聚合物熔体体积输送动力学模型及解析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以螺杆为标志的传统的聚合物加工设备存在着热机历程长、能耗高等普遍问题,以拉伸流场支配的叶片挤出机是聚合物加工中一种全新的加工设备,目前以剪切拖曳为主的单螺杆熔体输送理论研究已经形成了比较完善的理论体系。拉伸流场支配的叶片挤出机的工作方式和熔体输送机理与传统的单螺杆挤出机完全不同,因此单螺杆熔体输送机理不适合叶片挤出机熔体输送过程,研究叶片挤出机熔体输送机理不仅有利于优化叶片挤出机设计结构,而且有利于聚合物加工理论的发展和完善。
     本文基于拉伸流变的聚合物塑化输运设备的基本构成单位叶片塑化输运单元为研究对象,首次比较完整系统地研究了叶片挤出机聚合物熔体输送过程,提出了熔体体积输送的输送理论,在叶片单元塑化输送机理的基础上,建立数学物理模型,分析熔体体积输送过程中周向以及轴向方向熔体的运动规律,并在此基础上建立了熔体体积输送能耗模型,熔体输送能耗过程的实验结果与挤出机实际加工时的能耗实验结果呈现出比较好的一致性。
     通过建立熔体体积输送过程的数学物理模型,分析了轴向、周向熔体拉伸形变速率,结果发现:聚合物熔体体积输送在很大程度上受到容腔体积的周期性变化的影响,聚合物熔体在容腔中输送时产生轴向和周向的拉伸形变,同时还受到轴向的正应力场的影响,聚合物熔体的体积输送基本实现了正位移输送,其对物料的依赖性显著减弱。
     本文还通过建立熔体体积输送过程的数学、物理模型探讨研究了熔体体积输送能耗特性,研究结果表明:聚合物熔体体积输送的能耗与温度成反比关系,温度越高,聚合物熔体体积输送的能耗越小,相反温度越低,聚合物熔体体积输送的能耗越大;聚合物熔体体积输送的能耗是与转速成正比关系,转速越大,聚合物熔体体积输送的能耗越大,相反转速越小,聚合物熔体体积输送的能耗越小;熔体体积输送的能耗值与物料的黏度成正比关系,聚合物物料的黏度越大,熔体体积输送所需要的能耗就越大,聚合物物料的黏度越小,熔体体积输送所需要的能耗就越小。
     最后利用组装式叶片实验挤出机对叶片容腔熔体输送过程中的叶片挤压系统的能耗进行了实验研究,实验结果与理论预测的结果有比较好的一致性。
     基于拉伸流变的聚合物塑化输运方法和设备是一种全新的聚合物加工方法和设备,本文提出的聚合物熔体体积输送过程模型,为进一步研究叶片挤出机挤出过程打下了良好的基础,也为聚合物叶片塑化输运设备的推广应用提供了重要的理论依据。
Traditional polymer processing equipment with a symbol of screw exist the problems oflong thermal history and high consumption, the vane extruder based on elongation rheology isa completely new theory and machinery for polymer processing. At present, the research ofthe single-screw melt conveying has been formed a relatively complete theoretical system, thework ways and plasticizing and conveying mechanism of the vane extruder are fully differentwith the screw extruder, thus, the screw melt conveying is not suitable for the vane conveyingprocess. The researches on the vane melt conveying are benefit for the optimization design ofthe vane extruder and have important scientific and practical significance to the developmentand improvement of the polymer processing theory based on elongation rheology.
     Vane plasticizing and conveying unite (VPCU) is the basic unit in polymer processingmachine, in this paper, the whole melt conveying process is studied systematically for the firsttime and the theory of melt volume conveying has been presented. Based on the vaneplasticizing and convey theory, melt conveying mathematical model and the energyconsumption model are developed to study the melt radical velocity, the circumferentialvelocity and the axial velocity in the VPCU, the experiment results are consistent with thepredictions of energy consumption models.
