乙肝病毒感染动力学模型及其预防控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据世界卫生组织报道,乙型肝炎(乙肝)是一种世界性的疾病。全球有超过20亿的人曾感染过乙肝病毒,慢性乙肝表面抗原携带者多达3.7亿。由于对乙型肝炎的研究采取动物实验形式成本很高,因此,对它的发病机理,流行规律,预测预报就更多的需要理论分析,定量分析,模拟仿真来进行,而上述分析都离不开数学模型。乙型肝炎动力学就是针对乙肝的流行规律进行理论性定量研究的一种重要方法。
     本文研究了乙型肝炎动力学模型的建立以及控制乙型肝炎策略两大问题。将脉冲微分方程理论应用到乙型肝炎动力学中,根据疾病发生和在人群中传播的规律建立了具有乙肝动力学特性的数学模型,分析了模型的动力学性质。得到的结论可用于预测其变化发展趋势,找到了对其预防和控制的策略,为制定防治决策提供了理论依据。所做的主要工作有:
     乙型肝炎的脉冲预防接种问题的研究。建立了考虑脉冲预防接种的SAIR乙肝模型,分别得到了乙肝最终消失或成为地方病的充分条件。根据乙肝病毒的传播方式以及各种状态间的转化模式,各状态转化所需的时间延迟,并对其采取脉冲预防接种等控制措施,建立了一类具有时滞和脉冲预防接种的SI1I2I3R乙肝模型,分别得到了乙肝最终消失或成为地方病的充分条件。
     乙肝病毒和药物及免疫因子相互作用问题的研究。考虑了病毒扩散和肝细胞感染病毒所需的时滞,建立了一类在有限区域里扩散的HBV模型,对时滞和扩散情形的影响进行了模拟验证。得到的结论是,时滞和扩散不影响乙型肝炎的发展。在仓室模型中,分布时滞比离散时滞更具有现实意义。将分布时滞应用于乙型肝炎动力学中,得到了无病平衡点的全局渐近稳定(HBV将消失)和不稳定(HBV持续存在)的充分条件。最后,研究了周期性输入免疫因子在治疗HBV感染时的效果。
     乙肝病毒和药物同时扩散问题的研究。基于Capasso和Maddalena提出的病毒感染的反应扩散系统,建立了乙肝病毒和药物相互作用的数学模型,得到了该反应扩散方程行波解存在的条件。在此条件下,方程存在一个乙肝病毒从存在到消失的行波解,得到了乙肝病毒在肝脏内持续存在的条件。
     药物脉冲作用下的HBV和免疫因子竞争模型研究。将种群竞争的Lotka-Volterra系统应用到解释病毒和免疫因子的相互作用中,提出的控制措施为:周期脉冲注入药物,达到周期抑制病毒复制增殖的速率,适当缩短脉冲周期,可控制乙型肝炎的发展。考虑到肝脏面积是有限的,将logistic函数应用为健康肝细胞的增长率,建立了一类乙肝模型。分析和模拟结果表明,输入免疫因子可以使得该平衡点稳定,并且可以预测HBV感染的各种临床表现,及时有效的CTL反应对控制乙型肝炎感染是非常关键的。目前还没有文献考虑免疫占优和疫苗在防治HBV感染过程中发挥的作用。最后讨论了具有表面抗原变异的HBV感染的疫苗接种效果,考虑了注射疫苗前后病毒特异性CTL反应和HBV表面抗原变异的影响,得到了注射疫苗前后HBV被从体内彻底清除的完全恢复平衡点的稳定条件。不同组参数模拟表明注射疫苗是一种防治HBV感染的有效的方法。
     本文所研究的问题是动力学控制理论在乙型肝炎上应用的重要问题,具有很大的研究价值,属于该领域的前沿问题。文中所用的方法和得到的结果对乙肝动力学模型的研究和控制乙型肝炎病毒感染方面有重要的理论和实用价值。
According to WHO's report, hepatitis B is a worldwide disease. Two billion people have been affected by hepatitis B virus and the number of chronic hepatitis B virus car-riers is up to 0.37 billion in the world. Because animal experimental cost for hepatitis B research is very high, theoretical analysis, quantitative analysis and simulation of mathemat-ical model should be applied to predict development of hepatitis B. Hepatitis B dynamics is an important theoretical analysis method to study hepatitis B development.
