聚氨酯弹性体钢夹层板的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯弹性体钢夹层板结构是近年来出现的一种新型夹层板结构,广泛应用于船舶结构和桥梁结构的建造和修复工程中。聚氨酯弹性体钢夹层板结构具有强度高、制造加工方便、工业化程度高等特点使其具有广泛的应用前景。由于聚合物夹芯的存在,使得夹层板结构还具有优异的抵抗冲击、振动和疲劳的性能以及隔声、隔热性能好的优点。本文针对聚氨酯弹性体钢夹层板的力学性能进行系统的研究,具体研究内容如下:
     1、研究了聚氨酯弹性体的制备方法,开展了制备实验,研究了聚氨酯弹性体硬度随时间的变化关系。并开展了带肋钢夹层板试件的制备方法研究,给出了浇筑过程中的流速、管道直径和控制压力之间的关系,开展了聚氨酯弹性体的基本力学性能实验,并根据试验结果分别用两参数和三参数固体模型描述其粘弹性本构关系。
     2、根据经典夹层板理论提出了一种基于挠度分析的夹层板弯曲等效方法,对经典的理论方法在保证足够精度的情况下进行近似的替代,此方法避免了经典夹层板理论建立偏微分方程组进行求解的缺点,便于广大工程技术人员理解和应用。还对内部带有隔板的聚氨酯弹性体钢夹层板结构的等效参数进行了计算,并使用有限元方法对计算得到的等效参数进行了验证。针对聚氨酯弹性体具有的粘弹性力学性能,文中还根据考虑粘弹性夹芯的Kelvin本构模型,对粘弹性夹芯夹层梁结构在静载和循环载荷下的挠度响应进行了计算和分析。
     3、在经典的带肋梁板组合结构临界屈曲应力分析的基础上,在分析过程中引入了屈曲折减系数,提出了对带肋夹层板结构进行临界屈曲载荷进行分析的理论方法,并对带肋聚氨酯弹性体钢夹层结构使用有限元工具进行特征值屈曲分析,开展了隔板夹层结构的屈曲实验,对实验结果、理论分析结果和有限元结果进行了对比,验证了分析的正确性。分析了SPS结构的皱曲问题。
     4、对聚氨酯弹性体夹芯板进行了三点弯曲实验,实验发现在弯曲挠度超过一定程度时,卸载后裂纹会在一段时间内继续发生扩展。根据观察不同种类夹芯的DCB实验和SLB实验发现裂纹扩展角度对同一种试件相同。据此推导了根据裂纹扩展角度描述的临界应变能释放率的计算公式。同时还提出了使用层间粘结强度来评价试件临界破坏准则的方法,获得了软夹芯试件和硬夹芯试件的临界破坏的裂纹长度。
     5,开展的聚氨酯弹性体夹层梁试件的小变形阶段和大变形阶段的疲劳实验,使用第3章中的理论对聚氨酯弹性体夹芯梁疲劳试验中加载频率的影响进行了分析,发现了聚氨酯弹性体夹芯板材料在弯曲疲劳时存在停歇效应,并根据此提出了包含停歇效应的线性疲劳损伤模型,并给出了回复程度的表达式,用来计算停歇时间而导致的疲劳寿命的增加,最后开展了停歇疲劳实验,验证了停歇效应及提出的疲劳损伤模型。
Sandwich Plate System (SPS) is composed of two pieces of steel faceplates and one softpolyurethane core. It was a new kind of sandwich plate appeared at recent years and was wildlyused in construction and reparation in shipbuilding and bridges structure for high strength, rapidreparation and better industrialization. The existing of Polyurethane elastomer make SPS hasmany special additional properties, such as weight reduction, resisting impact. dynamic response,enhancement in the random fatigue behavior, significant acoustic performance and heat insulation.A series of studies on mechanical properties on SPS are carried out in this thesis, and somecontents are listed as followings:
     1. The preparing method and experiments of polyurethane elastomer are studied and timehistory of hardness was also obtained. On this basis, preparing method of SPS with stiffeningribs was elaborated and the relationship among flow velocity, diameter of tube and pilot pressureis discussed. Fundamental mechanical tests are carried out and viscoelastic constitutive relationswere constructed according to the test results.
