SERS探针与基底的制备及其在免疫分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射技术是一种强有力的分析手段,它已广泛地应用于表面科学、电化学、生物学和材料学。但无论是从事何种相关SERS的研究,如SERS机理方面、基于SERS的化学生物传感器的构建等,制备SERS活性基底或SERS探针都是实验关键步骤。因此,本论文从制备高性能的SERS探针以及基底等关键问题入手,针对其制备过程中的难点,研制了高性能的SERS探针和基底,并利用这些SERS活性基底制成生物探针,进行了一些生物分析。
     在本文第二章,我们提出了一种制备具有二氧化硅外壳的核壳型SERS探针的新型合成方法。这种合成方法与其他方法相比,制备时间极短,且不需要偶联剂。制备出的SERS探针具有很强SERS信号,且能在各种浓盐溶液和有机溶剂中保持稳定,具有很强抗干扰能力。
     在第三章中,我们设计了一种简单快速的基底合成方法,制备了一种二维有序SERS活性基底。本章首先考察金溶胶粒径对基底SERS增强因子的影响,然后从基底表面信号的重現性和基底稳定性两个方面评估基底的性能,发现各项指标均优于传统的纳米Ag胶体SERS基底,该基底有作为化学生物检测平台的潜力。
     在最后一章中,我们利用上述制备的SERS活性基底,开发了一种新型检测人IgG的表面增强拉曼免疫分析(SERIA)方法。此方法优点突出,上述基底的使用,提高了检测灵敏度和重现性。实验结果表明,此方法的检测下限可达8ng·mL~(-1),且具有较宽的线性范围(1.0×10~(-8)-1.0×10~(-4) g·mL~(-1))。
Surface-enhanced Raman scattering (SERS) holds vast potential as a highly sensitive and selective tool for the identification of biological or chemical analytes. Its narrow, well-resolved bands allow simultaneous detection of multiple analytes, and the low intensity of SERS signal of water simplifies investigation of biological samples. The most critical aspect of performing a SERS experiment is the choice and/or fabrication of the noble-metal substrates or SERS probes. This dissertation describes the novel synthesis methods of SERS-active substrates and SERS probe, and their applications in immunoassays. The details are summarized as follows:
     1. An improved synthesis method of Au@SiO_2 SERS probe has been described in chapter one. The common properties of the core-shell nanoparticle-based SERS tags including Au@SiO2 are the strong SERS signal and extraordinary stability. The most exciting advantage of the method is its simplisty and time saving procedure as compared to other preparing methods reported before. Besides, the proposed methodology eliminates the use of vitrophilic pretreatment during the preparation, which is necessary in other proposed methodologies.
     2. In chapter two, a novel method of preparing SERS-active substrates with high sensitivity and reproducibility has been stated. Preparation of SERS substrate is always the core procedure in the surface-enhanced Raman scattering experiments. An ideally SERS substrate should generate significantly large with almost equal enhancement factor. The recent nanoparticle array studies show that the precise control of gaps in the sub-10 nm regime, known as“hot spots”, is crucial for fabrication of substrate with uniformly high SERS activity for collective surface plasmons existing inside the gaps. According the discovery of Halas’s research group, we managed to prepare convenient and cost-effective substrate–gold nanosphere arrays with sub-10 nm gaps to obtain high, stable and reproducible SERS signal, which enables trace-level quantitative analysis.
     3. In chapter three, based on the SERS-active substrate described above, we attempt to develop a novel sandwich-type immunoassay method to detect human IgG. It involves the immobilization of capture antibodies on the surface of microwell plate, the use of the immobilized antibodies to capture antigens from solution, and the indirect measurement of SERS signal of CVs that encapsulated by antibody-modified liposome. The use of substrate of gold nanosphere arrays with sub-10-nm gaps for CV SERS signal recording substantially improved the sensitivity and reproducibility as compared to conventional Ag-colloid substrates. Linear response has been obtained covering the logarithm of concentrations from 1.0×10~(-8) to 1.0×10~(-4)g·mL~(-1) with a detection limit of~8ng·mL~(-1). The method holds potential applications in detection of various antigens or other clinically important entities.