     The radical, the circumferential and the axial strain rate of the polymer have been studiedby the melt conveying mathematical model, the results shows that, the cavity volume ofperiodic change has important influences on the melt conveying and the polymer melt endureelongation strain both in the axial and the circumferential direction in the chamber, and anormal stress field in the axial direction formed in the chamber can help to convey the meltwith positive displacement and not depending on the properties of the materials.
     Through building the energy consumption model in the melt conveying process, theenergy consumption characteristic is analyzed in the paper. The research shows that, thehigher the temperature, the smaller energy consumption of polymer melt conveying is; energyconsumption in the polymer melt conveying press is proportional to the rotational speed of therotor; energy consumption in the polymer melt conveying press is inversely proportional tothe rotational speed of the rotor.
     Finally, energy consumption characteristics in polymer solids conveying process, meltconveying process and the whole plasticizing and conveying process including solidsconveying, melting and melt conveying in vane extrusion system have been studied experimentally by means of the compositional vane experimental device and the vaneextruder. The experiment results are consistent with the predictions of energy consumptionmodels.
     The method and equipment of polymer plasticizing and conveying based on elongationrheology is a completely new theory and machinery for polymer processing. The proposedmodels of polymer melt conveying process in VPCU and the energy consumption in theprocess laid a good foundation for further study of polymer vane plasticizing extrusionprocess and its mechanism. This study provided an important theoretical basis for thepromotion of the vane plasticization equipment for polymer processing.
引文
[1] Tadmor Z., Gogos C.G. Priciples of polymer processing (second edition)[M]. New Jersey:John Wiley&Sons, Inc.,2006:473-475
    [2]瞿金平.电磁动态塑化挤出方法及设备[P].中国专利90101034.0,1990;美国专利5217302,1993;欧洲专利044306B1,1995
    [3]瞿金平.电磁式聚合物动态注射成型方法及装置[P].中国专利ZL96108387.5,1999
    [4] Qu J.P. Polymer's electromagnetic dynamic injection molding method and the apparatustherefor[P]. U.S. Patent005951928A,1999
    [5] Qu J.P., Shi B.S., Feng Y.H., et al. Dependence of Solids Conveying on Screw AxialVibration in Single Screw Extruders[J]. Journal of Applied Polymer Science,2006,102(3):2998-3007
    [6] Qu J.P., Feng Y.H., He H.Z., et al. Effects of the Axial Vibration of Screw on ResidenceTime Distribution in Single-Screw Extruders[J]. Polymer Engineering and Science,2006,46(2):198-204
    [7]瞿金平.聚合物动态塑化成型加工理论与技术(上下卷)[M].北京:科学出版社,2005
    [8] Qu J.P. Polymer Dynamic Plasticating Processing: Theory and Technology[M]. WoodheadPublishing Limited,2010
    [9] Qu J.P., Cai Y.H. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders[J]. Polymer-Plastics Technology and Engineering,2006,45(10):1137-1142
    [10] Qu J.P., Zeng G.S., Feng Y.H., et al. Effect of Screw Axial Vibration on Polymer MeltingProcess in Single-Screw Extruders[J]. Journal of Applied Polymer Science,2006,100(5):3860-3876
    [11]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国专利200810026054,2008
    [12] Tadmor Z., Gogos C.G. Priciples of polymer processing (second edition)[M]. New Jersey:John Wiley&Sons, Inc.,2006:1-2
