捷联惯导动基座对准新方法及导航误差抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对捷联惯性导航领域两个方面的关键技术——惯性系动基座对准技术和导航误差转动抑制技术开展研究。主要研究工作包括以下五个方面:
     (一)系统研究了捷联惯性导航惯性系对准方法。提出了一种利用重力矢量的特征、借助FIR滤波器抑制高频噪声的惯性系对准新方法。根据空间矢量的相互关系,推导了惯性系对准精度与惯性器件误差之间的关系式。设计了两级抽取、分段滤波的FIR低通数字滤波器组,为抑制基座扰动提供了有效手段。研究了惯性系对准方法的快速性和大失准角条件下对准性能。与传统对准方法的比较分析表明:惯性系对准方法具有对准速度快、适用于任意失准角,而且不损失对准精度的优越性能。
     (二)根据惯性系对准方法的基本原理,结合车载捷联系统对于机动性对准的需求,提出了利用两次短时停车的车载行进间惯性系对准方法,分析了停车位置偏差对精度的影响。结合舰载捷联系统对于航行状态下的对准需求,提出了匀速直航条件下的惯性系迭代对准方法,仿真实验证明了该方法的可行性。
     (三)采用中等精度(0.01°/h)的激光陀螺捷联系统进行惯性系对准实验,方位精度为0.04°(1σ)。对于地面扰动环境,新方法完成对准需时200秒;对于转台摇摆、船载系泊以及舰载系泊环境,新方法实现对准的时间不超过300秒。与传统反馈控制对准方法相比,新方法在对准速度上明显占优,而且不需要粗对准。实施了行进间对准实验,实现了车载高精度机动对准。设计了以惯性系迭代对准作为粗对准的两步对准方案,实现了舰载近似匀速直航状态下的快速对准。
     (四)在充分研究了惯性系对准新方法后,论文对惯性导航领域中的另一项关键技术开展了研究:惯性导航误差抑制技术。推导了转动条件下惯性导航误差的解析表达式,对静态和转动两种误差解析式进行对比分析,指出了设计转动角速度时应该规避的谐振频点。分别就往复转动、间断型转动、多轴转动等方式对于导航误差的抑制机理开展研究,推导了往复转动条件下导航误差的解析表达式,利用仿真手段分析了间断型转动对于导航误差的抑制效果。研究表明,合理的转动可以显著抑制器件误差和标定误差的影响。综合比较各种转动方式的优缺点,提出了转动方式的评价准则,为设计实际的转动抑制方案提供了理论指导。
     (五)设计数学仿真模型,对理论推导的解析结果进行验证,证明了转动条件下导航误差解析表达式的正确性。转台实验和仿真分析均表明:在单轴转动条件下,绕方位轴的往复连续转动具有最优的误差抑制效果。针对某型水面舰船对于惯性导航定位的精度需求,设计采用连续往复转动抑制方案的原理样机,系泊和航行实验的结果表明,采用0.01°/h的激光捷联系统,8小时的定位误差为3海里。
The thesis has investigated two key technologies involved in strapdown inertial navigation system (SINS). One is the moving-based alignment through an inertial frame; the other is the depressing of navigation errors by rotation. The content mainly comprises of the following five aspects.
     1. A systematic study is performed on the inertial frame based alignment (IFBA) method, which uses the gravity vector and its derivative. By virtue of a cascade of low-pass FIR filters, IFBA attenuates the disturbing acceleration and maintains the gravity. According to the geometric relations among space vectors, the analytical expression relating the navigational errors to the instrumental errors is derived. In order to attenuate the disturbing of vehicles, an FIR filter group consisting of two decimations and three sub-filters is designed. Rapidness of the IFBA method is discussed, and the ability to conquer large misalignment is confirmed. Comparisons with other traditional algorithms prove that proposed method converges much faster than the conventional methods at no cost of precision and also works well under any large initial misalignment.
     2. According to the basic principle of the IFBA method, a maneuverable alignment algorithm for vehicle-based SINS with twice short stops is proposed. The relationship between the alignment error and the relative position error is illustrated. To satisfy the requirement of alignment during sailing, an iterative alignment method for ship-based SINS is designed and simulation verifies its feasibility.