     In this paper, the establishment of HBV dynamical model and the control strategy of HBV are studied. Applying impulsive differential equation theorem to HBV dynamics, HBV model is established based on HBV characteristic and its dynamical characteristic is also analyzed. The research result can be used to predict development tendency of HBV infection. There are five chapters:Two types of hepatitis B models are established and studied in Chapter 2. Three types of hepatitis B model (spreading, time-delay, periodic inputting immune) are studied in Chapter 3.In Chapter four, HBV model involving time delay and diffusion phenomena is discussed. In the fifth chapter, the role of immune in HBV dynamics is discussed. The main work is as follows:
     Impulsive vaccination of hepatitis B is studied. The SAIR model with impulsive vac-cination is constructed. The sufficient conditions under which HBV would be eliminated ultimately or become endemic are derived. According to the propagation mode and the transformation mode between HBV infection states and the transformation delays, an HBV infection model with impulsive vaccination is established and analyzed. The sufficient con-ditions that hepatitis B virus will be eliminated eventually or be persistent are derived.
     The mutual effects of HBV, medicine and immune factors are studied. The HBV in-fection model considers diffusion within a finite domain and the time delay of cell infection and effect of medication. The effects of time delay and diffusion are validated by computer simulations. The research result is that the time delay and diffusion cannot affect HBV de-velopment. Usually only two time delays were considered in literature:disperse delays and continuous distributed delays. In the SIR model, continuous distributed delay is more inter-esting than disperse delay. Distributed delay is applied to HBV dynamics. The reciprocity model considering the mutual effects between uninfected cell, HBV, infected cell and im-munological factors with continuous distributed delays is established. The conditions for the disappearance or persistence of HBV, i.e., the global asymptotic stability or non-stability of the equilibrium points without disease, are derived. The effect of periodic input immune factor in HBV infection is also studied.
     The concurrent diffusion of HBV and medicine diffusion is studied. Based on the reaction diffusion system provided by Capasso and Maddalena, a delayed reaction-diffusion model is established to describe HBV infection and control. The sufficient conditions for the existence of traveling wave solutions of reaction-diffusion systems with delay are derived. The travelling wave front, derived here, corresponds to medicine injection that drives HBV to extinction. The parameter identification of interaction system between HBV and medicine with reaction-diffusion phenomenon is investigated.
     Under the condition of impulsive input medicine, the competition model between HBV and immune factor is studied. Population competitive Lotka-Volterra system is applied to explain the mutual effect of virus and immune factor. The prevention and control strategy derived is that periodic input medicine, shortening impulsive period can control HBV de-velopment. With limited liver area, logistic function is applied to formulate growth rate of healthy liver cell. Simulation shows that the input immune factor makes it stable. Differ-ent sets of parameters are used in the simulation, and the results show that the model can predict various clinical appearance of HBV infection. The simulation results suggest that a timely and vigorous CTL response is required in the treatment of HBV infection. No one considered the possible role of immune-dominance and vaccine in preventing and treating HBV infection in existing documents. In this part, we focus on aspects of the virus-specific cellular immune response, immune-dominance and influence of hepatitis B surface variant infection in vivo after vaccination. The stability conditions of the complete recovery equi-librium points at which HBV will be eliminated entirely from the body before and after vaccination are discussed. A different set of parameters is used in the simulation, and the results show that vaccination is an efficient way in preventing and treating HBV infection.
     As an application of dynamical control theorem to hepatitis B, the problem discussed here is of great importance. The results derived and methods applied provide important theoretical and practical value both in the study of HBV dynamical model and in the control of hepatitis B virus infection.
引文
[1]Maddrey W C. Hepatitis B-an important public health issue[J], Clin Lab,2001,47-51.
    [2]徐葵花,赵守松.乙型肝炎病毒基因型的临床研究进展[J],实用肝脏病杂志,2004,7(1):59-61.
    [3]李秀英.肝炎仍是我国排行第一位的传染[J],传染病信息,1997,10(2):349
    [4]赵仲堂.流行病学研究方法与应用[M],北京:科学出版社,2000.
    [5]Kermack WO, Mckendrick AG. Contributions to the mathematical theory of epidemics[J], Proc. Roy. Soc.A.,1927,115:700.
    [6]Brauer F., Models for diseases with vertical.transmission and nonlinear population dynamics[J], Math Bios.,1995,128:13-24.
    [7]Milman V D, Myshkis A. D. On the stability of motion in the presence of impulses[J],1996,1: 233-237.
    [8]Bainov D D,Simeonov P S. Impulsive differential equations:periodic solutions and applica-tions[M], New York, Longman Scientific and Teachnical,1993.
    [9]Lakshmikantham V,Bainov D D,Simeonov P S. Theory of impulsive differential equations[M], Sin-gapore, World Scientific,1989.
    [10]Soliman A A. On stability of perturbed impulsive differential systems[J], Applied Mathematics and Computation,2002,133:105-117.
    [11]关治洪,廖俊锋,廖锐全,不确定脉冲系统的鲁棒H∞控制[J],控制理论与应用,2002,19(4):623-626.
