sivaramakrishnan S, Gangadharan D, Madhavan,K, et al.α-Amylases from Microbial Sources[J]. Food Tech Biotechnol, 2006, 44 173-184
    3. van der Maarel MJ, van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the alpha-amylase family[J]. J Biotechnol, 2002, 94:137-155
    4. De M, Das KP, Chakrabartty PK. Purification and characterization of alpha-amylase from Bacillus amyloliquefaciens NCIM 2829[J]. Indian J Biochem Biophys, 2005, 42:287-294
    5. Elif SD, Bunzo M, Motoyasu A, et al.α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli[J]. Process Biochem, 2005, 40:2629-2636
    6. Xiao ZZ, Storms R, Tsang A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase abtivities[J]. Anal Biochem, 2006, 351:146-148
    7. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254
    8. Laemmli U. Cleavage of structural proteins during assembly of head of bacteriophage T4.[J]. Nature, 1970, 227:680-685
    9.韦平和主编.生物化学实验与指导[M].北京:中国医药科教出版社,2003
    1. Safarikova M, Roy I, Gupta MN, et al. Magnetic alginate microparticles for purification of alpha-amylases[J]. J Biotechnol, 2003, 105:255-260
    2. Sivaramakrishnan S, Gangadharan D, Madhavan,K, et al.α-Amylases from Microbial Sources[J]. Food Tech Biotechnol, 2006, 44 173-184
    3. van der Maarel MJ, van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the alpha-amylase family[J]. J Biotechnol, 2002, 94:137-155
    4. De M, Das KP, Chakrabartty PK. Purification and characterization of alpha-amylase from Bacillus amyloliquefaciens NCIM 2829[J]. Indian J Biochem Biophys, 2005, 42:287-294
    5. Elif SD, Bunzo M, Motoyasu A, et al.α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli[J]. Process Biochem, 2005, 40:2629-2636
    6. Xiao ZZ, Storms R, Tsang A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase abtivities[J]. Anal Biochem, 2006, 351:146-148
    7. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254
    8. Laemmli U. Cleavage of structural proteins during assembly of head of bacteriophage T4.[J]. Nature, 1970, 227:680-685
    9.韦平和主编.生物化学实验与指导[M].北京:中国医药科教出版社,2003
    1. van der Maarel MJ, van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the alpha-amylase family[J]. J Biotechnol, 2002, 94:137-155
    2. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review[J]. Bioresour Technol, 2003, 89:17-34
    3. Pandey A, Nigam P, Soccol CR, et al. Advances in microbial amylases[J]. Biotechnol Appl Biochem, 2000, 31:135-152
    4. Palva I. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis[J]. Gene, 1982, 19:81-87
    5. Palva I, Pettersson RF, Kalkkinen N, et al. Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the alpha-amylase gene from Bacillus amyloliquefaciens[J]. Gene, 1981, 15:43-51
    6.任立明,林东,林爱星等.芽孢杆菌α-淀粉酶基因的克隆和测序[J].农业生物技术学报, 1999, 7:57-62
    7.惠秀娟,朱晓东.解淀粉芽孢杆菌α-淀粉酶基因的分子克隆及其在大肠杆菌中表达的初步研究[J].辽宁大学学报:自然科学版, 1993, 20:67-75
    8.萨姆布鲁克J,弗里奇EF.分子克隆实验指南第二版[M].北京:科学出版社,1986
    9. MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes[J]. Biochim Biophys Acta, 2001, 1546:1-20
    10. Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis[J]. Proc Natl Acad Sci U S A, 1990, 87:6238-6242