     3. The performances of the IFBA method is tested by a navigation grade SINS (0.01/h, ring laser gyroscopes) and the azimuth aligning accuracy is 0.04 (1σ). For disturbing ground condition, experiments show that the IFBA method needs 200 seconds. And for swaying marine condition, the aligning time is not more than 300 seconds. Compared with the traditional algorithms, IFBA method has obvious advantage in alignment time and does not need coarse alignment stage. Vehicle experiments show that the maneuverability of the vehicle is improved by using the proposed algorithm. To deal with the aligning problem during sailing, an alignment scheme comprising a coarse step by the IFBA method and a fine step by a Kalman filter is presented. The ship-based alignment experiment proves that the proposed scheme works well for the condition with approximate constant speed.
     4. After the IFBA method, the thesis investigates another key technology: the depressing of inertial navigation errors. The analytical expressions of navigation errors when rotating are derived and compared with the static results. The resonant frequency of the rotation scheme is indicated. In addition to single direction rotating, the principles of reciprocative rotating, intermittent rotating and multi-axis rotating are also investigated. The analytical error expressions of reciprocative rotating are derived. And the performance of intermittent rotating is examined through simulations. It shows that well-designed rotation can depress the influences of instrumental errors and of calibration errors remarkably. Advantages and disadvantages of the rotating schemes are analyzed, and the rules of the evaluation are presented for actual system design.
     5. A simulation model based on Matlab/Simulink is designed to prove the analytical results. Table experiments and simulations show that the performance of reciprocative rotation about the azimuth axis is optimal. A prototype with reciprocative rotation scheme is designed for a real naval ship. Using a SINS made up of 0.01°/h ring laser gyroscopes, mooring and sailing experiments show that the position error is no more than 3 nautical miles in 8 hours.
引文
[1]J.Broelmann,The development of the gyrocompass - Inventors as navigators,Journal of Navigation,vol.51(2),pp.267-273,1998.
    [2]R.H.Battin,Some Funny Things Happened on the Way to the Moon,Journal of Guidance,Control and Dynamics,vol.25,pp.1-7,2002.
    [3]袁信,俞济祥,陈哲.导航系统.北京:航空工业出版社,1993.
    [4]邓正隆,惯性导航原理,1994.
    [5]张树侠,孙静.捷联式惯性导航系统,第一版.国防工业出版社,1992.10.
    [6]D.H.Titterton and J.L.Weston,Strapdown Inertial Navigation Technology:Peter Peregrinus Ltd.London.United Kingdom,1997.
    [7]D.H.Titterton and J.L.Weston,Strapdown Inertial Navigation Technology.Second Edition.,Second ed:MIT LincolnLaboratory,Lexington,Massachusetts.,2004.
    [8]秦永元.惯性导航.北京:科学出版社,2006.
    [9]A.B.Chatfield,Fundamentals of High Accuracy Inertial Navigation,vol.174progress in Astronautics and Aeronautics:American Institute of Aeronautics and Astronautics,Inc,1997.
    [10]M.S.Grewal,L.R.Weill,and A.P.Andrews,Global Positioning Systems,Inertial Navigation and Integration.New York:Wiley Interscience,2001.
    [11]C.S.Draper,Origins of Inertial Navigation,AIAA Journal of Guidance and Control,vol.4,1981.
    [12]A.D.King,Inertial Navigation-Forty Years of Evolution,GEC REVIEW,vol.13,1998.
    [13]Garg.S.C,Morrow.L.D,and Mamen.R,Strapdown Navigation Technology:A Literature Survey,Journal of Guidance and Control,vol.1,pp.161,1978.
    [14]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社,1998.
    [15]N.Barbour and G.Schmidt,Inertial Sensor Technology Trends,presented at Workshop on Autonomous Underwater Vehicles,Cambridge,MA,1998.
    [16]J.W.Jordon,An Accurate Strapdown Direction Cosine Algorithm,NASA TND-5384,1969.
    [17]J.E.BORTZ,A New Mathematical Formulation for Strapdown Inertial Navigation,IEEE Transactions on Aerospace and Electronics System,vol.7,pp.61-66,1971.
    [18]R.B.Miller,A New Strapdown Attitude Algorithms,Journal of Guidance,Control,and Dynamics,vol.6,pp.287-291,1983.