    [13]刘延华.聚合物成型机械[M].北京:中国轻工业出版社,2005.7:98-108
    [14] Tadmor Z. Machine Invention, Innovation and Elementary Steps[J]. Advances inPolymer Technology,2002,21:87–97
    [15]瞿金平.电磁动态塑化挤出方法及设备[P].中国专利90101034.0,1990;美国专利5217302,1993;欧洲专利044306B1,1995
    [16]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国专利200810026054,2008
    [17] White J.L. Twin Screw Extrusion [M]. Hanser: Munich,1990
    [18] Eise K., Herrmann H., Jakopin S., et al. An Analysis of Twin Screw ExtruderMechanisms[J]. Advances in Polymer Technology,1981,1(2):18–39
    [19] Agassant J.F., Avenas P., Sergent J-Ph, et al. La Mise en Forme Des Matie′res Plastiques,Technique et Documentation (Third Edition)[M]. Technique&Documentation, Paris,1996
    [20]塔德莫,戈戈斯.聚合物加工原理(第二版)[M].任冬云等译.北京:化学工业出版社,1990:203-205
    [21] Agassant J.F, Avenas P., Sergent J.-Ph, et al. La Mise en Forme Des Matie′res Plastiques,Technique et Documentation (Third Edition)[M]. Technique&Documentation, Paris,1996
    [22] Arash K., Frederick R.B. Mixing element for screw extrude [P]. US6116770,1998
    [23] Siegfried B. Twin screw extruder[P]. US5000900,1989
    [24] Rowell H.S., Finlayson D. Engineering,1992,(114):606
    [25] Morghn P.H. Plastics Process. London: Illife Books Ltd.,1951
    [26] Mallouk R.S., Mckelvey J. Industrial&engineering chemistry research,1953,(45):983
    [27] Moher W.D., Saxton R. L., Jepson C. H. Industrial&Engineering ChemistryResearch,1957,(49):1857
    [28] Meskat W. Kunststoffe.1995,(45):87
    [29] Maddock B.H. Society Plastics Engineering,1959,(15):383
    [30] Yang B., Lee L.J. Process control of profile extrusion using thermal method Part I:Mathematical modeling and system analysis[J]. Polymer Engineering&Science,1988,28(11):697-707
    [31] Yang B., Lee L.J. Process control of profile extrusion using thermal method Part II:Closed loop control[J]. Polymer Engineering&Science,1988,28(11):708-717
    [32] Tadmor Z., Klein I. Engineering principles of plasticating extrusion, Van NostrandReinhold, New York,1970.(a) p.190,(b) p.202,(c) p.194-199,(d) p.397,(e) Chapters6and8
    [33] Tadmor Z., Klein I. Engineering principles of plasticating extrusion, Van NostrandReinhold, New York,1970.(a) p.234,(b) p.310,(c) p.328,(d) Chapters6and8,(e) p.186,(f) p.90,(g) p.133
    [34] Booy M.L. Influence of oblique channel ends on screw pump performance [J]. PolymerEngineering&Science,1967,7,5-16
    [35] Choo. Experimental deep-channel velocity profiles and operating characteristics for asingle-screw extruder[J]. Polymer Engineering&Science,1980,20(5):349-356
    [36] McCarthy K.L., Kauten R.J. Application of nmr imaging to the study velocity profilesduring extrusion processing[J]. Trends in Food Science and Technology,1992,(3):315-19
    [37] Campbell G.A., Swwwney P.A., Delton J. Experimental investigation of the drag flowassumption in extruder analysis[J]. Polymer Engineering&Science,1992,32(23):1765-1770
    [38] Li Y., Hsieh F. Modeling of flow in a single screw extruder[J]. Journal of FoodEngineering,1996,27(3):353-375
    [39] Kaufman M., Advection and mixing in single screw extruder-An analytic, The AICheAnnual Techn. Conf. Meeting Proc., San Francisco,2003
    [40] Rowell R.S., Finlayson D., Screw viscosity pumps, Engineering,114,606(1992); ibid.,1928,126,249
    [41] McKelvey J.M, Polymer Processing, Wiley, New York,1962