    11. Emori M, Maruo B. Complete nucleotide sequence of an alpha-amylase gene from Bacillus subtilis 2633, an alpha-amylase extrahyperproducing strain[J]. Nucleic Acids Res, 1988, 16:7178
    12.牛丹丹,徐敏,马骏双等.地衣芽孢杆菌α-淀粉酶基因的克隆和及其启动子功能鉴定[J].微生物学报, 2006, 46:576-580
    1.谷军.α-淀粉酶的生产与应用[J].生物技术, 1994, 4:1-5
    2.陈启民,武立红,蒋如璋,等.热稳定α-淀粉酶稳定性工程菌的构建[J].遗传学报, 1993, 20:272-278
    3.王俊英,孔显良,姜丽萍,等.用原生质体融合技术提高α-淀粉酶稳定性[J].微生物学报, 1994, 34:231-235
    4. Palva I. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis[J]. Gene, 1982, 19:81-87
    5.任立明,林东,林爱星,等.芽孢杆菌α-淀粉酶基因的克隆和测序[J].农业生物技术学报, 1999, 7:57-62
    6.惠秀娟,朱晓东.解淀粉芽孢杆菌α-淀粉酶基因的分子克隆及其在大肠杆菌中表达的初步研究[J].辽宁大学学报:自然科学版, 1993, 20:67-75
    7.龙建银,王会信.外源基因在大肠杆菌中表达的研究进展[J].生物化学与生物物理进展, 1997, 24:126-132
    8. Priest FG. Synthesis and secretion of extracellular enzymes by bacilli[J]. Microbiol Sci, 1985, 2:278-282
    9.沈微,王正祥,刘吉泉,等.古细菌Pyrococcus furiosus嗜热α-淀粉酶基因在大肠杆菌中的表达[J].食品与发酵工业, 2003:10-14
    10.萨姆布鲁克J,弗里奇E F.分子克隆实验指南第二版[M].北京:科学出版社,1986
    11. Gryczan TJ, Dubnau D. Construction and properties of chimeric plasmids in Bacillus subtilis.[J]. Proc. Natl. Acad. Sci. USA., 1978, 75:1428-1432
    12.林哲甫,李玉玲,成吕玲,等.枯草杆菌α-淀粉酶蛋白酶在双水相系统中的分配行为[J].中山大学学报(自然科学版), 1990, 29:102-109
    13.沈微,王正祥,唐雪明,等.古细菌Pyrococcus furiosus高嗜热α-淀粉酶基因在大肠杆菌中的分泌表达[J].中国酿造, 2003:12-15
    14.李金霞,蔡恒,路福平,等.地衣芽孢杆菌耐高温α-淀粉酶基因在大肠杆菌中的克隆、表达及其产物的分泌[J].食品与发酵工业, 2004:70-73
    15.蒋若天,宋航,陈松,等.一株产α-高温淀粉酶的地衣芽孢杆菌的分离和筛选[J].工业微生物, 2007, 37:37-41
    1.姜锡瑞.酶制剂应用手册[M].北京:中国轻工出版社,1999. 263-275
    2. Shaw A, Bott R, Day AG. Protein engineering of alpha-amylase for low pH performance[J]. Curr Opin Biotechnol, 1999, 10:349-352
    3. Janecek S, Balaz S. alpha-Amylases and approaches leading to their enhanced stability[J]. FEBS Lett, 1992, 304:1-3
    4. Bessler C, Schmitt J, Maurer KH, et al. Directed evolution of a bacterial alpha-amylase: Toward enhanced pH-performance and higher specific activity[J]. Protein Sci, 2003, 12:2141-2149
    5. Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update[J]. Curr Opin Biotechnol, 2003, 14:438-443
    6. Xu HF, Zhang XE, Zhang YM, et al. Recent advances in in vitro molecular directed evolution[J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Jin Zhan, 2002, 29:518-522
    7. Wong TS, Zhurina D, Schwaneberg U. The diversity challenge in directed protein evolution[J]. Comb Chem High Throughput Screen, 2006, 9:271-288
    8. Sen S, Dasu VV, Mandal B. Developments in directed evolution for improving enzyme functions[J]. Appl Biochem Biotechnol. 2007, 143:212-223
    9.储炬,李友荣.现代生物工艺学(上册)[M].上海:华东理工大学出版社,2007. 67-69
    10. Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases[J]. Biochim Biophys Acta, 2000, 1543:253-274
    11. Janecek S. alpha-Amylase family: molecular biology and evolution[J]. Prog Biophys Mol Biol, 1997, 67:67-97
    12. Pandey A, Nigam P, Soccol CR, et al. Advances in microbial amylases[J]. Biotechnol Appl Biochem, 2000, 31 ( Pt 2):135-152
    13. Declerck N, Machius M, Joyet P, et al. Engineering the thermostability of Bacillus licheniformis alpha-amylase[J]. Biologia, 2002, 57:203-211
    14. MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes[J]. Biochim Biophys Acta, 2001, 1546:1-20