     2. A new equivalent bending analysis method of sandwich plate is proposed based onclassical sandwich bending theory, which can be approximately replaced in enough accuracy.This method avoid the disadvantage of establishing differential equations to be solved inclassical bending sandwich theory, and can be easily understood to apply by engineers.Furthermore, equivalent parameters of SPS reinforced by cross wall are calculated and a FEAmethod is also used to obtain equivalent parameters to compare with the theoretical results. Forviscoelasticity of polyurethane core, bending responses of sandwich plate consideringviscoelasticity of Kelvin constitute relation are also analyzed in case of static loading and cyclicloading.
     3. On the basis of research of traditional stiffened steel plates, through introducing criticalreduction coefficient of critical load, a theoretical analysis method is proposed to calculatecritical loads of SPS with stiffening ribs. At same time, Eigen value analysis by FEM andbuckling tests of stiffening SPS is also carried out to verify the correctness of theoretical analysis.Local buckling of SPS is also discussed here and critical wrinkling load of faceplate iscalculated.
     4.3-points bending tests for sandwich beam specimens with polyurethane core are carriedout and a special failure phenomenon was found that the interface crack will propagate afterunload and the process will last a certain time. From DCB and SLB tests, it is found that thepropagating angle of interface crack has same value for same kind core in different DCB andSLB test. According to the observation of test, a new kind of calculation method is deduced toelaborate critical strain energy release rate. At the same time, the analysis method of criticalfailure criteria is also proposed by using of interface bonded strength, and critical crack lengthcan be obtained.
     5. Fatigue tests for sandwich beam in elastic stage and plastic stage are carried out in lastchapter. The influence of frequency to the fatigue test is analyzed by using of theoretical methodproposed in chapter3, and found that there exist "rest" effect in fatigue test for sandwich beamwith polyurethane core.. a new liner damage model considering "rest" effect is proposed and the"recover" function is also given which can be used to calculate the increase of fatigue life. Lastly,dewell fatigue test is carried out to verify the "recover" phenomena and fatigue damage modelconsiderting dewell effect.
引文
[1]王世勋,复合材料夹芯结构的力学性能.哈尔滨工业大学博士论文.2010.1:2-15页.
    [2] Meng-Kao Yeh, Bending Strength Of Sandwich Beams With Nanocomposites Core.Advanced Materials Research,2009(8):577-580P.
    [3] Q.H. Cheng, H.P. Lee, C. Lu. A numerical analysis approach for evaluating elasticconstants of sandwich structures with various cores. Composite Structures74(2006).226–236P
    [4] Seong, D.Y; Jung, C.G.; Yang, D.Y.; Moon, K.J.; Ahn, D.G. Quasi-isotropic bendingresponses of metallic sandwich plates with bi-directionally corrugated cores. Materials&Design,v31, June2010, p2804-12.
    [5] M. A. Brooking, S. Kennedy. The Performance, Safety and Production Benefits of SPSStructures for Double Hull Tankers. www.ie-sps.com.2004.
    [6] Devin K. Harris, Tommy Cousins, Thomas M. Murray, and Elisa D. Sotelino. FieldInvestigation of a Sandwich Plate System Bridge Deck. Journal of Performance of ConstructedFacilities Vol.22, No.5,2008,23-30P.
    [7] Stephen J. Kennedy. An Innovative "No Hot Work" Approach to Hull Repair on In-ServiceFPSO’s Using Sandwich Plate System Overlay. Offshore Technology Conference.2003.1-5P
    [8] James. M Sandwich plate system bridge deck tests.[dissertation] Virginia PolytechnicInstitute and State University,2005.2-15P
    [9] Devin K. Harris1; Tommy Cousins. Flexural Lateral Load Distribution Characteristics ofSandwich Plate System Bridges: Parametric Investigation. JOURNAL OF BRIDGEENGINEERING, NOVEMBER/DECEMBER2010,682-686P
    [10] Martin, J. D, and Murray, Sandwich plate system bridge deck tests. Research Rep.No.CEE/VPI-ST04/07, Intelligent Engineering(Canada) Limited,2002,1-8P.
    [11] Dale B,Kennedy S J. Sandwich plate system risers for stadia. Annual Stability Conference,2002:24-27P.
    [12]易玉华.轻质高强聚氨酯复合钢板在结构工程中的应用.聚氨酯工业,2009,24(2):16-21页.