    [42] Colwell R. E., Nicholls K.R., The screw extruder, Industrial&Engineering ChemistryResearch,1959,51:841-843
    [43] Griffith R.M., Fully developed flow in screw extruder, Industrial&EngineeringChemistry Research,1962,1:180-187
    [44] Zamodits H., Pearson J.R.A. Flow of polymer melts in extruders. Part1. The effects oftransverse flow and of superposed steady temperature profile, Transfer Society Rheology,1969,13:357-358
    [45] Yates B., Temperature development in single screw extruders, Ph.D. Thesis, Unversity ofCambridge, Canbridge,1968
    [46] Fenner R.T., The design of large hot melt extruders, Polymer,1975,16:298-304
    [47] Fenner R.T. In computational analysis of polymer processing, J. R. A. Pearson, and S. M.Richardson, Eds., Applied Science, London,1983
    [48] Elbirli B., Lindt J.T. A note on the numerical treatment of the thermally developing flowin screw extruders, Polymer Engineering&Science,1984,24:482-487
    [49] Syrjala S., On the analysis of fluid flow and heat transfer in the melt conveying sectionof a single screw extruder, Num. Heat. Trans., Part A,1999,35:25-47
    [50] He X.Y., Chen S.Y., Gary D., et al. Novel Thermal Model for Lattice Boltzmann Methodin Incompressible Limit[J]. Journal of Computational Phyics,1998,146:282-300
    [51] Buick J.M., Cosgrove J.A. Numerical Simulation of the Flow Field in the Mixing Sectionof a Screw Extruder by the Lattice Boltzmann Model[J]. Chemical Engineering Science,2006,61:3323-3326
    [52] Buick J.M. Lattice Boltzmann Simulation of Power law Fluid Flow in the MixingSection of A Single screw Extruder[J]. Chemical Engineering Science,2009,64(1):52-58
    [53] Botten A.J., Burbidge A.S., Blackburn S. A Model to Predict the Pressure development insingle screw extrusion[J]. Journal of Materials Processing Technology,2003,135(2/3):284-290
    [54] Bereaux Y., Charmeau J.Y., Moguedet M. A single model on throughput and pressuredevelopment for single screw[J]. Journal of Materials Processing Technology,2009,209(1):611-618
    [55] An-I Y., Yih-Mon J. Predicting residence time distributions in single screw extruder fromoperating conditions[J]. Journal of Food Engineering,1999,39:81-89
    [56] Hoppe S., Detrez C., Pla F. Modeling of a cokneader for the manufacturing of thofcomposite materials having absorbent properties at ultra-high-frequency waves:part1.Modeling of flow from residence time distribution investigations[J]. PolymerEngineering and Science,2002,42:771-780
    [57] Ajay K., Girish M.G., David D. J., et al. Digital image processing for measurement ofresidence time distribution in a laboratory extruder[J]. Journal of Food Engineering,2006,75:237-244
    [58] Chao B., Jiang B., Study of residence time distribution in a reciprocating single screwpin barrel extruder[J]. Journal of Materials Processing Technology,2008,30:1-7
    [59] Manab K. D., Ghoshdastida P.S. Experimental validation of a quasi three-dimensionalconjugate heat transfer model for the metering section of a single screw plasticatingextruder[J]. Journal of Materials processing Technology,2002,120:397-411
    [60] Seppo S. Numerical simulation of non-isothermal flow of polymer melt in a single-screwextruder: A validation study[J]. Numerical heat Transfer,2000,37:897-915
    [61] Yu C.X., Sundaram G. Modeling of melt conveying in a deep channel single-screwcheese stretcher[J]. Journal of Food Engineering,2004,61:241-251