    [12]王仁明,关治洪,刘新芝,一类非线性切换系统的稳定性分析,系统工程与电子技术[J],2004,26(1):68-71.
    [13]陈武华,关治洪,,卢小梅,扰动的中立型时滞差分方程的一致渐近稳定性,数学学报[J],2005,48(1):63-74.
    [14]关治洪,朱茹,一类离散脉冲切换系统的能控性研究,华中师范大学学报(自然科学版)[J],2007,41(4):490-492.
    [15]Mena-Lorca J., Hethcote H.W., Dynamic models of infectious diseases as regulators of population sizes [J],Math. Biol.,1992,30:693-716.
    [16]Agur Z, Cojocaru L,Anderson R M,Danon Y L. Pulse mass measles vaccination across age cohorts[J],P rocNat A cad Sci USA,1993,90:11698-11702.
    [17]Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J], J. Math. Comput. Model,2000,31 (4-5):207-215.
    [18]D'OnofriA. Stability properties of pulse vaccination strategy in SEIR epidemic model[J], Math Biosci,2002,179:57-72.
    [19]Ruan S.G. Wang W.D. Dynamical behavior of an epidemic model with a nonlinear incidence rate [J], J.Differential Equations,2003,188:135-163.
    [20]靳祯,马知恩,具有连续和脉冲预防接种的SIRS传染病模型[J],华北工学院学报,2003,24(4):235-243.
    [21]Gao S.J., Chen L S., Juan J., Nieto, Angela Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J], Vaccine,2003,24:6037-6045.
    [22]Zhang T.L., Teng Z.D., Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model[J],Chaos,Solitons and Fractals,2009,39:2411-2425.
    [23]Zhang T L., Teng Z D., Pulse vaccination delayed SEIRS epidemic model with saturation inci-dence[J], Applied Mathematical Modelling,2008,32:1403-1416.
    [24]刘耕陶,等.对我国慢性病毒性肝炎防治与研究工作的建议[J],中华医学杂志,2002,82(2).
    [25]Marcellin P., Chang T.T., Lim S.G., Tong M.J., Sievert W., Shiffman M.L., Jeffers L., Goodman Z., Wulfsohn M.S.,Xiong S., Fry J., Brosgart C.L., Adefovir dipivoxil for the treatment of hepatitis B e antigenpositive chronic hepatitis B[J], N. Engl. J. Med.2003,348:808-816.
    [26]Aloman C., Wands J.R., Resistance of HBV to adefovir dipivoxil:a case for combination antiviral therapy[J], Hepatology,2003,38:1584-1587.
    [27]Merrill S., Modeling the interaction of HIV with the cells of the immune system, in Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath[M].Springer-Verlag, New York,1989.
    [28]Perelson A.S.,Kirschner D.E., et al. Dynamics of HIV infection of CD4+T cells[J], Math. Biosci., 1993,114:81-125.
    [29]Nowak MA,Bangham CRM,Population Dynamics of Immune Responses to Persistent Viruses[J], Science,1996,272(5258):74-79.
    [30]Doherty P. C., Christensen J.P., Accessing complexity:the dynamics of virus specific T cell re-sponses[J], Annu Rev Immunol,2000,18:561-592.
    [31]Wodarz D., Hepatitis C virus dynamics and pathology:the role of CTL and antibody responses[J], Journal of General Virology,2003,84:1743-1750.
    [32]Lau G K, Tsiang M, Hou J. et al. Combination theory with Lamivudine and Famciclovir for chronic Hepatitis B-infected Chinese patients:a viral dynamics study[J], Hepathology,2000,32(2):394-399.
    [33]Perelson A S. Modelling viral and immune system dynamics[J], Nat Rev Immunol,2002, (2):28.
    [34]Lewin SR., Ribeiro RM., Walters T., Lau GK., Bowden S., Locarnini S., Perelson AS., Analysis of hepatitis B viral load decline under potent therapy:complex decay profiles observed[J], Hepatology, 2001,34:1012-1020.
    [35]Fuhrman KM., Lauko IG., Pinter GA., Asymptotic behavior of an SI epidemic model with pulse removal[J], Math Comput. Model.,2004,40:371-386.
    [36]Neumann AU., Hepatitis B viral kinetics:a dynamic puzzle still to be resolved[J], Hepatology, 2005,42(22):249-254.
    [37]Perelson AS., Ribeiro RM., Hepatitis B virus kinetics and mathematical modeling[J], Semin Liver Dis,2004,24:11-16.
    [38]Ciupe SM.,Ribeiro RM.,Nelson PW., Dusheiko G., Perelson AS., The role of cells refractory to productive infection in acute hepatitis B viral dynamics[J], Proc Natl Acad Sci (USA),2007,104: 5050-5055.