    [19]M.B.Ignagni,Optimal Strapdown Attitude Integration Algorithms,Journal of Guidance,Control,and Dynamics,vol.13,pp.363-369,1990.
    [20]Y.F.Jiang and Y.P.Lin,Improved Strap-down Coning algrithms,IEEE Transactions on Aerospace and Electronics System,vol.28,pp.484-490,1992.
    [21]J.G.Mark and D.A.Tazartes,On sculling Algorithms,presented at Proceeding of the 3rd Saint Petersburg International Conference on Integrated Navigation Systems,St.Petersburg.Russia,1996.
    [22]P.G.Savage,strapdown inertial navigation integration algorithm design part 1:attitude algorithms,Journal of Guidance,Control,and Dynamics,vol.21,pp. 10,1998.
    [23]P.G.Savage,strapdown inertial navigation integration algorithm design part 2:velocity and position algorithm,Journal of Guidance,Control,and Dynamics,vol.21,pp.14,1998.
    [24]刘巧光,杨海军,郭美凤.捷联惯性导航系统的姿态算法优化设计.中国惯性技术学报,vol.7,pp.1-5,1999.
    [25]Y.A.Litmanovich,V.M.Lesyuchevsky,and V.Z.Gusinsky,Two New Classes of Strapdown Navigation Algorithms,Journal of Guidance,Control,and Dynamics,vol.23,pp.34-44,2000.
    [26]P.G.Savage,analytical modeling of sensor quantization in strapdown inertial navigation error equation,Journal of Guidance,Control,and Dynamics,vol.25,pp.10,2002.
    [27]Y.A.Litmanovich and J.G.Mark,Process In strapdown Algorithm Design at the West and East as Appeared at Saint Petersburg Conferences:Decade Overview,presented at Proceeding of the 10rd Saint Petersburg International Conference on Integrated Navigation Systems,St.Petersburg.Russia,2003.
    [28]Y.Wu,X.Hu,D.Hu,T.Li,and J.Lian,Strapdown inertial navigation system algorithms based on dual quaternions,IEEE Trans.on Aerospace and Electronic Systems,vol.41,pp.110-132,2005.
    [29]Y.Wu,X.Hu,M.Wu,and D.Hu,Strapdown Inertial Navigation using Dual Quaternion Algebra:Error Analysis,IEEE Aerospace and Electronic Systems Transactions on,vol.42,2006.
    [30]武元新,对偶四元数导航算法与非线性高斯滤波研究.博士学位论文.长沙:国防科学技术大学,2005.
    [31]M.Shibata,Error Analysis Strapdown Inertial Navigation Using Quaternion,AIAA Journal of Guidance and Control,vol.9,pp.379,1986.
    [32]A.Soloviev,Investigation into performance enhancement of integrated global positioning/inertial navigation systems by frequency domain implementation of inertial computational procedures,in College of Engineering and Technology,vol.PhD:Ohio University.
    [33]P.G.Savage,A Unified Mathematical Framework for Strapdown Algorithm Design,JOURNAL OF GUIDANCE,CONTROL,AND DYNAMICS,vol.29,pp.237-249,2006.
    [34]Y.Wu,On A unified mathematical framework for strapdown algorithm design,Journal of Guidance,Control,and Dynamics,vol.29,pp.1482-1484,2006.
    [35]J.DeWall,M.B.May,J.Carvil,S.Downs,and J.Eyth,Ship Augmented Gravity Enhancement(SAGE),presented at IEEE/PLANS,2006.
    [36]陈兵舫,惯性导航初始对准.博士学位论文.长沙:国防科技大学,2001.
    [37]李涛,非线性滤波方法在导航系统中的应用研究.博士学位论文.湖南长沙:国防科技大学,2003.
    [38]黄昆,单福林,杨功流,刘玉峰.舰载角速度匹配传递对准方法研究.中国惯性技术学报,vol.13,2005.
    [39]孙昌跃,王.司.邓正隆.舰载武器惯导系统对准综述.中国惯性技术学报,vol.13.2005.
    [40]杨亚非,谭久彬,邓正隆.惯导系统仞始对准技术综述.中国惯性技术学报,vol.10.2002.