    [13]单成林,聚氨酯-钢板夹层结构正交异性桥面板力学性能分析,武汉理工大学学报,2010(4),35-37页;
    [14]单成林;汪晓天;许薛军;聚氨酯-钢板夹层正交异性桥面板试验研究,工程力学,2012(3).15-17页;
    [15]单成林,钢-弹性体夹层正交异性桥面板受力性能分析,湖南大学学报,2010(12).25-27页
    [16]尚高峰,轻量化船舶结构极限强度研究,中国船舶结构研究中心博士学位论文,2011;1-35页
    [17]刘志慧,钢夹层板船体结构强度分析方法研究,哈尔滨工程大学硕士论文2010,1-25页
    [18]周萍,钢夹层板船体结构强度及振动性能分析,哈尔滨工程大学硕士论文2010,1-20
    [19]黄柳生,复合材料夹层板船体结构强度分析方法研究[.哈尔滨工程大学硕士论文2009,15-30页
    [20]马英华,钢夹层板船体结构振动性能,大连海事大学学报.2011(03)35-40页.
    [21]傅明源,孙酣经.聚氨酯弹性体及其应用(第二版),化学工业出版社,1999年6月
    [22]吴晔,硬质聚氨酯弹性体制备及其本构研究,哈尔滨工程大学硕士论文,2011年3月45-50页
    [23]宫涛,聚氨酯弹性体最新发展动态,专家讲座,2006年5月
    [24]中国船级社.钢质海船入级规范.中国船级社.2006:113-114页
    [25] Provisional Rules for the Aplication of Sandwich Panel Construction to Ship Structure.Lioyd’s Register.2006.4;1-50P
    [26]易玉华,童真,石朝锋.钢复合结构材料中芯材聚氨酯的制备.聚氨酯工业,2008,(2),26-29页
    [27]易玉华,石朝锋.钢材一聚氨酯一钢材复合结构中聚氨酯芯材的性能要求及其制备方法.中国聚氨酯工业协会第十四次年会论文集,2008,47-50页
    [28]易玉华,石朝锋.SPS夹层用高硬度聚氨酯弹性体的研制.聚氨酯工业,2008,(4):26-29页
    [29]田雨;张杰;韦永继,一步法制备高硬度聚氨酯弹性体,聚氨酯工业,2001(3),35-37页
    [30]贾卫民,冯振纲高硬度聚氨酯弹性体的研究科技情报开发与经济,2005(8),47-50页
    [31]陈海良;张芳;孙青峰;朱孔秀;代金辉;聚醚型高硬度聚氨酯弹性体的研制,聚氨酯工业,2005(8),35-37页
    [32]周文英,姜娜,韦永继等,高硬度聚氨酯弹性体研制,化学推进剂与高分子材料,2007年01期
    [33]徐培林,张淑琴,聚氨酯材料手册,化学工业出版社,2002(7)37-50页
    [34] S.铁摩辛柯,板壳理论,科学出版社,1977年10月229—238页
    [35] Reissner E, On bending of elastie plates. Q.A.M1947,5(1),37-50P
    [36]胡海昌,各向同性夹层板反对称小挠度的若干问题,力学学报,1963,6(1)35-37页
    [37] Hoff, N. J. NACA TN No.2225,1950,137-150P
    [38]柳春图,夹层板方程的变换和四边简支矩形夹层板的变形问题[J].力学学报.1965(04)45-47页
    [39]杜庆华.三合板的一般弹性理论[J].物理学报.1954(04),55-57页
    [40] Heng Hu, Salim Belouettar, Michel Potier-Ferry, El Mostafa Daya, Review and assessmentof various theories for modeling sandwich composites Original Research Article, CompositeStructures, Volume84, Issue3, July2008, P282-292
    [41] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. JAppl Mech1945;12:69–76P.
    [42] Mindlin RD. Influence of rotatory inertia and shear in flexural motions of isotropic elasticplates. J Appl Mech1951;18:1031–1036P.
    [43] Reddy. J. N. A simple higher-order theory for laminated composit e plates. J Appl Mech,1984(51):745-752P.
    [44] Touratier M. An efficient standard plate theory. Int J Eng Sci1991:901–16.
    [45] Carrera E.Historical review of zig-zag theories for multilayered plates and shells. ApplMech Rev2003,56(3): P287–308.