    [39]Long CJ., Qi H., Huang SH., Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune Response to Hepatitis B Virus Infection[J], J. Biomed. Biotechnol.,2008,743690.
    [40]Xu R., Ma Z.E, An HBV model with diffusion and time delay[J], J Theor Biol.,2009,257:499-509.
    [41]Herz V., Bonhoeffer S., Anderson R., May R., Nowak M., Viral dynamics in vivo:Limitations on estimations on intracellular delay and virus decay[J], Proc. Natl. Acad. Sci., USA 1996,93: 7247-7251.
    [42]Jacquez J., Simon C., Qualitative theory of compartmental systems with lags[J], Math. Biosci., 2002,180:329-362.
    [43]Mukandavire Z., Garira W., Chiyaka C., Asymptotic properties of an HIV/AIDS model with a time delay[J], J. Math. Anal. Appl.,2007,330:916-933.
    [44]Tam J., Delay effect in a model for virus replication[J], IMA J. Math. Appl. Med. Biol.,1999, 16:29-37.
    [45]Grossman Z., Polis M., Feinberg M., Grossman Z., Levi I., Jankelevich S., Yarchoan R., Boon J., de Wolf F., Lange J., Goudsmit J., Dimitrov D., Paul W., Ongoing HIV dissemination during HAART[J], Nat. Med.,1999,5:1099-1104.
    [46]Mittler J., Sulzer B.,Neumann A., Perelson A. Influence of delayed viral production on viral dy-namics in HIV-1 infected patients[J], Math. Biosci.,1998,152:143-163.
    [47]Nelson P., Murray J., Perelson A. A model of HIV-1 pathogenesis that includes an intracellular delay[J], Math. Biosci.,2000,163:201-215.
    [48]Nelson P., Mittler J., Perelson A. Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters[J], J. AIDS,2001,26:405-412.
    [49]Nelson P., Perelson A. Mathematical analysis of delay differential equation models of HIV-1 infec-tion[J],Math. Biosci.,2002,179:73-94.
    [50]Shi M., Fu J., Shi F., Zhang B., Tang Z., Jin L., Fan Z., Zhang Z., Chen L., Wang H., Lau GK, Wang FS, Transfusion of autologous cytokine-induced killer cells inhibits viral replication in patients with chronic hepatitis B virus infection[J], Clin Immunol,2009,132:43-54.
    [51]Fisher R.A., The wave of advance of advantageous gene[J], Ann. Eugen.1937,7:355-369.
    [52]Kolmogorov AN., Petrovskii IG., Piskunov NS., Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem[J], Byul.Mosk. Gos. Univ. Ser. A Mat. Mekh.,1937,1:1-26.
    [53]叶其孝,李正元,反应扩散方程引论[M],科学出版社,1999.
    [54]Fife PC. Asymptotic analysis of Reaction-Diffusion wave fronts[J], Rocky Mountain, J.Math., 1997,7:389-415.
    [55]Wu YP, Travelling waves for a class of cross-diffusion systems with small parameters[J], J. Differ-ential Equations,1995,123(1):1-34.
    [56]Dunbar ST., Travelling wave solutions of diffusive Lotka-Volterra equations:A heteroclinic con-nection in R4 [J], Trans. Amer. Math. Soc.,1984,286:557-594.
    [57]Huang W. Uniqueness of the bistable travelling wave for mutualist species[J],J. Dynam. and Diffe. Equa.2001,13(1):147-183.
    [58]Wang ZC.,Li WT.,Ruan SG, Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays[J], J. Differential Equations,2006,222:185-232.
    [59]王明新,抛物方程的初边值问题[M],科学出版社,北京,1993.
    [60]Schaaf K., Asymptotic behavior and travelling wave solutions for parabolic functional differential equations[J], Trans.Amer. Math. Soc.,1987,302:587-615.
    [61]Capasso V., Maddalena L., Convergence to equilibrium states for a reaction difusion system mod-eling the spatial spread of a class of bacterial and viril disease[J], J.Math. Biology,1981,13: 173.
    [62]Britton N.F., Reaction-Diffusion Equations and Their Applications to Biology[M], Academic Press, New York,1986.
    [63]Murray J.D., Mathematical Biology[M], Springer-Verlag, New York,1989.
    [64]Volpert A. I., Volpert V. A., Traveling Wave Solutions of Parabolic Systems[J], Translations of Mathematical Monographs, Vol.140, Am. Math. Soc., Providence, RI,1994.
    [65]Gardner R., Review on Traveling Wave Solutions of Parabolic Systems by A. I. Volpert, V. A. Volpert and V A. Volpert[J], Bull. Am. Math. Soc.,1995,32:446-452.