    [41]陆煜明.机械抖动激光陀螺惯导系统自动补偿研究.中国惯性技术学报,vol.14,pp.18,2006.
    [42]韩军海,陈家斌.舰船在风浪干扰下的快速传递对准技术研究.北京理工大学学报,vol.24,2004.
    [43]高伟,陆强,曹洁,孙枫,水下潜器捷联惯导系统初始对准技术研究.中国航海,vol.2003,2003.
    [44]周丽弦,崔中兴.系泊状态下舰载导弹自主式初始对准研究.北京航空航天大学学报,vol.28,2002.
    [45]杨剑宏,施红兵,陆恺,舰载弹用捷联系统初始对准时陀螺误差的估计.中国惯性技术学报,vol.7,1 999.
    [46]郭振西,缪玲娟,沈军.里程计组合的捷联惯导系统运动基座对准研究.北京理工大学学报,vol.25,2005.
    [47]郭美凤,杨海军,滕云鹤,章燕申.激光陀螺惯导系统扰动基础上的初始对准,清华大学学报(自然科学版),vol.42,2002.
    [48]王金林,翟有新,王芳.机载惯导跑道滑行对准研究,中国惯性技术学报,vol.9.2001.
    [49]缪玲娟,田海.车载激光捷联惯导系统的快速初始对准及误差分析.北京理工大学学报,vol.20,2000.
    [50]C.Yang,C.-F.Lin,D.Tarrant,C.Roberts,and P.Ruffin,Transfer Alignment Design and Evaluation,AIAA-93-3892-CP 1993.
    [51]K.Spalding,An Efficient Rapid Transfer Alignment Filter,AIAA-92-4598-CP 1992.
    [52]J.E.Kain and J.R.Cloutier,Rapid Transfer Alignment for Tactical Weapon Application,AIAA-89-3581-CP 1989.
    [53]J.L.Farrell,Airborne transfer alignment simulation results,presented at IEEE PLANS,Position Location and Navigation Symposium,1988.
    [54]D.H.Titterton,Alignment of ship launched missile IN systems,London,Engl,1990.
    [55]C.G.Park and J.G.Lee,An overlapping decomposition filter design for SDINS in-flight alignment,Tokyo,Jpn,1990.
    [56]J.L.Weston and D.H.Titterton,In-flight alignment and calibration of a tactical missile INS,Stuttgart,Ger,1990.
    [57]C.C.Ross and T.F.Elbert,Transfer alignment algorithm study based on actual flight test data from a tactical air-to-ground weapon launch,Las Vegas,NV,USA,1994.
    [58]R.M.Rogers,Weapon IMU transfer alignment using aircraft position from actual flight tests,Atlanta,GA,USA,1996.
    [59]M.-I.J.Chang,Rapid inflight/transfer alignment filter for GPS/INS/DVS navigation system,Santa Monica,CA,USA,1997.
    [60]O.Tekinalp and M.Ozemre,Artificial neural networks for transfer alignment and calibration of inertial navigation systems,presented at AIAA Guidance,Navigation,and Control Conference and Exhibit,Montreal,Canada,2001.
    [61]E.J.Ohlmeyer,D.B.Hanger,and T.R.Pepitone,In-flight alignment techniques for navy theater wide missiles,presented at AIAA Guidance,Navigation,and Control Conference and Exhibit,Montreal,Canada,2001.
    [62]T.Numajima,M.K.t,Y.Kubo,S.Sugimoto,and T.Seki,INS/DGPS/VMS Integration for In-Motion Alignment, presented at ION/GPS2002, Portland, OR,USA, 2002.
    [63] Y.-C. Lim and J. Lyou. Transfer alignment error compensator design using H_∞ filter. Anchorage, AK, United States. 2002.
    [64] J. Wendel, J. Metzger. and G. F. Trommer, Rapid transfer alignement in the presence of time correlated measurement and system noise, presented at AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, USA, 2004.
    [65] W. Gao, Z. Xiong, Y. Hao. and F. Sun. Comparison of INS Transfer Alignments through Observability Analysis, presented at IEEE/PLANS2006, 2006.
    [66] Z. Xiong, Y. Hao, and F. Sun. SINS Rapid In-Motion Alignment Based on Nonlinear Filter, presented at IEEE/PLANS2006, 2006.