引文
[1] Raman C V and Krishman K S. A new type of secondary radiation. Nature, 1928, 121(3048):501-502.
    [2] 潘家来编. 激光拉曼光谱在有机化学上的应用, 北京: 化学工业出版社,1986:31-38.
    [3] Fleischmann M, Hendra P J, Mcquillan A J. Raman spectrao of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974, 26(2):163-166.
    [4] Jeanmaire D L, Van Duyne R P. Surface Raman pectroelectrochemistry, Part I: Heterocyclic, aromaticandamines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry, 1977, 84(1):1-20.
    [5] Creighton J. In Spectroscopy of Surface; Clark, R., Hestere, R., Eds.; London: John Willey & Sons Ltd., 1988; p 37.
    [6] Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimmers. J. Chem. Phys., 2004, 120(1):357-366.
    [7] Van Duyne R P, Hulteen J C, Treichel D A. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys., 1993, 99(3):2101-2115.
    [8] Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997, 275(5033):1102-1106.
    [9] Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS).Phys. Rev. Lett., 1997, 78(9):1667-1670.
    [10] Shafer-Peltier K E,Haynes C L, Glucksberg, M R, et al. Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J.Am. Chem. Soc., 2003, 125(2):588-593.
    [11] Huang J, Kim F, Tao A R, et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3(9):1229-1233.
    [12] Vo-Dinh T, Houck K, Stokes D L. Surface-enhanced Raman gene probes. Analytical Chemistry, 1994, 66(20):3379-3383.
    [13] Isola N R, Stokes D L, Vo-Dinh T. Surface-enhanced Raman gene probe for HIVdetection. Analytical Chemistry, 1998, 70(7):1352-1356.
    [14] Allain L R, Vo-Dinh T. Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Analytica Chimica Acta, 2002, 469(1):149-154.
    [15] Graham D, Mallinder B J, Whitcombe D, et al. Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Analytical Chemistry, 2002, 74(5):1069-1074.
    [16] Jiang C, Zhao J, Therese H A, et al. Raman imaging and spectroscopy of heterogeneous individual carbon nanotubes. J. Phys. Chem. B, 2003, 107(34):8742-8745.
    [17] RayIII K, McCreery R L. Spatially resolved Raman spectroscopy of carbon electrode surface: observations of structural and chemical heterogeneity. Anal. Chem., 1997, 62(22):4680-4687.
    [18] Balss K M, Kuo T C, Bohn P W. Direct chemical mapping of electrochemically generated patial composition gradients on thin gold films with surface-enhanced Raman spectroscopy. J. Phys. Chem. B, 2003, 107(4):994-1000.
    [19] Lee C J, Pezzotti G, Okui Y, et al. Raman microprobe mapping scattering: imaging and mapping of residual microstresses in 3C-SiC film epitaxial lateral grown on patterned Si(111). Applied Surface Science, 2004, 228(1-4):10-16.
    [20] Kneipp J, Kneipp H, McLaughlin M, et al. In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates. Nano Lett. 2003, 6(10):2225–2231.
    [21] Kneipp J, Kneipp H, Wittig B, et al. One- and Two-Photon Excited Optical pH Probing for Cells Using Surface-Enhanced Raman and Hyper-Raman Nanosensors.Nano Lett. 2007, 7(9):2819-2823.
    [22] Lee S, Kim, S, Choo J, et al. Biological Imaging of HEK293 Cells Expressing PLC 1 using Surface-Enhanced Raman Microscopy. Anal. Chem., 2007, 79(3):916-922.
    [23] 余传霖,叶天星,录德源,章谷生,《现在医学免疫学》,上海:上海医科大学出版社,1998
    [24] 王自正,《现代医学标记免疫学》,北京:人民军医出版社,2000
    [25] 何洁明,《现代检验医学与临床》,上海:同济大学出版社,2001
    [26] 何浩明,王惠明,马达,周彦,《标记免疫分析与PCR在医学中的应用》,合肥:安徽大学出版社,2002
    [27] Rohr, T.E., T. Cotton, N. Fan, P.J. Tarcha. Immunoassay employing surface-.enhanced Raman spectroscopy. Analytical Biochemistry., 1989, 182(2):388-398.