    [46]岑松,龙驭球,姚振汉,基于一阶剪切变形理论的新型复合材料层合板单元,工程力学,2002(1),55-57页
    [47]吴振,陈万吉,新型整体-局部高阶剪切变形理论及层合板精化三角形单元[J].计算力学学报.2005(06),52-54页
    [48]傅晓华,陈浩然,王震鸣.复合材料多层厚板的精化高阶理论及其有限元法[J].复合材料学报.1992(02),15-17页
    [49] L. K rger, A. Wetzel, R. Rolfes, K. Rohwer, A three-layered sandwich element withimproved transverse shear stiffness and stresses based on FSDT. Computers&Structures,Volume84, May2006,843-854P
    [50] Libove C, Hubka RE. Elastic constants for corrugated core sandwich plates. Technical Note2289. National Aeronautics and Space Administration (NASA);1951.84-85P
    [51]Kelsey S, Gellatly RA, Clark BW. The shear modulus of foil honeycomb cores. Aircraft Eng1958:294–302P
    [52] LJ Gibson, MF Ashby, Cellular solids: structure and properties,Cambridge Univ Press,1997.159-180P.
    [53]任志刚,楼梦麟,田志敏,内桁架—聚氨酯泡沫塑料夹层板简化力学模型,力学季刊,2003(9),52-54页
    [54]富明慧,尹久仁.蜂窝芯层的等效弹性参数[J].力学学报.1999(01),52-54页
    [55]陈梦成,陈玳珩,正六角形蜂窝芯层面内等效弹性参数研究,华东交通大学学报,2010(10),82-84页
    [56]王红霞;王德禹;李喆,三角形夹芯板夹心层的等效弹性常数,固体力学学报,2007(6),52-54页
    [57]赵金森,铝蜂窝夹层板的力学性能等效模型研究,南京航空航天大学硕士学位论文2006,32-54页
    [58]王飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数,力学学报.2002(06),52-54页
    [59]邱克鹏,张卫红,孙士平.蜂窝夹层结构等效弹性常数的多步三维均匀化数值计算分析.西北工业大学学报.2006(04),32-44页
    [60] Q.H. Cheng, H.P. Lee, C. Lu; A numerical analysis approach for evaluating elastic constantsof sandwich structures with various cores. Composite Structures74(2006)226–236P
    [61]刘均;方形蜂窝夹层结构振动与冲击响应分析;华中科技大学博士论文,2009,52-84页。
    [62] G.J. McShane, D.D. Radford, V.S. Deshpande, N.A. Fleck. The response of clampedsandwich plates with lattice cores subjected to shock loading. European Journal of Mechanics/Solids25(2006),215–229P
    [63] A. Vaziri, Z. Xue and J. W. Hutc. Sandwich plates with polymer foam-filled cores. Journalof Mechanics of Materials and Structures. Vol.1, No.1,2006.5–10P
    [64] V.N.Burlayenko, T.Sadowski. Effective elastic properties of foam-filled honeycomb coresof sandwich panels. Composite Structures.2010(92),2890–2900P
    [64]陈铁云陈柏真.船舶结构力学.上海交通大学出版社.1991.8105-130页
    [65]中科院力学研究所固体力学研究室板壳组,夹层板壳的弯曲稳定与振动,科学出版,1977.1-75页.
    [66] S.铁摩辛柯,板壳理论(第二版),科学出版社,1977年10月,229—238页
    [67] Jing-Sheng Liu, Len Hollaway. Design optimisation of composite panel structures withstiffening ribs under multiple loading cases. Computers&Structures. Volume78,2000,637–647P
    [68] Vitaly Koissin, Andrey Shipsha, Vitaly Skvortsov, Compression strength of sandwich panelswith sub-interface damage; Composites Science and Technology2009(69),2231–2240P
    [69] Venkata Dinesh Muthyala,Composite Sandwich Structure With Grid Stiffened Core,[dissertation],B.E., Osmania University,2007,105-130P
    [70] J.C. Roberts, G. Bao, G.J. White; Experimental, numerical and analytical results for bendingand buckling of rectangular orthotropic plates;Composite Structures,1999(43),289-299P
    [71] Fabrizio Gara, Laura Ragni, Davide Roia, Luigino Dezi. Experimental tests and numericalmodeling of wall sandwich panels. Engineering Structures. Volume37,2012:193–204P
    [72] Casey R. Briscoe, Susan C. Mantell, Taichiro Okazaki, Jane H. Davidson Local shearbuckling and bearing strength in web core sandwich panels: Model and experimental validation.Engineering Structures2012(35),114–119P
    [73] F.X. Xin, T.J. Lu Analytical modeling of wave propagation in orthogonally rib-stiffenedsandwich structures: Sound radiation. Computers&Structures,2011,414–419P.