    [67] B. Porat and I. Y. Bar-Itzhack, Effect of Acceleration Switching During INS In-Flight Alignment. AIAA Journal of Guidance and Control, vol. 4, pp. 385,1981.
    [68] I. Y. Bar-Itzhack. Minimal Order Time Sharing Filters for INS In-flight Alignment, AIAA Journal of Guidance and Control, vol. 5, pp. 396, 1982.
    [69] A. M. Schneider, Kalman Filter Formulation for Transfer Alignment of Strapdown Inertial Units, Navigation:Journal of the Institute of Navigation, vol.30,pp. 72-89, 1983.
    [70] I. Y. Bar-Itzhack and Y. Vitek, The ENIGMA OF FALSE BIAS DETECTION IN A STRAPDOWN SYSTEM DURING TRANSFER ALIGNMENT, Journal of Guidance, Control, and Dynamics, vol. 8, pp. 175, 1985.
    [71] D. G. Meskin and I. Y. Bar-Itzhack, Observability Analysis of Piece Wise Constant System-Part I : Theory. IEEE Transactions on Aerospace and Electronic Systems, vol. 28, pp. 1056-1067, 1992.
    [72] D. Meskin. G and I. Y. Bar-Itzhack, Observability Analysis of Piece-Wise Constant System Part II: Application to inertial navigation in-flight alignment,IEEE Transactions on Aerospace and Electronic Systems, vol. 28, pp. 1068-1075,1992.
    
    [73] K. R. Britting, Inertial navigation systems analysis: Wiley-Interscience, 1971.
    [74] D. Chung, J. G. Lee, C. G. Park, and H. W. Park, Strapdown INS error model for multiposition alignment, IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 1362, 1996.
    [75] Y. F. Jiang, Error analysis of analytic coarse alignment methods, IEEE Transactions on Aerospace and Electronic Systems, vol. 34, pp. 334, 1998.
    [76] J. Robert H. Cannon, Alignment of Inertial Guidance Systems by Gyrocompassing-Linear Theory, Journal of the Aerospace Sciences, vol.November. 1961, pp. 885, 1961.
    [77] J. C. San Giovanni and D. E. Levinson, Performance of a Ring Laser Strapdown Marine Gyrocompass. 1981.
    [78] H. W. Park, J. G. Lee, and C. G. Park, Covariance Analysis of Strapdown INS Considering Gyrocompass Characteristics, IEEE AES, vol. 31, 1995.
    [79] Z.-M. Ge, Y.-C. Lue. and F.-N. Ku, Dynamic Analysis of a Gyrocompass,Japanese Journal of Applied Physics, Parti., vol. 35, pp. 4864-4872, 1996.
    [80] C. Hua, Gyrocompass Alignment with Base Motions: Results for a 1 nmil/h INS/GPS System, Journal of The Institute of Navigation, vol. 47, pp. 65, 2000.
    [81] J. Shulman. Compensation Algorithms for the Pendulous Gyrocompass, Navigation:Journal of ION(in USA),vol.48,2001.
    [82]G.E.Sandoval-Romero,Fiber Optic Gyrocompass Superluminescent Fiber Source,IEEE Aerospace and Electronic Systems Magazine,vol.20,2005.
    [83]黄德鸣,张树侠,孙枫.平台罗经.北京:国防工业出版社,1990.
    [84]A.A.G.,E.V.C.,M.M.B.,K.V.I.,and R.C.V.,High Latitude Trials of Modem Russian Marine Compasses,presented at IEEE/PLANS,2006.
    [85]任茂东.船用陀螺罗经.第一版.辽宁,大连:大连海运学院出版社,1993.
    [86]P.B.Reddy,Laser Gyro Strapdown System Alignment/Calibration and Land Navigation Using Kalman Filters,Proceedings of the National Aerospace and Electronics Conference.May 20-22.Dayton,OH,USA.pp.92,1980.
    [87]F.M.Ham and R.G.Brown,Observability,Eigenvalues and Kalman Filtering,IEEE Transactions on Aerospace and Electronic Systems,vol.19,pp.269-273,1983.