    [62] Rauwendaal C. Finite element studies of flow and temperature evolution in single screwextruders[J]. Plastics, Rubbers and Composites,2004,34:390-396
    [63] Ahmad K., Jean-Robert C. Numerical simulations of non-isothermal three-dimensionalflows in an extruder by a finite volume method[J]. Journal Non-Newtonian Fluid Mech,2005,126:7-22
    [64] Gino F., Roberto M. A finite-differnce method for the prediction of velocity field inextrusion process[J]. Journal of Food Engineering,2007,83:84-92
    [65] Andre B., Marco D., Erich J. W., et al. Extrusion flow of complex viscoelastic polymerbleed model[J]. Journal Non Newtonian Fluid Mech.,2008,149:93-103
    [66]耿孝正.双螺杆挤出机及其应用[M].北京:中国轻工业出版社,2003,1
    [67] Booy M.L. Geometry of fully wiped twin-screw equipments[J]. Polymer Engineering&Science,1978,18,973
    [68] Booy M.L. A noniterative numerical solution of poisson’s and laplace’s equation withapplication to slow viscous flow[J]. Trans. ASME Series D,1996,88,725-733
    [69] Denson C.D., Hwang B.K. The influence of the axial pressure gradient on flow rate forNewtonian liquids in a Self Wiping, Corotating twin screw extruder[J]. PolymerEngineering&Science,1980,20,965
    [70] Szydlowski W., White J.L. An inproved theory of metering in an intermeshing Corotatingtwin-screw extruder[J]. Advanced in Polymer Technology,1987,7,177
    [71] Tayeb J., Vergnes B., Della V. G.J. Journal Food Science,53,616,1988
    [72] Goffart D., vander Wal D.J., Klomp E.M., et al. Three-dimensional flow modeling of aself-wiping corocating twin-screw extruder. PartⅠ:The transporting section[J]. PolymerEngineering&Science,36,901,1996
    [73] Todd D.B. Drag and pressure flow in twin screw extruders, International PolymerProcessing,1991,6:143-147
    [74] Denson C.D., Hwang J.R.B.K. The influence of the axial pressure gradient on flow ratefor Newtonian liquids in self wiping co-rotating twin screw extruder[J]. PolymerEngineering and Science,1980,20(14):965-971
    [75] Boo M.L. Isothermal flow of viscous liquids in corotating twin screw devices[J].Polymer Engineering&Science,1980,20(18):1220-1228
    [76] David B.T.主编,詹茂盛,丁乃秀,王凯,李智译[M].塑料混合工艺及设备.北京:化学工业出版社,2002,9
    [77] Hermann H., Burkadt U. Comparative analysis of fully intermeshing co-rotating twinscrew extrusion, ANTBC,2000, Orlando, U. S. A
    [78] Meijer H.E.M., Elemams P.H.M, Polymer Engineering and Science,1988,28,275
    [79] Booy M.L. Isothermal flow of viscous liquids in co-rotating twin screw devices[J],Polymer Engineering and Science,1980,20(18),275
    [80] Bravo V.L., Hrymak A.N., Wright J.D. Numerical simulation of pressure and velocityprofiles in kneading elements of a co-rotating twin screw extruder[J]. PolymerEngineering&Science,2000,40(2):525-541
    [81] Raman V.C., Jaluria Y., Karwe M.V., et al. Transport in a twin-screw extruder forprocessing of polymers[J]. Polymer Engineering&Science,1996,36(11):1531-1540
    [82] Weimin Z., Yogesh J. Transport processing and feasible operating domain in atwin-screw polymer extruder[J]. Polymer Engineering&Science,2004,41(1):107-117
    [83] Takeshi I., Tarou A., Shin-ichi K., et al. Flow patterns and mixing mechanisms in thescrew mixing element of a co-rotating twin-screw extruder[J]. Polymer Engineering&Science,2002,42(5):925-939
    [84]董中华,江波,郭建.同向双螺杆挤出机中不同导程螺纹元件的流动和混合模拟[J].塑胶技术与装备,2005,31(7):1-5