    15. van der Maarel MJ, van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the alpha-amylase family[J]. J Biotechnol, 2002, 94:137-155
    16. Tanaka A, Hoshino E. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics[J]. J Biosci Bioeng, 2003, 96:262-267
    17. Brzozowski AM, Lawson DM, Turkenburg JP, et al. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes[J]. Biochemistry, 2000, 39:9099-9107
    18. Lee S, Mouri Y, Minoda M, et al. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus alpha-amylase[J]. J Biochem, 2006, 139:1007-1015
    19. Dieffenbach CW, Dveksler GS. PCR primer: a laboratory manual 2nd ed[M]. New York:Cold Spring Harbor Laboratory Press,2004
    20.萨姆布鲁克J,弗里奇EF.分子克隆实验指南第二版[M].北京:科学出版社,1986
    21.李建武.生物化学实验原理和方法[M].北京:北京大学出版社,1994
    22. Priyadharshini R, Gunasekaran P. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis[J]. Biotechnol Lett, 2007, 29:1493-1499
    1. Welker NE, Campbell LL. Comparison of the alpha-amylase of Bacillus subtilis and Bacillus amyloliquefaciens[J]. J Bacteriol, 1967, 94:1131-1135
    2. Welker NE, Campbell LL. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis[J]. J Bacteriol, 1967, 94:1124-1130
    3. Vehmaanpera J, Steinborn G, Hofemeister J. Genetic manipulation of Bacillus amyloliquefaciens[J]. J Biotechnol, 1991, 19:221-240
    4. Young FE. Competence in Bacillus subtilis transformation system[J]. Nature, 1967, 213:773-775
    5. Chang S, Cohen SN. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA[J]. Mol Gen Genet, 1979, 168:111-115
    6. McDonald IR, Riley PW, Sharp RJ, et al. Factors affecting the electroporation of Bacillus subtilis[J]. J Appl Bacteriol, 1995, 79:213-218
    7.杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992. 194-239
    8. Romero D, Perez-Garcia A, Veening JW, et al. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation[J]. J Microbiol Methods, 2006, 66:556-559
    9.储炬,李友荣.现代生物工艺学[M].上海:华东理工大学出版社,2007. 59-77
    10. Dunny GM, Lee LN, Leblanc DJ. Improved electroporation and cloning vector system for gram-positive bacteria[J]. Appl Environ Microbiol, 1991, 57:1194-1201
    11. Okamoto A, Kosugi A, Koizumi Y, et al. High efficiency transformation of Bacillus brevis by electroporation[J]. Biosci Biotechnol Biochem, 1997, 61:202-203
    12. Coukoulis H, Campbell LL. Transformation in Bacillus amyloliquefaciens[J]. J Bacteriol, 1971, 105:319-322
    13. Vehmaanpera J. Transformation of Bacillus amyloliquefaciens protoplasts with plasmid DNA[J]. FEMS Microbiol Lett, 1988, 49:101-105
    14. Vehmaanpera J. Transformation of Bacillus amyloliquefaciens by electroporation[J]. FEMS Microbiol Lett, 1989, 52:165-169
    15. Ohse M, Takahashi K, Kadowaki Y, et al. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation[J]. Biosci Biotechnol Biochem, 1995, 59:1433-1437
    16. Connaughton JF, Vanek PG, Lee-Lin S-Q, et al. Cloning of the BamHI methyl transferase gene from Bacillus amyloliquefaciens[J]. Gene Anal Tech, 1988, 5:116-124
    17. Connaughton JF, Kaloss WD, Vanek PG, et al. The complete sequence of the Bacillus amyloliquefaciens proviral H2, BamHI methylase gene[J]. Nucleic Acids Res, 1990, 18:4002
