基于DSP的激光陀螺捷联惯导系统实时实现方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载探测系统需要在运动中实现对目标的精确定位。这就要求惯性导航系统提供实时的动态姿态、方位和位置等导航参数,以对探测结果进行运动补偿。导航参数测量的实时性直接影响运动补偿效果,并最终影响目标定位精度。论文针对惯性导航参数高精度实时测量这一需求背景,以激光陀螺捷联惯导系统为对象,研究基于高速信号处理器DSP6713车载运动参数的实时动态测量实现方法。主要研究工作包括以下五个方面:
     (1)研究并解决了惯性导航参数更新频率低(100Hz)而探测系统在运动补偿中要求姿态参数更新频率高(1000Hz)的矛盾。提出了满足采样定理条件下的姿态参数插值方案;通过转台试验以及联调测试,表明方案可行。
     (2)研究了激光陀螺捷联惯导系统导航参数的时间延迟问题,包括测量延时、惯导解算延时与通信延时等。采用试验的方法,精确测定了系统延迟,对由于延迟造成的时间不同步误差进行了分析,并提出了相应的解决方案。
     (3)基于高速信号处理器DSP6713,研究了激光陀螺捷联惯导系统初始对准算法的实时实现问题。针对停车时存在的基座扰动,采用了先粗对准,再精对准的对准方案,设计了5状态的初始对准Kalman滤波器。分析了惯性姿态解算、比力方程解算和Kalman滤波初始对准解算等算法模块的计算量及不同的实时性要求,合理分配实时多任务软件模块,实现了系统的快速精确对准。
     (4)研究了激光陀螺捷联惯导系统组合导航定位算法的实时实现问题。论文对纯惯导系统的定位原理及定位误差进行了深入研究,为了满足定位精度的要求,采用里程计组合、地标修正的方式进行辅助定位。对里程计的参数在线标定、里程计与惯导系统组合导航定位的原理与方法以及地标修正的方法进行了深入研究,并在构建的DSP6713平台上实现。系统联调试验结果表明,组合导航定位精度满足指标要求,修正算法软件能够实时并行工作。
     (5)实际构建了基于高速信号处理器DSP6713的惯性导航解算平台,实现了载车运动参数的实时动态测量。通过实验室静态试验以及外场车载试验证明:基于DSP6713的激光陀螺捷联惯导系统能够满足实时性要求,初始对准与组合导航精度满足项目指标要求。这为探测系统在运动中实现对目标的精确定位提供了前提条件。
The Inertial Navigation System(INS) is needed for the vehicle detecting system with its realtime dynamic horizontal attitude,azimuth and position,so that the detecting system can compensate the detected results.The realtime property of the navigation parameters affects the compensated results directly,and will influence the precision of the target's location given by the detecting system.To this question,the thesis makes a research on the Ring Laser Gyro(RLG) Strapdown Inertial Navigation System(SINS), especially how to get the vehicle attitude and motion parameters in real-time,which is based on the high-speed digital signal processor DSP6713.The main work of this thesis is showed as follows:
     (1) The inconsistency between the low updating rate(100Hz) of the inertial navigation parameters and the high updating rate(1000Hz) of the attitude parameters needed by the detecting system has been solved in the thesis.Under the condition of Shannon sampling theory,an interpolation method is proposed.It shows that by swaying experiment on turntable and the experiment in outfield the method is feasible.
     (2) The thesis researches on the time-delay of the parameters given by the RLG SINS.The time-delay of the system includes the sampling time,the calculating time and the transmitting time.By experiment,the system time-delay is determined exactly.The errors led by time-delay are also analyzed and methods are proposed to reduce the influence.
     (3) Based on the high-speed signal processor DSP6713,the realtime realization of the algorithm for RLG SINS initial alignment is researched.Because of the vehicle perturbations,a coarse alignment and five-states Kalman Filter alignment scheme is made.According to the computation numbers and real-time desire of attitude updating, the specific force vector resolution and the Kalman filter initial alignment,the software is well configured to finish the initial alignment quickly in a high precision.
     (4) The real-time realization based on DSP6713 of locating algorithm of the RLG SINS integrated navigation is researched.The integrated navigation includes much navigation information and it is very important to mix it.The thesis discusses the pure inertial navigation position theory and the position errors.To achieve the position precision,both the odometer and landmark are used.The odometer parameters' on-line calibration,the SiNS/odometer integration method and the landmark correction method are also lucubrated and realized on the DSP6713 platform.The outfield experiment shows that the integrated navigation position error is limited under the guideline,and the software works well.
     (5) The real-time measurement of the vehicle movement parameters and attitude parameters is realized on the navigation-computing platform based on high-speed digital signal processor DSP6713.The lab experiment and the outfield experiment both tells that the system can satisfy the real-time desire,and the precision of initial alignment and integrated navigation can be well accepted.It is an important precondition of high precision vehicle detecting system.
引文
[1]《陀螺仪与惯性技术情报网》.国外惯性技术手册[M].北京:国防工业出版社,1980
    [2]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993.
    [3]胡小平.自主导航原理与应用[M].长沙:国防科大学出版社,2002.
    [4]王宇.机抖激光陀螺捷联惯导系统的初步探索[D].博士学位论文.长沙:国防科技大学,2005
    [5]张树侠,孙静.捷联式惯性导航系统[M].北京:国防工业出版社,1992.
    [6]陈哲.捷联惯导系统原理[M].北京:宇航出版社,1986.