    [66]Wang K.R, Wang W. D., Liu X. N., Global stability in a viral infection model with lytic and nonlytic immune responses[J], Computers and Mathematics with Applications,2006,51(9-10):1593-1610.
    [67]Wang K.R, Wang W. D., Song S P., Dynamics of an HBV model with diffusion and delay[J], Journal of Theoretical Biology,2007,251(11):11-19.
    [68]Wang K.R, Wang W. D., Propagation of HBV with spatial dependence[J], Mathematical Bio-sciences,2007,210(1):78-95.
    [69]Qian H, Murray J D. A Simple Method of Parameter Space Determination for Diffusion-driven Instability with Three Species[J], Appl. Math. Letter,2001,14:405-411.
    [70]Rai B, Freedman H I, Addicott J F., Analysis of Three Species Model of Mutualism in Predator-prey and Competitive Systems[J], Math, Biosci.,1983,65:13-50.
    [71]李春发,冯恩民,胡建国,三维种群生态动力系统的参数识别[J],应用数学学报,2004,27(1):64-71.
    [72]Banks H T, Murray J D. Estimation of Nonlinearities in Parabolic Models for Growth, Predation and Dispersal of Populations[J], J. Math. Anal. Appl.,1989,141:580-602.
    [73]Banks H T, Kareivay P, Vurph K A., Parameter Estimation Techniques for Interaction and Redistri-bution Models:a Predator-prey Example[J], Math. Biosci.,1987,84:356-362.
    [74]邢同京,李兰娟,乙型肝炎病毒感染的病毒和免疫反应动力学研究进展[J],国外医学·流行病学传染病学分册,2005,32(5):287-289.
    [75]Pang H Y,Wang W D, Wang K F. Deterministic and Stochastic Analysis of a Cell-to-Cell Virus Dy-namics Model with Immune Impairment[J],Journal of Southwest China Normal University (Natural Science),2006,31(5):26-30.
    [76]Wang Z P, Liu X N., Dynamics of a Chronic Viral Infection M odel with Humoral Imm unity and Im mune Impairment[J], Journal of Southwest University,2007,29(12):1-5.
    [77]Nowak M., Bonhoeffer S., Hill A., Boehme R., Thomas H., McDade H., Viral dynamics in hepatitis B infection[J], Proc. Natl Acad. Sci., USA.1996,93:4398-4402.
    [78]Tsiang M., Rooney J., Toole J., Gibbs C., Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy[J], Hepatology,1999,29:1863-1869.
    [79]Colombatto P., Civitano L., Bizzarri R., Oliveri F., Choudhury S.,Gieschke R., Bonino F., Brunetto M.R., A multiphase model of the dynamics of HBV infection in HBeAg-negative patients during pegylated interferon-a2a, lamivudine and combination therapy[J], Antiviral Therapy,2006,11:197-212.
    [80]Ciupe S M.,.Ribeiro R M,Nelson P W.,Perelson A S., Modeling the mechanisms of acute hepatitis B virus infection[J], Journal of Theoretical Biology,2007,247:23-35.
    [81]Liu J X, Zheng C X, Modern immunology:immune cells and the molecular basis[M], Tsinghua University Press, Beijing,2002.
    [82]Nowak M A., May R M.,Phillips R E.,Rowland-Jones S, David G.Lalloo, Steven McAdam, Paul Klenerman, Britta Koppe, Karl Sigmund, Charles R.M.Bangham and Andrew J.McMichael, Anti-genic oscillations and shifting immunodominance in HIV-1 infections[J], Nature,1995,375:15.
    [83]Sun J. Stability criteria of impulsive differential systems[J], Applied Mathematics and Computation, 2004,156:85-91.
    [84]Lakshmikanthama V, Zhang Y. Strict practical stability of delay differential equation[J], Applied Mathematics and Computation,2001,122:341-351.
    [85]Fonda A., Uniformly persistent semi-dynamical systems [J], Proc Amer Math Soc,1988,104:111-116.
    [86]Hyman J M, Li J., An intuitive formulation for the reproductive number for the spread of disease in heterogeneous populations [J], Mathematical Biosciences,2000,167:65-86.
    [87]Anderson R.M. May R. M. Infectious disease of humans[M], Oxford University Press, Oxford, 1991.
    [88]Esteva L., Vargas C., Analysis of a dengue disease transmission model[J], Math. Biosci.,1998, 150:131-151.
    [89]Shugin B, Stone L,Agur Z. Pulse vaccination strategy in the SIR epidemic model[J], Bull Math Biol, 1998,60:1-26.
    [90]Lakshmikantham V.,Bainov D.D. and Simeonov P.S. Theory of Impulsive Differential Equa-tions[M], World Scientific,Singapore,1989.
