速率偏频激光陀螺寻北仪的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
速率偏频激光陀螺寻北仪可以快速提供高精度的方位基准,在军事和民用领域均有重要应用价值。论文从速率偏频激光陀螺的误差特性出发,理论研究了影响寻北仪寻北精度的各种因素,并基于实验室现有的速率偏频激光陀螺寻北仪样机,进行了工作参数优化、系统性能实验研究,为该寻北仪工程化研究奠定基础。论文的主要工作包括:
     1.理论分析了速率偏频激光陀螺(寻北仪核心器件)的误差特性。速率偏频激光陀螺的误差主要是角度随机游走误差、零偏不稳定性误差和量化误差。误差分析表明,通过增加速率偏频周期、加大速率偏频回转加速度,可有效减小陀螺随机游走、零偏不稳定的误差。
     2.研究了寻北仪系统的各种误差对寻北精度的影响。基于二位置寻北方案的寻北仪误差模型,理论分析了速率偏频激光陀螺误差、速率偏频参数、寻北仪机械误差、光学基准标定误差等对寻北精度的影响。结果表明,影响寻北仪短时寻北精度的误差主要有量化误差和角度随机游走误差,而寻北仪的机械误差在没有扰动下是固定误差。
     3.研究了提高寻北仪寻北精度的数据处理方法。通过比较普通平均法和滑动平均法分别处理寻北数据的结果,发现滑动平均法能抑制量化误差对短时寻北精度的影响,进而有效提高了寻北仪短时寻北精度。
     4.实验研究了寻北仪的工作参数和使用环境条件对寻北精度影响。并实测了寻北结果的重复性。利用寻北仪实验样机,对速率偏频周期、速率偏频回转加速度和单次寻北时间等等影响寻北精度的工作参数进行了优化研究。对寻北仪的性能进行了重复性实验,验研究结果表明,地理纬度28.2°处,静基座条件下,寻北仪200S的寻北精度优于16″,且寻北仪性能不受冷启动影响,重复性好。
     5.实验标定了该寻北仪实验样机,验证了寻北精度。利用经纬仪和寻北仪搭建了实验系统,标定了寻北仪的光学基准,并进行了与真北(北极星确定的方向)之间的对比实验,实验结果验证了寻北仪寻北精度。
High precision azimuth can be provided rapidly by the north finder based on rate biased RLG, which plays an important role in military and civil applications. The Error characteristic of rate biased RLG, is theoretically studied, same to the factors which influence the precision of north finder. Experimental research is carried out to work parameters and functions of the north finer, which is an experimental machine. The data provided by experiments is used on the next step of engineering. Main researches are as the follows.
     1. The error characteristic of rate biased RLG(core parts of north finder), is theoretically studied .The primary errors of rate biased RLG are bias instability error, quantification error and angle random work error. The results show that quantification error and angle random work error can be reduced, when the turn round acceleration of the rate biased equipment and rate biased period are increased.
     2. The factors which influence the precision of north finder are analyzed. Based on the error models of two-position sampling scheme, the errors of rate biased RLG, the rate biased parameters, the mechanical error and the demarcated error of optical norm are analyzed theoretically. The results show that the north finding precision, in short turn north finding, is primary influenced by quantification error and angle random work error. The mechanical error of north finder is a fixed error when there is no perturbation.
     3. The data processing method to improve the north finding precision is studied. Compared with the normal average method, moving average method can weaken the effect of quantification error and improve the precision of north finder in short turn north finding.
     4. The parameters of the north finer and influence of environment condition on the precision are studied by experiments. The parameters include turn round acceleration of the rate biased equipment, rate biased period and single north finding time are studied and optimized by experiments. The results show that: at the geographic latitude of 28.2o, the precision of north finder on stationary base is better than 16" after 200S. The precision of north finder is not influenced by cool starting and the repeat precision is good.
     5. The north finder is demarcated and the precision is proved through experiments. A experiment system is built by a theodolite and the north finder to demarcate the optical norm and compare with the geographic north (directed by Polaris). The precision of the north finder is proved by the result.
引文
[1]白云超,刘思伟,田育民,陈晓璧.高精度寻北仪的现状及发展趋势[J].测绘科学与工程,2008,28(17):52~55.
    [2] KohlKW. The new high accuracy ship’siner tialnavigation system PL41M K4[A]. Symposium Gyro Technology[C]. Stugttgart, Germany:Deutsche Gesellschaftfur Or tungund Navigation (DGON) Universitat Stuttgar t Institut furMechanik, 1990 .
    [3] Matthews A,Wetter.H. Cost effective high accuracy inertial navigation[J]. Navigation, 1989, 36(2):243-249 .
    [4] V N Kuryatov, G V Cheremisenov, V N Panasenko, etal. Marine INS based on the laser gyroscope KM-11 [A]. Symposium Gyro Technology [C]. Stuttgart Germany, 2002.
    [5]赵雪亚夏元钦陈德应.激光陀螺的偏频技术[J].激光与光电子学进展[J],2005.8,42(8):50-53.
    [6]章燕申,汤全安,苏力.速率偏频激光陀螺的实验研究[J].中国惯性技术学报,1994.8,2(4):34-37.
    [7] Thomas Beneventano, Raymond M.Bendett. North Finding System. USPatent:4945647. 1990.
    [8]郭永刚,吴文启,杨壮志,张岩.四频差动激光陀螺三种误差模型对寻北精度的影响[J].中国惯性技术学报,2006.10,14(5):65-69.
    [9]邹向阳,孙谦,陈家斌,徐建华.续旋转式寻北仪的寻北算法及信号处理[J].京理工大学学报,2004.9,24(9):804-807.