    18. Kawakami B, Katsuragi N, Maekawa Y, et al. Cloning and expression of the BamHI restriction-modification system in Bacillus subtilis[J]. J Ferment Bioeng, 1990, 70:211-214
    19. Vanek PG, Connaughton JF, Kaloss WD, et al. The complete sequence of the Bacillus amyloliquefaciens strain H, cellular BamHI methylase gene[J]. Nucleic Acids Res, 1990, 18:6145
    1.谷军.α-淀粉酶的生产与应用[J].生物技术, 1994, 4:1-5
    2.储炬,李有荣.现代生物工艺学[M].上海:华东理工大学出版社,2007. 39-55
    3. Liu G, Zhang Y, Xing M. Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis[J]. Chin J Biotechnol, 2006, 22:191-197
    4. Heng C, Chen Z, Du L, et al. Expression and secretion of an acid-stable alpha-amylase gene in Bacillus subtilis by SacB promoter and signal peptide[J]. Biotechnol Lett, 2005, 27:1731-1737
    5. Hemila H, Sibakov M. Production of heterologous proteins in Bacillus subtilis: the effect of the joint between signal sequence and mature protein on yield[J]. Appl Microbiol Biotechnol, 1991, 36:61-64
    6. Stephenson K, Jensen CL, Jorgensen ST, et al. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of alpha-amylase[J]. Lett Appl Microbiol, 2002, 34:394-397
    7. Stephenson K, Harwood CR. Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis[J]. Appl Environ Microbiol, 1998, 64:2875-2881
    8. Vitikainen M, Pummi T, Airaksinen U, et al. Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of alpha-amylase in Bacillus subtilis[J]. J Bacteriol, 2001, 183:1881-1890
    9. Vitikainen M, Hyyrylainen HL, Kivimaki A, et al. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation[J]. J Appl Microbiol, 2005, 99:363-375
    10. Bolhuis A, Matzen A, Hyyrylainen HL, et al. Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins[J]. J Biol Chem, 1999, 274:24585-24592
    11. Koeberling O, Freudl R. New modified SecA protein, useful in microbial production of proteins, provides a higher level of protein secretion than wild-type protein[P].WO2004108932-A1.
    12. Suthar DH, Chattoo BB. Expression of Vitreoscilla hemoglobin enhances growth and levels of alpha-amylase in Schwanniomyces occidentalis[J]. Appl Microbiol Biotechnol, 2006, 72:94-102
    13. Kallio PT, Bailey JE. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis[J]. Biotechnol Prog, 1996, 12:31-39
    14.蒋岚,杨永,龚毅,等.稀有密码子对proUK基因在大肠杆菌中高表达的影响[J].生物工程学报, 1999, 15:64-67
    15.姜锡瑞.酶制剂应用手册[M].北京:中国轻工出版社,1999. 263-275
    16.中华人民共和国专业标准. SB/T 10317-1999蛋白酶活力测定法[S].
    17.萨姆布鲁克J,弗里奇EF.分子克隆实验指南第二版[M].北京:科学出版社,1986
    18.耿运琪,蒋如璋,李隽.外源质粒在枯草芽孢杆菌BF-7658中的稳定性及其基因表达[J].遗传学报, 1990, 17:398-404
    19. Vehmaanpera J. Transformation of Bacillus amyloliquefaciens by electroporation[J]. FEMS Microbiol Lett, 1989, 52:165-169
    20. Vehmaanpera J. Transformation of Bacillus amyloliquefaciens protoplasts with plasmid DNA[J]. FEMS Microbiol Lett, 1988, 49:101-105
    21. Palva I. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis[J]. Gene, 1982, 19:81-87
    22.牛丹丹,石贵阳,王正祥.通过同源介导α-淀粉酶基因扩增改良地衣芽孢杆菌α-淀粉酶生产菌株[J].生物工程学报, 2009, 3:375-380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700