    [91]Bainov D D,Dimitrova M B, Petrov V. Oscillatory properties of the solutions of impulsive differen-tial equations with several retarded arguments[J],Georgian Math. J.,1998,5:201-212.
    [92]Lee WM. Hepatitis B virus infection[J], N. Engl. J. Med.,1997,24:1733-1745.
    [93]Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus:A prospective study of 22 707 men in Taiwan[J], Lancet,1981,2(8256):1129-33.
    [94]Weissberg JI, Andres LL, Smith CI, Weick S, Nichols JE, Garcia G, Robinson WS, Merigan TC, Gregory PB. Survival in chronic hepatitis B:An analysis of 379 patients[J], Ann. Intern. Med., 1984,101(5):613-6.
    [95]Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD, Synthesis and assembly of hepatitis B virus surface antigen particles in yeast[J], Nature,1982,298:347-350.
    [96]Roberts MG, Kao RR. The dynamics of an infectious disease in a population with birth pulse[J], J. Math. Biosci.,1998,149 (1):23-36.
    [97]Zeng G, Chen LS. Complexity of an SIR epidemic dynamics model with impulsive vaccination control[J],Chaos, Solitons and Fractals,2005,26:495-505.
    [98]Gao SJ, Chen LS.Teng ZD. Pulse vaccination of an SEIR epidemic model with time delay[J], J. Nonlinear Analysis:Real World Applications,2006,9:599-607.
    [99]张瑜,王春燕,孙继涛,具有可变脉冲点的脉冲微分方程的稳定性[J],数学物理学报,2005,25A(6):777-783.
    [100]Nowak M. A, Bonhoeffer S, Hill A. M, Boehme R, Thomas H. C, Mcdade H. Viral dynamics in hepatitis B virus infection[J], J. Proceedings of the National Academy of Sciences,1996,93: 4398-4402.
    [101]Nowak M. A, Robert M. M, Virus dynamics:mathematical principles of immunology and virol-ogy[M], New York, Oxford University Press,2000.
    [102]刘士敬,朱倩,乙型肝炎解惑答疑[M],北京:中国医药科技出版社,2003:1-179.
    [103]Ezquieta B, Cueva E, Oliver A, et al. SHOX intragenic micro-satellite analysis in patients with short stature[J],J Pediatr Endecrinol Metab,2002,15 (2):139-148.
    [104]Zhao S J, Xu Z Y, Lu Y. Mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China[J], International Journal of Epidemiology,2000,29 (4):744-752.
    [105]El-Gohary A, Bukhari F A. Optimal stabilization of steady-states of the genital herpes epidemic during infinite and finite time intervals[J], Applied Mathematics and Computation,2003,137 (1):33-47.
    [106]Matveev A S, Savkin A V. Application of optimal control theory to analysis of cancer chemother-apy regimens[J],Systems and Control Letters,2002,46 (5):311-321.
    [107]Alfonseca M, Bravo M T M, Torrea J L. Mathematical model for the analysis of hepatitis B and AIDS epidemics[J], Simulation,2000,74 (4):219-226.
    [108]Ogren P, Martin C F. Vaccination strategies for epidemics in highly mobile populations[J], Applied Mathematics and Computation,2002,127 (2):261-272.
    [109]Gao Shujing,Chen Lansun,Teng Zhidong, Pulse vaccination of an SEIR epidemic model with time delay[J], Nonlinear Analysis:Real World Applications,2007.
    [110]Wang K F, Wang W D, Song S P., Dynamics of an HBV model with diffusion and delay, Journal of Theoretical Biology[J],2007.
    [111]Andrei K. Global Properties of Basic Virus Dynamics Models, Bulletin of Mathematical Biol-ogy[J],2004,66:879-883.
    [112]Abdusalam H.A., Fahmy E.S., Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system, Chaos,Solitons and Fractals[J],2003,18:259-266.
    [113]Li W T., Lin G., Ruan S.G., Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems[J], Nonlinearity,2006,19:1253-1273.
    [114]Lin G., Li W T., Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays[J], J. Differential Equations,2008,244:487-513.
    [115]Wang KF, Wang WD, Pang HY, Liu XN, Complex dynamic behavior in a viral model with delayed immune response[J],Physica D,2007,226:197-208.
    [116]陈兰荪等,数学生态学模型与研究方法[M],科学出版社,1988.
    [117]Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M], New York: Academic Press,1993.
    [118]Nowak M. A., Bonhoeffer S., Hill A. M., Boehme R., Thomas H. C., Mcdade H., Viral dynamics in hepatitis B virus infection[J], Proceedings of the National Academy of Sciences,1996,93:4398-4402.
    [119]Nowak M. A., Robert M. M., Virus dynamics:mathematical principles of immunology and virol-ogy[M], New York:Oxford University Press,2000.