    [28] Dou X,.Takama T, Yamaguchi Y, et al. Enzyme Immunoassay Utilizing Surface-Enhanced Raman Scattering of the Enzyme Reaction Product. Anal. Chem., 1997, 69(8):1492-1495.
    [29] Ni J, Lipert R J, Dawson G. B, et al. Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids. Anal. Chem., 1999, 71(21):4903-4908.
    [30] Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels. Anal. Chem., 2003; 75(21):5936-5943.
    [31] Ji X H, Xu S P, Wang L Y, et al. Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. J. Colloids and surface A:physicochem. Eng. Aspects., 2005, 257(5):171-175.
    [32] Mulvaney S P, Musick M D, Keating C D, et al. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir, 2003, 19(11):4784-4790.
    [33] Frens. G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature Physical Science, 1973, 241(105):20-22.
    [34] Lee P C, Melsel D. Adsorption and surface-enhanced Raman of dye on silver and gold sols. Journal of Physical Chemistry, 1982, 86(17): 3391-3395.
    [35] Baker G A, Moore D S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis.Analytical and Bioanalytical Chemistry, 2005, 382(8):1751-1770.
    [36] Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Jounal of the American Chemical Society, 1999, 121(43):9932-9939.
    [37] Martin C R. Membrane-based synthesis of nanomaterials. Chemistry of Materials, 1996, 8(8):1739-1746.
    [38] Siiman O, Bumm L A, Callaghan R, et al. Surface-enhanced Raman scattering by citrate on colloidal silver. Journal of Physical Chemistry, 1983, 87(6):1014-1023
    [39] Weaver M J. Surface-enhanced Raman spectroscopy as a versatile in situ probe of chemisorption in catalytic electrochemical and gaseous environments. J. Raman Spectrosc., 2002, 33(5):309-317.
    [40] Hildebrandt P, Stockburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem., 1984,88(24):5935-5944.
    [41] Michaels A M, Jiang J, Brus L. Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B, 2000, 104(50):11965-11971.
    [42] Jiang J; Bosnick K, Maillard M. Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. J. Phys. Chem. B, 2003, 107(37):9964-9972.
    [43] Haes A J, Haynes C L, Van Duyne R, et al. Plasmonic Materials for Surface-Enhanced. Sensing and Spectroscopy., 2005, MRS Bulletin, 30(5):368-375.
    [44] Kaufmann S, Tanaka M. Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads. ChemPhysChem, 2003, 4(7):699-704.
    [45] Stokes R J, Smith W E, Graham D, et al. SERRS-active nanoparticle-polymer beads for ultra-sensitive biodiagnostic applications. Micro & Nano Letters,2006, 1(1):57-61.
    [46] Yu K N, Lee S M, , Han J Y, et al. Multiplex Targeting, Tracking, and Imaging of Apoptosis by Fluorescent Surface Enhanced Raman Spectroscopic Dots. Bioconjugate Chem. 2007, 18(4):1155-1162.
    [47] Bello J M, Stokes D L, Vo-Dinh T. Silver-coated alumina as a new medium for surface-enhanced Raman scattering analysis. Appl. Spectrosc., 1989, 43(1):1325-1330.
    [48] Miller S, Baiker A, Meier M, et al. Surface-enhanced Raman scattering and the preparation of copper substrates for catalytic studies. J. Chem. Soc. Faraday Trans. I, 1984, 80(2):1305-1312.
    [49] Davies J P, Pachuta S J, Cooks R G, et al. Surface-enhanced Raman scattering from sputter-deposited silver surfaces. Anal. Chem., 1986, 58(7):1290-1294.
    [50] Meier M, Wokaun A, Vo-Dinh T. Silver particles on stochastic quartz substrates providing ten-fold increase in Raman enhancement. J. Phys. Chem., 1985, 89(10):1843-1846.