    [74] Manmohan Dass Goel, Vasant A. Matsagar, Steffen Marburg, and Anil K. Gupta.Comparative Performance of Stiffened Sandwich Foam Panels under Impulsive Loading. Journalof Performance of Constructed Facilities. Volume89,2012,207–216P
    [75] Mats Heder A simple method to estimate the buckling stress of stiffened sandwich panels.Composite Structures.1993,95–107P.
    [76] ZHAO Qun, JIN Haibo, DING Yunliang, CHI Peng Equivalent laminates model forstiffened panel global buckling analysis. Acta Materiae Compositae Sinica. Vol.26, No.3.2009,114–119P.
    [77] H. Al-Qablan. Semi-analytical Buckling Analysis of Stiffened Sandwich Plate. Journal ofApplied Sciences.10(23),2010:2978-2988P.
    [78]刘斌;张保;孙秦,加筋壁板整体屈曲极限承载能力研究;机械科学与技术2011(12)25-30页
    [79]周加喜,邓子辰,刘涛.受压夹层板的失效模式分析及优化设计.西北工业大学学报.2007(01),25-30页
    [80]白勇,徐向东,崔维成.船体极限强度的影响参数与敏感度探论[J].船舶力学.2001,05.
    [81]章向明,王安稳.梁板结构大变形分析.第十一届全国结构工程学术会议论文集第Ⅱ卷.2002,25-30页.
    [82] Gdoutos E E, Daniel I M, Wang K A. Compression facing wrinkling of compositesandwich structures. Mechanics of Materials,2003,35:511-522P.
    [83] Gough C.S. Elam C.F. and deBruyne N.A.,"The Stabilization of a Thin Sheet by aContinuous Supporting Medium", Journal of the Royal Aeronautical Society, January1940.11-22P
    [84] Williams D., Legget D.M.A. and Hopkins H.G.,"Flat Sandwich Panels under CompressiveEnd Loads", Royal Aircraft Establishment Report No. A.D.3174, June1941.511-522P
    [85] Hoff N.J. and Mautner S.E., Buckling of Sandwich Type Panels, Journal of the AeronauticalSciences, Vol.12, No3, July1945.285-297P,
    [86] Plantema F.J., Sandwich Construction, John Wiley&Sons, New York,1966.111-122P
    [87] Norris C.B., Ericksen W.S., March H.W., Smith C.B., and Boller K.H.,“Wrinkling of theFacings of Sandwich Construction Subjected to Edgewise Compression”, U.S.Forest ProductLaboratory Report1810,1949.51-52P
    [88]王铎.断裂力学(上册).哈尔滨:哈尔滨工业大学出版社,1989,35-57页
    [89] M. L. Williams, The stresses around a fault or crack in dissimilar media. Bull Seism SocAm,1959,49:199-208P
    [90] Bogy D B. Edge Bonded Dissimilar Orthogonal Elastic Wedges under Normal and ShearLoadings. J Appl Mech,1966,35,146-154P.
    [91] Comininou M. The interface crack in a combined Tension-compression and Shear Field. JAppl Mech.1979,46:345-352P
    [92] Dundurs J, Gautesen A K. An Opportunistic Analysis of the Interface Crack. Int J Fracture,1988.36,125-128P
    [93]许金泉.界面力学.科学出版社.2005.7111-122页
    [94] Paik J K, Thayamballi A K, Kim G S. The strength characteristics of aluminum honeycombsandwich panels[J]. Thinwalled Structures,1999,35:205-231P.
    [95]泮世东,吴林志,孙雨果.蜂窝夹心试件破坏行为分析[J].力学学报.2007,39(5):150-157页.
    [96] PAN shi-dong, FENG Ji-cai, WU Lin-zhi. Analysis of pre-crack kinking and delaminationin terms of SLB test of honeycomb sandwich structure. Journal of Harbin Institute of Technology(New Series),2009,16(4):250-256P.
    [97]泮世东,吴林志,孙雨果.含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式.复合材料学报.2007,24(6),311-317页.