    [120]Ross S., Introduction to Probability Models[M], Academic Press,1993.
    [121]MacDonald N., Biological Delay Systems[M], Cambridge University,1989.
    [122]Hirsh W., Hanisch H., Gabriel J. Differential equation models of some parasitic infections:Meth-ods for the study of asymptotic behaviour[J], Comm. Pure Appl. Math.,1985,38:733-753
    [123]Castillo-Chavez C., Thieme H. Asymptotically autonomous epidemic models, in:O. Arino, et al. (Eds.), Mathematical Population Dynamics:Analysis of Heterogeneity[J], vol. I, Theory of Epidemics, Wuerz, Winnipeg, Canada,1995,33-50.
    [124]LaSalle J., The Stability of Dynamics Systems[M], SIAM, Philadelphia,1976.
    [125]Perelson AS., Modelling viral and immune system dynamics[J], Nat. Rev. Immunol.,2002,2: 28-36.
    [126]Hews S., Eikenberry S.,Nagy JD, Kuang Y, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth[J], To appear in J Math Biol.
    [127]Ciupe SM., Ribeiro RM., Nelson PW., Perelson AS., Modeling the mechanisms of acute hepatitis B virus infection[J],J Theor Biol.,2007,247:23-35.
    [128]Sypsa V., Hatzakis A., Modelling of viral dynamics in hepatitis B and hepatitis C clinical trials[J], Stat. Med.,2008,27:6505-21.
    [129]Meng XZ., Chen LS., Cheng HD., Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J], Appl. Math. Comput.,2007,186:516-529.
    [130]Xiang ZY, Li YF., Song XY., Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy[J], Nonlinear Anal-Real,2009,10:2335-2345.
    [131]Bailey NJT., The Mathematical Theory of Infections Diseases and its Applications[M], Griffin, London,1975.
    [132]Lakshmikanthaml V., Bainov DD., Simeonov PS., Theory of impulsive differential equations[M], Singapore:World Scientific,1989.
    [133]Van Lenteren JC., Measures of success in biological control of arthropods by augmentation of natural enemies[M], in:S., Wratten, and G. Gurr, (Eds.),Measures of Success in Biological Control, 2000.
    [134]Eikenberry S., Hews S., Nagy JD., Kuang Y, The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth[J], Math Biosci Eng,2009,6:283-299.
    [135]Lakshmikantham V., Bainov DD., Simeonov PS., Impulsive Differential Equations:Periodic So-lutions and Applications[C], in:Pitman Monographs and Surreys in Pure and Applied Mathematics, Vol.66,1993.
    [136]Li YF., Cui JA., The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage[J], Commun Nonlinear Sci Numer Simulat,2009,14:2353-2365.
    [137]Qi H., Long CJ., Yang DL., Modeling the dynamic of HBV infection[J], J. Adv. Sys. Sci. Appl., 2006,15(2):1322-1326.
    [138]Shulgin B., Stone L., Agur Z., Pulse Vaccination Strategy in the SIR Epidemic Model[J], Bull Math Biol,1998,60:1123-1148.
    [139]Yuan H., Lee W.M., Molecular mechanism of resistance to antiviral therapy patients with chronic hepatitis B[J], Curr. Mol. Med.,2007,7:185-197.
    [140]Yun L., Theory for Nonlinear Dynamic System of Modern Mathematics and Its Applica-tion[M],Communications Press, Beijing,China,1998.
    [141]Ayoola EA., Viral hepatitis in Africa, In:Zuckerman AJ, editor. Viral hepatitis and liver dis-eases[J],Liss,New York,1988,161-169.
    [142]Thursz MR., Kwiatkowski D., Allsopp CEM., Greenwood BM., Thomas HC., Hill AVS., Associ-ation between an MHC class Ⅱ allele and clearance of hepatitis B virus in the Gambia[J], N Engl J Med,1995,332:1065-1069.
    [143]Wu J.H., Zou X.F., Traveling Wave Fronts of Reaction-Diffusion Systems with Delay[J],Journal of Dynamics and Differential Equations,2001,13(3):651-687.
    [144]Ge Z.H., He Y.N., Diffusion effect and stability analysis of a predator-prey system described by a delayed reaction-diffusion equations[J], J. Math. Anal. Appl,2008,339:1432-1450.
    [145]Ye Q., Wang M., Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction[J], Nonlin. Anal. TMA,1987,11:1289-1302.
    [146]Wu J., Theory and Applications of Partial Functional Differential Equations[M], Springer-Verlag, New York,1996.
    [147]Fife P. C., Mathematical Aspects of Reaction and Diffusion System Lecture Notes in Biomathe-matics[M], Vol.28, Springer-Verlag, Berlin and New York,1979.