    [88]M.S.Grewal,V.D.Henderson,and R.S.Miyasako,Application of Kalman filtering to the calibration and alignment of inertial navigation systems,IEEE Transactions on Automatic Control,vol.36,pp.3,1991.
    [89]Y.F.Jiang and Y.P.Lin,Error estimation of INS ground alignment through observability analysis,IEEE Transactions on Aerospace and Electronic Systems,vol.28,pp.92,1992.
    [90]J.Aranda,J.M.De La Cruz,S.Dormido,P.Ruiperez,and R.Hemandez,Reduced-order Kalman filter for alignment,Cybernetics and Systems,vol.25,pp.1,1994.
    [91]S.P.Dmitriyev,O.A.Stepanov,and S.V.Shepel,Nonlinear filtering methods application in INS alignment,IEEE Transactions on Aerospace and Electronic Systems,vol.33,pp.260,1997.
    [92]M.E.Pittelkau,Kalman Filtering for Spacecraft System Alignment Calibration,AIAA Journal of Guidance and Control,vol.24,pp.1187,2001.
    [93]T.-G.Lee,Centralized Kalman filter with adaptive measurement fusion:Its application to a GPS/SDINS integration system with an additional sensor,International Journal of Control,Automation and Systems,vol.1,pp.444,2003.
    [94]S.Hong,M.H.Lee,H.-h.Chun,S.-H.Kwon,and J.L.Speyer,Observability of Error States in GPS/INS Integration,IEEE Transactions on Vehicular Technology,vol.54,2005.
    [95]H.-s.Ahn and C.-h.Won,Fast Alignment using Rotation Vector and Adaptive Kalman Filter,IEEE Aerospace and Electronic Systems Transactions on,vol.42,pp.70,2006.
    [96]D.Choukroun,I.Y.Bar-Itzhack,and Y.Oshman,Novel Quatemion Kalman Filter,IEEE Aerospace and Electronic Systems Transactions on,vol.42,2006.
    [97]秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998.
    [98]程向红.捷联惯性导航系统动基座初始对准研究.博士学位论文.南京:东南大学,1998.
    [99]D.Wan,Y.Huang,and T.Ren,Study on new Kalman filter mechanization for initial alignment of INS in random rocking vehicles,Stuttgart,West Ger,1989.
    [100]N.E1-Sheimy,S.Nassar,and A.Noureldin,Wavelet de-noising for IMU alignment,IEEE Aerospace and Electronic Systems Magazine,vol.19,pp.32,2004.
    [101]Z.Chuanbin,T.Weifeng,and J.Zhihua,A novel method improving the alignment accuracy of a strapdown inertial navigation system on a stationary base,Measurement Science and Technology,vol.15,pp.765,2004.
    [102]J.C.Fang and D.J.Wan,Fast initial alignment method for strapdown inertial navigation system on stationary base,IEEE Transactions on Aerospace and Electronic Systems,vol.32,pp.1501,1996.
    [103]徐晓苏.舰载捷联式航向姿念基准系统的研究与设计.博士学位沦文.南京:东南大学,1991.
    [104]A.A.Fomitchev,A.B.Koltchev,K.Yu.Schastlyvets,and V.B.Uspensky,Estimation of Gyrocompassing Accuracy and Techniques of Course and Gyro Drift Correction in Integrated Navigation System,presented at 9th Saint Petersburg International Conference on Integrated Navigation Sytems,Saint Petersburg,Russia,2002.
    [105]T.Morimoto,H.Kumagai,T.Yashiro,and K.Ohtsu,Initial rapid alignment/calibration of a marine inertial navigation system,presented at IEEE.Conference of PLANS,Las Vegas,NV,USA,1994.
    [106]魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准,航天控制,vol.2003.
    [107]魏春岭,张洪钺.捷联惯导系统卡R对准方法比较,航天控制,2000.
    [108]M.-J.Yu,J.G.Lee,and C.G.Park,Nonlinear robust observer design for strapdown INS in-flight alignment,IEEE Transactions on Aerospace and Electronic Systems,vol.40,pp.797,2004.
    [109]M.-J.Yu,Equivalent nonlinear error models of strapdown inertial navigation system,presented at AIAA conference proceedings,Guidance,navigation and control,1997.