    [51] Enlow P D, Buncick M, Warmack R J, et al. Detection of nitro polynuclear aromatic compounds by surface-enhanced Raman spectrometry. Anal. Chem., 1986, 58(6):1119-1123.
    [52] Penn S G, He L, Natan M J, et al. Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 2003, 7(5):609-615.
    [53] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Ramanspectroscopy. Chemical Reviews, 1999, 99(10):2957-2976.
    [54] Fabian H, Anzenbacher P. New developments in Raman spectroscopy of biological systems. Vibrational Spectroscopy, 1993, 4(2):125-148
    [55] Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4):241-250.
    [56] Pemberton J E, Guy A L, Sobocinski R L, et al. Surface enhanced Raman scattering in electrochemical systems: The complex roles of surface roughness. Applied Surface Science, 1988, 32(1-2):33-56.
    [57] Doering W E, Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Analytical Chemistry, 2003, 75(22):6171-6176.
    [58] Brown K R and Natan M J. Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces. Langmuir, 1998, 14(4):726-728.
    [59] Lu Y, Yin, Y, Li Z, et al. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids. Nano Lett., 2002, 2(7):785-788.
    [60] St?ber W, Fink A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science, 1968, 26(2):62-69.
    [61] Ung T, Liz-Marzán L M, Mulvaney P. Optical properties of thin films of Au@SiO2 particles. Journal of Physical Chemistry B, 2001, 105(17):3441-3452.
    [62] Banholzer M J, Millstone J E, Mirkin C A. Rationally designed nanostructures for surface-enhanced Raman Spectroscopy. Chemical Society Reviews, 2008, 37(5):885-897.
    [63] Haynes C L and Van Duyne R P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B., 2001, 105(24):5599-5611.
    [64] Felidj N, Lay Truong S, Aubard J, et al. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. J. Chem. Phys., 2004, 120(15):7141-7146.
    [65] Freeman R G, Grabar K C, Natan M J, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 1995, 267(5204): 1629-1632.
    [66] He L, Natan M J, Keating C D. Surface-Enhanced Raman Scattering: A Structure-Specific Detection Method for Capillary Electrophoresis. Anal. Chem., 2000, 72(21):5348-5355.
    [67] Wang H, Carly S L and Halas N J. Nanosphere Arrays with Controlled Sub-10-nmGaps as Surface-Enhanced Raman Spectroscopy Substrates. J. Am. Chem. Soc., 2005, 127(43):14992-14993.
    [68] Nikoobakht B, Wang Z. L, El-Sayed M A. Self-Assembly of Gold Nanorods. J. Phys. Chem. B, 2000, 104(36):8635-8640.
    [69] Orendorff C J, Hankins P L, Murphy C J. pH-Triggered Assembly of Gold Nanorods. Langmuir 2005, 21(5):2022-2026.
    [70] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc., 2000, 122(39):9554-9555.
    [71] McFarland A D, Young M A, Dieringer J A, et al. Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B, 2005, 109(22):11279-11285.
    [72] Sharaabi Y, Shegai T and Haran G. Two-state analysis of single-molecule Raman spectra of crystal violet. Chem. Phys., 2005, 318(1-2):44-49.
    [73] Haynes C L, McFarland A D, Van Duyne R P. Surface-Enhanced Raman Spectroscopy. Anal. Chem., 2005, 77(9):338A-346A.
    [74] Chen H, Jiang J H, Li Y F, et al. A novel piezoelectric immunoagglutination assay technique with antibody-modified liposome. Biosens Bioelectron, 2007, 22(6):993-1002.
    [75] Nakano Y, Mori M, Nishinohara S, et al. Antigen-Specific, IgE-Selective Unresponsiveness Induced by Antigen-Liposome Conjugates. Allergy and Immunology, 1999, 120(3):199-208.
    [76] McNamara K P, Rosenzweig Z. Dye-Encapsulating Liposomes as Fluorescence-Based Oxygen Nanosensors. Anal. Chem., 1998, 70(22):4853-4859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700