    [148]Bonhoeffer S., May R. M., Nowak M. A., Virus dynamics and drug therapy[J], Proceedings of the National Academy of Sciences,1997,94:6971-6976.
    [149]Ahmed N U., Optimization and Identification of Systems Governed by Evolution Equations on Banach Space[M], New York:John Wiley and Sons. Inc.,1989.
    [150]Smoller J., Shock Waves and Reactin-diffusion Equations[M], New York:Springer-Verlag,1983.
    [15l]鲍旭丽,段钟平.乙型肝炎病毒动力学研究进展[J],国外医学病毒学分册,2004,Vol11,No.2
    [152]Pao C V., On Nonlinear Reaction-diffusion System[J], J.Math. Ana. Appl.,1982,87:165-198.
    [153]Maddrey W C., Hepatitis B-an important public health issue[J].Journal of Medical Virology,2000, 61(3):362-366.
    [154]靳祯,在脉冲作用下的生态和流行病模型研究[D],西安:西安交通大学,2001.
    [155]Ciupe S.M., Ribeiro R. M., Nelson P.W.,Dusheiko G., Perelson A.S., The role of cells refractory to productive infection in acute hepatitis B virus dynamics[J], Proc. Natl. Acad. Sci. USA,2006, 104(12):5050-5055.
    [156]Santantonio T, Niro GA, Sinisi E, Leandro G, Insalata M, Guastadisegni A, et al., Lamivu-dine/interferon combination therapy in anti-HBe positive chronic hepatitis B patients:a controlled pilot study[J], J Hepatol,2002,36:799-804.
    [157]Hasan F, Al-Khaldi J, Asker H, Varghese R, Siddique I, Al-Shammali M, et al. Treatment of chronic hepatitis B with the sequential administration of interferon and lamivudine[J], Gastroen-terol,2003,50:2040-2.
    [158]Lau GKK, Piratvisuth T, Luo KX, Marcellin P, Thongsawat S, Cooksley G, et al. Peginterferon alpha-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B[J], N Engl J Med,2005,352:2682-95.
    [159]Chan HLY, Leung NWY, Hui AY, Wong VWS, Liew CT, Chim AML, et al. A randomized, con-trolled trial of combination therapy for chronic hepatitis B:comparing pegylated interferon-α 2b and lamivudine with lamivudine alone[J],Ann Intern Med,2005,142:240-50.
    [160]Yurdaydin C, Bozkaya H, Cetinkaya H, et al. Lamivudine vs lamivudine and interferon combina-tion treatment of HBeAg(-) chronic hepatitis B, J Viral Hepatitis[J],2005,12:262-8.
    [161]Long C.J., Qi H., Huang S.H., Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Im-mune Response to Hepatitis B Virus Infection[J], Journal of Biomedicine and Biotechnology,2008, 743-690.
    [162]Hsu HM, Chen DS, Chuang CH, et al. Efficacy of a mass hepatitis B vaccination program in Taiwan[J],JAMA,1988,260:2231-5.
    [163]Alhababi F, Sallam TA, Tong CY, The significance of'anti-HBc only'in the clinical virology laboratory[J], J Clin Virol,2003,27:162-169.
    [164]Wagner AA, Denis F, Weinbreck P, Loustaud V, Autofage F, Rogez S,Alain S, Serological pattern 'anti-hepatitis B core alone'in HIV or hepatitis C virus-infected patients is not fully explained by hepatitis B surface antigen mutants[J], Aids,2004,18:569-571.
    [165]Chisari F.V., Viruses, immunity, and cancer:lessons from hepatitis B[J], The American Journal of Pathology,2000,156(4):1117-1132.
    [166]Kangxian L., Hepatitis B Basic Biology and Clinical Science[M], People's Medical Publishing House, Beijin, China,2006.
    [167]Sheng Q., Chanying D., Nonlinear Models in Immunity[M], Shanghai Science and Technology Education Press, Shanghai,China,1998.
    [168]Cassandra F H., Pathogenesis of hepatitis B virus infection[D], PhD thesis:University of Toronto,2002.
    [169]Sherlock S., Dooley J., Diseases of the Liver and Biliary System[M],11th ed. Blackwell Sci-ence,Oxford,2002.
    [170]Sheldon J., Rod B., Zoulim F., et al., Mutations affecting the replication capacity of the hepatitis B virus[J], J Viral Hepat,2006,13(7):427.
    [171]Webster G., Reignat S., Maini M., et al., Incubation phase of acute hepatitis B in man:dynamic of cellular immune mechanism[J], Hepatology,2000b,32:1117-1124.
    [172]Ahmed R., Gray D.,Immunologycal memory and protective immunity:understanding their rela-tion[J], Science,1996,272:54-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700