    [7]D.H.Titterton and J.L.Weston,Stmpdown.Inertial Navigation Technology.Second Edition[M].Second ed:MIT Lincoln Laboratory,Lexington,Massachusetts.,2004.
    [8]李方慧等.TMS320C6000系列DSPs原理与应用(第二版)[M].北京:电子工业出版社,2003
    [9]张小仿.基于DSP的光纤陀螺方位基准系统研究[D].硕士学位论文.哈尔滨:哈尔滨工程大学,2005
    [10]Bortz,J.E.A New Mathematical Formulation for Strapdown Inertial Navigation.IEEE Transactions on Aerospace and Electronics System,1971.7(AES-1)
    [11]曹娟娟,房建成,盛蔚.一种组合导航系统快速滤波方法及半物理仿真[J].北京航空航天大学学报,卷32,2006
    [12]罗喜霜,张天桥.基于Hermite插值的捷联惯导姿态解算算法[J].战术导弹技术.Jan.2002
    [13]R.J.Wareham and J.Lasenby.Rigid body pose and position interpolation using geometric algebra"[J].submitted to ACM Transactions on Graphics,2004.
    [14]聂铁军.工程数学·计算方法[M].北京:国防工业出版社,1982
    [15]程云鹏.矩阵论[M].西安:西北工业大学出版社,1998
    [16]蒋洪明,张庆.动态测试理论与应用[M].南京:东南大学出版社,1999
    [17]龙志强.现场总线控制网络系统设计[M].长沙:国防科技大学出版社,2006
    [18]费业泰.误差理论与数据处理[M].合肥.机械工业出版社,2000
    [19]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998
    [20]练军想.捷联惯导动基座对准新方法及导航误差抑制技术研究[D].博士学位论文.长沙:国防科技大学 2007
    [21]秦永元等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
    [22]钟秋海,付梦印.现代控制理论与应用(第二版)[M].北京:机械工业出版社,2004
    [23]Greg Welch,Gary Bishop.An Instroduction to the Kalman Filter.ACM,Inc,2001
    [24]程向红,郑梅.捷联惯导系统初始对准中Kalman参数优化方法[J].中国惯性技术学报,卷14,2006
    [25]兰春云,缪玲娟,沈军.陆用捷联惯导系统中里程计刻度因子的在线辨识[J].北京理工大学学报,卷23,2003
    [26]陈峰浴,黄彪,赵志强,谢玲.提高陆地导航仪定位精度的一种新方法[J].北京珲工大学学报,卷13,1993
    [27]O.Lauro,C.Daniel,R.Giulio and B.Johann.Current-Bassed Slippage Detection and Odometry Correction for Mobile Robots and Planetary Rovers[J].IEEE Trans.on Robotics,Vol.22,No.2,366-378,2006.
    [28]R.Giulio,O.Lauro,M.Annalisa and B.Johann.Wheel Slippage and Sinkage Detection for Planetary Rovers[J].IEEE/ASME Trans.on Mechatronics,Vol.11,No.2,185-195,2006.
    [29]张红良,吴文启,胡小平.一种新的里程计刻度因子在线辨识算法[J].张家界:中国控制会议论文集,2007
    [30]S.Sukkarieh.Low Cost,High Integrity,Aided Inertial Navigation Systems for Autonomous Land Vehicles"[D].PhD thesis,Australian Centre for Field Robotics,The University of Sydney,2000.
    [31]Yuanxin Wu,Meiping Wu,Wenqi Wu,Dewen Hu,Xiaoping Hu.Autonomous Land Navigation Using Inertial Sensors,Part Ⅰ:Self-calibration for Cases with an Uncalibrated Odometer[J].Submitted to IEEE Trans.on Automatic Control,2007(二审中)
    [32]李鹏波,胡德文.系统辨识[M].长沙:国防科技大学出版社,2007年
    [33][美]Texas Instruments Incorporated.TMS320C6000系列DSP编程工具与指南[M].北京:清华大学出版社,2006
    [34]J.Eyre,J.Bier.The Evolution of DSP Processors[J].IEEE Signal Processing Magazine,2000,vol.17,pp 43-51.
    [35]彭启琮,管庆等.DSP集成开发环境—CCS及DSP/BIOS的原理与应用[M].北京:电子工业出版社,2004
    [36]胡广书.数字信号处理—理论、算法与实现(第二版)[M].北京:清华大学出版社,2003
    [37]舒兆根.现代控制引论[M].长沙:国防科技大学出版社,1996
    [38]常青,杨东凯,寇艳红,张其善.车辆导航定位方法及应用[M].北京:机械工业出版社,2005
    [39]周永余,许江宁,高敬东.舰船导航系统[M].北京:国防工业出版社,2006
    [40]Erik B.Dam,Martin Koch,Martin Lillholm.Quaternions,Interpolation and Animation[R].Technical Report DIKU-TR-98/5.University of Copenhagen.July,1998
    [41]黄丽斌,周百令,单茂华.基于DSP的MIMU/GPS组合导航系统研究[J].中国惯性技术学报,卷11,2003
    [42]夏辉.基于DSP的导航计算机硬件设计[D].硕士学位论文.长沙:国防科技大学,2004
    [43]《数学手册》编写组.数学手册[M].北京:高等教育出版社,1979.
    [44]吴忠国.行进雷达—让雷达跑起来[J].国防科普,2003.[9]:59-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700