    [85] Takeshi I., Tarou A., Shin-ichi K., et al.3-D Non-isothermal flow field analysis andmixing performance evaluation of kneading blocks in a co-rotating twin screwextruder[J]. Polymer Engineering&Science,2001,41(5):840-849
    [86] Bravo V.L., Hrymak A.N., Wright J.D. Study of particle trajectories, residence times andflow behavior in kneading discs of intermeshing co-rotating twin-screw extruders[J].Polymer Engineering&Science,2004,44(4):779-793
    [87] Kiani A., Snmann H.J. SPE-ANTEC Tech Papers,1993,39:2578
    [88] Kajiwara T., Polymer Engineering&Scienc.,1996,36(16),2142
    [89] Makoto Y., Shingo K., Polymer Engineering&Science,2000,40(1),168
    [90] Ishikawa T., Shim-Ichi K., Polymer Engineering&Science,2000,40(2),357
    [91]梁畅,马秀清,耿孝正.啮合同向双螺杆挤出机中S型元件不同螺杆构型下的流场模拟[J].中国塑料,2003,17(5):78-82
    [92] Yang H.H., Manas-Zloczower I. Internatinal Polymer Processing,1994,9:291
    [93] Ishikawa T., Kihara S., Funatsu K. Polymer Engineering&Science,2001,41:840
    [94] Avalosse T., Rubin Y., Internatinal Polymer Processing,2000,15:117
    [95] Janssen L.P.B.M. Twin screw extrusion, Elsevier Scientific, Amsterdam,1978
    [96] Herman H., Burkardt, K., Comparative of fully intermeshing co-rotating andcounter-rotating twin screw extruder[J], Plastics and Rubber Processing,1980,9(10)
    [97] Janssen L.P.B.M. Twin screw extrusion, Elsevier Scientific, Amsterdam,1978
    [98] Lim S., White J.I. Flow mechanisms, Material distribution and phase morphologydevelopment in a modular intermeshing counter-rotating twin screw extruder of leistritzdesign[J], Internatinal Polymer Processing,1994,9,33-45
    [99] Cho J.W., White J.L. Melting and blending in a modular corotating/counter-rotating twinscrew[J], Internatinal Polymer Processing,1996,11,21-28
    [100] Wilczynski K., White J.L. Experiment study of melting in an intermeshingcounter-rotating twin screw[J], Internatinal Polymer Processing,2001,16,257-262
    [101] Janssen L.P.B.M., Smith J.M., Kunststoffe,1976,66,724
    [102] van der Goot A.J., Poorter O. and Janssen L.P.M., Determination of the degree of fill ina counter-rotating twin screw extruder, Polymer Engineering&Science,1988,38,1193-1198
    [103] Densen C.D., Huang B.K., Influence of the axial pressure gradient on flowrate forNewtonian fluids in a self-wiping co-rotating twin-screw extruder [J]. PolymerEngineering&Science,1980,20(14):965-971
    [104] Szydlowski W., White J.L., Inproved theory of metering in an intermeshing co-rotatingtwin-screw extruder [J], Advanced in Polymer Technology,1987,7(2):177-183
    [105] Tadmor Z., Broyer E., Gutfinger C., Theoretical model for non-intermeshing twin screwextruders [J], Polymer Engineering&Science,1974,14(1):58-65
    [106] Wang Y., White J.L., Non-nertonian flow modeling in the screw regions of anintermeshing corating twin screw extruder [J], Journal of Non-Newtonian FluidMechanics,1989,32(1):19-38
    [107] Lai-Fook R.A., Li Y, Smith A.C., et al. Pumping characteristics of self-wipingtwin-screw extruders-a theoretical and experimental study on biopolymer extrusion [J],Polymer Engineering&Science,1989,29(7):433-440
    [108] Lai-Fook R.A., Li Y, Smith A.C., et al. A2-D numerical study of intermeshingself-wiping screws in biopolymer extrusion [J], Polymer Engineering&Science,1991,31(15):1157-1163
    [109] Chiruvella R.V., Jaluria Y., Karwe M.V., Transport in a twin-screw extruders for theprocessing of polymers [J], Polymer Engineering&Science,1996,36(11):1531-1540