    [10]白云超,李学琴,马小辉,田育民.用旋转调制技术的高精度陀螺寻北方案[J].中国惯性技术学报,2010.8,18(4):421-424.
    [11]郭喜庆,武克用.基于环形激光陀螺调制输出的寻北系统[J].光电工程,2001,28(2):11-13.
    [12]张晓强,速率偏频激光陀螺寻北系统算法快速性与误差标定补偿方法研究[D].国防科技大学工学硕士论文,2010.11.
    [13] Hasselbring, Alan J.Morristown Systems and methods for a lightweight north-finder. UKPatent:2120010A2.2009.
    [14]赵永康,陈磊江,寻北仪. CNPatent:101738182.2009.
    [15]韩宗虎,冯培德.速率偏频技术提高激光陀螺精度的理论研究[J].中国惯性技术学报.2001,9(2):41-46.
    [16]王锦瑜.激光陀螺速率偏频技术研究[D].西北工业大学博士论文,1999.10.
    [17]战徳军.速率偏频激光陀螺特性及相关技术研究[D].国防科技大学工学博士论文,2009.12.
    [18]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984.
    [19]陈璞,冯培德,王锦瑜.速率偏频激光陀螺标定方法讨论[J].中国惯性技术学报,2001,9(3): 44-47.
    [20]盛骤,谢式千,潘承毅.概率论与数理统计(第二版)[M].高等教育出版社.1989.
    [21] [俄]B.B.谢列金,P.M.库库利耶夫.激光陀螺及其应用[M].北京:航空工业出版社,1992.
    [22]饶谷音,李广柱,袁保伦.环形激光陀螺随机误差测试中的计数误差[J].中国惯性技术学报,2006.4,14(2):78-81.
    [23]王昌平.旋转式激光陀螺寻北仪误差建模与仿真研究[D].国防科技大学工学硕士论文,2005.11.
    [24]战德军,秦石乔,张宝东,魏文俭,黄宗升.速率偏频激光陀螺过锁区误差特性分析[J].中国惯性技术学报,2007.12,15(6):730-733.
    [25]凌明祥,张树侠.激光陀螺随机噪声分析及其性能评价[J].中国惯性技术学报.1998,6(4):51-54.
    [26]黄宗升.旋转式激光陀螺寻北仪的研究[D].国防科技大学博士论文,2007.4.
    [27]张思将.旋转式激光陀螺寻北仪寻北算法研究[D].国防科技大学工学硕士论文,2005.11.
    [28]龙文强,秦继荣.二位置数字捷联寻北仪的设计与实现[J].火力与指挥控制,2007,32(4):97-99.
    [29] Sang Man Seong, Jang Gyu Lee, Chan Gook Park. Equivalent ARMA model representation for RLG random errors[J]. IEEE Transactions on Aerospace and Electronics Systems, 2000,36(1) :286~290.
    [30]李春虹.扰动基座下激光陀螺寻北仪的数据处理研究[D].国防科技大学工学硕士论文,2006.11.
    [31] Lawrence C N, Darryll J Pines. Characterization of ring laser gyro performance using the Allan variance method[J]. AIAA Journal of Guidance, 1997,20(1): 211-214.
    [32] Widrow B, István Kollár, Liu M C. Statistical theory of quantization[J]. IEEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 353-361.
    [33] Anekal B Sripad, Donald L Snyder. A necessary and sufficient condition for quantization errors to be uniform and white[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, ASSP-25(5): 442-448.
    [34]王可东,顾启泰.随机噪声对激光陀螺输出特性的影响[J].光学学报,2003,23(12):1479-1483.
    [35]战德军,秦石乔,王省书,等.基于滑动平均的速率偏频激光陀螺静态角速率测量算法[J].光学学报,2009,29(11): 3197-3201.
    [36]李春虹,王省书,黄宗升,秦石乔.扰动基座下激光陀螺寻北仪数据处理方法的研究[J].仪器仪表学报,2006,27(12):413-41.
    [37]邹向阳,陈家斌,谢玲,孙谦.基于三次B样条小波变换的寻北仪抗基座扰动研究[J].微电子学与计算机.2005,22(2):151-157.
    [38]薛斌,邓志红,肖火亘烜,付梦印.一种有效的车载寻北仪数据处理方法[J].中国惯性技术学报,2005.12.
    [39] IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros [S]. 1995.
    [40]时伟,贺汉根.区间正交小波变换域FLP算法及其在捷联寻北中的应用[J].国防科技大学学报.2005,27(4):57-61.
    [41]沈铖武,王志乾,刘畅,孙志远,李建荣. BP神经网络在多位置捷联寻北系统中的应用[J].光学精密工程,2009.8,17(8):1890-1894.
    [42] Y S Zhao, Y R Lin, Z L Deng. The vector modulation method to make precise measurements with directional sensors[J]. Measurement Science and Technology, 2007, 18(1):217-222.
    [43] Kim Sung-Jin, Lee Sang-Sik, Kwon Yong-soo. Dynamic north-finding scheme based on a fiber optic gyroscope[C]. Proceedings of SPIE, 1997, Vol.3087:126-136.
    [44] HAM F M,BROWN R G. Observability,Eigenvalues,and Kalman Filtering[J]. EEE Transaction on Aerospace and Electronic Systems,1983,19(2):269-273.
    [45] Sciegienny J,Nurse R,Wexler J,et ac. Inertial navigation system standardized software development final technical report, Volume II of IV INS survey and analytical development[R]. Massachusetts: The Charles Stark Draper Laboratory, Inc.1976:37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700