    [110]H.S.Hong,J.G.Lee,and C.G.Park,In-flight Alignment of SDINS under Large Initial Heading Error,presented at AIAA Guidance,Navigation,and Control Conference and Exhibit,Montreal Canada,2001.
    [111]H.S.Hong,J.G.Lee,and C.G.Park,Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error,IEE Proceedings:Radar,Sonar and Navigation,vol.151,pp.57,2004.
    [112]N.Asaoka,M.Ooiwa,M.Tanikawara,T.N.t,Y.Kubo,and S.Sugimoto,Nonlinear Filtering Methods for INS/DGPS In-Motion Alignment,presented at ION GPS/GNSS 2003,Portland,OR,2003.
    [113]E.-H.Shin and N.E1-Sheimy,An unscented Kalman filter for in-motion alignment of low-cost IMUs,presented at IEEE PLANS,Monterey,CA,United States,2004.
    [114]X.Kong,E.M.Nebot,and H.Durrant-Whyte,Development of a non-linear psi-angle model for large misalignment errors and its application in INS alignment and calibration,presented at Proceedings-IEEE International Conference on Robotics and Automation.Detroit,MI,USA,1999.
    [115]I.Y.Bar-Itzhack and Berman.N.Control theoric approach to inertial navigation system,AIAA Journal of Guidance,Control and Dynamics,vol.11,1988.
    [116]T.Gaiffe,Y.Cottreau,N.Faussot,G.Hardy,P.Simonpietri,and H.Arditty,Highly Compact fiber optic gyrocompass for applications at depths up to 3,000meters,presented at IEEE/Underwater Technology,Proceedings of the 2000International Symposium on,2000.
    [117]T.Gaiffe,From R&D Brassboard to Navigation Grade FOG-Based INS:the Experience of Photonetics/Ixsea,presented at IEEE.Optical Fiber Sensors Conference Technical Digest,2002.
    [118]F.Napolitano,T.Gaiffe,Y.Cottreau,and T.Loret,PHINS:the First High performances inertial navigation system based on Fiber optic gyroscopes,presented at 9th Saint Petersburg International Conference on Integrated Navigation systems,Saint Petersburg,Russia,2002.
    [119]秦永元,严恭敏,顾冬晴,郑吉兵.摇摆基座上基于信息的捷联惯导粗对准研究,西北工业大学学报,vol.23,pp.681,2005.
    [120]P.G.Savage,Strapdown Inertial Navigation Integration Algorithm Design Part 1:Attitude Algorithms.AIAA Journal of Guidance,Control and Dynamics.vol.21,pp.19-28,1998.
    [121]P.G.Savage,Strapdown Inertial Navigation Integration Algorithm Design Part 2:Velocity and Position Algorithms,AIAA Journal of Guidance,Control,and Dynamics,vol.21,pp.208,1998.
    [122]C.S.Giovanni and E.Levinson,Performance of a Ring Laser Strapdown Marine Gyrocompass,presented at ION 37th Annual Meeting Proceedings,Annapolis,Maryland,USA,1981.
    [123]D.E.Levinson and R.Majure,Accuracy enhancement techniques applied to the Marine Ring Laser Inertial Navigator(MARLIN),Journal of The Institute of Navigation,vol.34,pp.71,1987.
    [124]谢列托维奇,陀螺系统仪表误差的自动补偿.北京:国防工业出版社,1982.
    [125]P.S.R.Diniz,E.A.B.d.Silva,and S.L.Netto,Digital Signal Processing:System Analysis and Design:Cambridge University Press,2002.
    [126]http://www.sagem-ds.com/pdf/en/D 173.pdf.
    [127]http://www.sperrymarine.northropgrumman.com/Admin/Downloads/354/Product %20Brochure.pdf.
    [128]M.-J.Yu,J.G.Lee,and H.-W.Park,Comparison of SDINS in-flight alignment using equivalent error models,IEEE Transactions on Aerospace and Electronic Systems,vol.35,pp.1046,1999.
    [129]钟秋海,付梦印.现代控制理论与应用:机械工业出版社.
    [130]舒兆根.现代控制引论.湖南长沙:国防科技大学出版社,1997.
    [131]《数学手册》编写组,数学手册.北京:高等教育出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700