    [110] Kajiwara T., Nagasima Y., Numerical study of twin-screw extruders bythree-dimenssional flow analysis-development of analysis technique and evaluation ofmixing performance for full flight screw [J], Polymer Engineering&Science,1996,36(16):2142-2154
    [111]桑瑞菊,异向旋转啮合式双螺杆挤出机熔体输送机理的研究[D],北京:北京化工大学,1987
    [112]周甫萍,啮合异向双螺杆新型螺纹元件的研制及性能研究[D],北京:北京化工大学,2001
    [113]施丰,啮合异向双螺杆非常规螺纹元件的研制及流场模拟[D],北京:北京工业大学,2001
    [114]马秀清,耿孝正,李鹏.非啮合双螺杆挤出过程常规螺纹元件流道三维流场分析-等温牛顿模型[J].中国塑料,2000,14(10):78-85
    [115]马秀清,耿孝正,非啮合双螺杆挤出机过程轴向流道三维流场分析-轴向循环流场分析(1)[J].中国塑料,2001,15(2):78-83
    [116]罗兵.新型连续混炼机转子造型机混炼机理的研究[D].北京:北京化工大学,2003
    [117]胡冬冬,陈晋南.双螺杆挤出机中粒子轨迹的可视化模拟[J].计算机与应用化学,2003,20(3):247-250
    [118] Fuller L.J., U. S. Patent2,441,222(1948)
    [119] Fuller L.J., U. S. Patent2,615,199(1952)
    [120] Kaplan A. and Tadmor Z., Theoretical model for non-intermeshing twin screw extruders.Polymer Engineering&Science,1974,14,58-66
    [121] Nichols R.J., Pumping characteristics of counterrotating tangential twin screw extruders,SPE ANTEC Tech. papers,1983,29,130-133
    [122] Nichols R. J, Modeling performance characteristics of connterrotating tangential twinscrew extruders, SPE ANTEC Tech. papers,1984,30,6-9
    [123] Nguyen K. and Lint J., Finite element modeling of a counterrotating, non-intermeshingtwin screw extruder, Polymer Engineering&Science,1989,29,709-714
    [124] Bang D.S., Hong M.H., and White J.L., Modular tangential counterrrotating twin screwextrusion: determination of screw pumping characteristics of moduled and compositemachine behavior, Polymer Engineering&Science,1998,38,485-498
    [125] Thiele W.C., Counter-rotating intermeshing twin screw extruders, InplasticsCompounding Equipment and Processing, D. B. Todd, Ed., Hanser, Munichi,1998
    [126] Martin C., Counterrotating twin screw extruders, in Extrusion Toolbox, Society ofPlastics Engineers, Danbury, CT,2004
    [127] Bolen W.R., Colwell R.E., Society Plastics Engineering,1958,14(3),24
    [128] Bergen J.T., Mixing and dispersive processes, in Processing of Thermoplastic Materials,E. C. Bernhardt, Ed, Reinhold, New York,1959
    [129] Meissner K., Reher E.O., Plaste Kautsch,1979,26,272
    [130] Meissner K., Bergmann J., and Reher E.O., Plaste Kautsch,1980,27,147
    [131] Wagenknecht U., Meissner K., Reher E.O., and Polsterdorf B, Plaste Kautch.,1988,35,175
    [132] Cheng J.J., Masas-Zlozower I., Hydrodynamic analysis of a banbury mixer2-D flowsimulations for the entire mixing chamber, Polymer Engineering&Science,1989,29,1059-1065
    [133] Cheng J.J.and Masas-Zlozower I., Flow field characterization in a banbury mixer,International Polymer Processing,1990,5,178-183
    [134] Wong T.W. and Manas-Zlocaower I., Numerical studies of the flow field in partiallyfilled mixing equipment, SPE ANTEC Tech. Papers,1992,38,1788-1793
    [135] Valsamis L.N. and Canedo E.L., Mixing in the continuous farrel mixer, in Mixing andCompounding of Polymers, Manas-Zloczower I. andTadmor Z., Eds., Hanser, Munich,1994
    [136] Qu J.P, The latest process in research of plastics processing technology [J]. EngiineeringScience,2002,10(1):20-29
    [137]杨智涛,聚合物叶片挤出机熔体正位移输送与混合特性研究[D].广州:华南理工大学机械与汽车工程学院,2009
    [138]赵晓强,基于拉伸流变的聚合物塑化输运过程能耗特性研究[D].广州:华南理工大学机械与汽车工程学院,2012
    [139]张桂珍,体积拉伸形变支配的聚合物塑化熔融机理研究[D].广州:华南理工大学机械与汽车工程学院,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700