    [98]梁文彦,王振清,吕红庆.双材料界面Ⅱ型扩展裂纹尖端的弹粘塑性场[J].哈尔滨工业大学学报.2011(S1),21-28页
    [99]王振清,梁文彦,吕红庆.双材料界面Ⅰ型扩展裂纹尖端的弹黏塑性场[J].力学学报.2011(02),31-35页
    [100]梁文彦,王振清,杨增杰;Ⅲ型弹粘塑性/刚性界面裂纹的定常扩展裂尖场[J].应用数学和力学.2010(02),32-35页
    [101]张淳源,张为民;求解一类非线性粘弹性问题的弹性回复对应原理,工程力学.2002(01),,132-135页
    [102]赵荣国,陈忠富,张淳源;一个非线性粘弹性本构模型及其在聚合物材料中的应用[J].湘潭矿业学院学报.2003(01),42-45页
    [103]张淳源;裂纹的延迟失稳[J].湘潭大学自然科学学报.1987(04)31-36页
    [104] Prasad S, Carlsson LA. Debonding and crack kinking in foam core sandwich beams-I.analysis of fracture Specimens.Eng Fract Mech,1994(6):813-824P
    [105] Hwang S F, Huang S M. Postbucking hehavior of composite laminates with twodelaminations under uniaxial compression. Composite Structures,2005(68):157-165P
    [106] Xinzhu Wang, Linzhi Wu, Shixun Wang, Study of Debond Fracture Toughness ofSandwich Composites with Metal Foam Core J. Mater. Sci. Technol., Vol.25No.5,2009,257-265P
    [107] Papanicolaou GC, Bakos D. Interlaminar fracture behavior of sandwich structures.Compart A,1996,(27):165-173P
    [108]刘玉岚,王彪,王殿富,含有界面裂纹的粘弹性层合板应变能释放率的计算,应用数学和力学,第24卷第1期,2003,31-36页
    [109] Gary K. Liu, Fatigue of Steel Plate-Elastomer Composite Beam, Degree thesis, Universityof Alberta.2007,257-265P
    [110] K. Kanny a, H. Mahfuz Flexural fatigue characteristics of sandwich structures at differentloading frequencies. Composite Structures2005(67)403–410P
    [111] S.C. Sharma, M. Krishna, H.N. Narasimha Murthy, M. Sathyamoorthy, and DebesBhattacharya, Fatigue Studies of Polyurethane Sandwich Structures, Journal of MaterialsEngineering and Performance,Volume13(5)2004.357-365P
    [112]孙国刚,停歇对疲劳裂纹扩展超载迟滞效应影响的研究,力学学报,1997(7)51-56页
    [113]李玲,李大纲,诸学清,疲劳/蠕变交互作用下竹木复合层合板断裂损伤研究,北京林业大学学报,2006(12),71-76页
    [114] A.D. Drozdov, Cyclic viscoelastoplasticity and low-cycle fatigue of polymer composites,International Journal of Solids and Structures48(2011)2026–2040P
    [115] Miner M A, Cumulative damage infatigue. Journalof Applied Meehanies.1945,12(3),159-164P
    [116] Manson S.S.Behaviour of materials under condition of thermal stress. NACA TN-2933,1954.259-264P
    [117] P.C.Paris, F.Erdogan. Acritical analysis of crack ProPagation laws. Journal of BasicEngineering,1963,85,528-534P
    [118] Mahi EI A, Farooq M K, Sahraoui S, Modeling the flexural behavior of sandwichcomposite materials under cyclic fatigue.Materials&Design,2004,25(3),199-208P
    [119]芦颉,金属蜂窝夹芯结构的疲劳行为研究,哈尔滨工程大学博士论文,2011.03,110-125页
    [120]文思维,硼/环氧复合材料补片修复含中心裂纹铝合金厚板研究,国防科学技术大学博士学位论文2008年,1-25页
    [121]谢志民、王友善、万志敏、顾勤,热老化的填充橡胶本构关系,哈尔滨工业大学学报,2008年09期,31-35页
    [122]冯国庆,船舶结构疲劳强度评估方法研究,哈尔滨工程大学博士学位论文,2006.8,25-37页
    [123]姚卫星等,结构疲劳寿命分析,国防工业出版社,2002,151-175页
    [124]芦颉,邹广平,曹扬,唱忠良,刘宝君,钢质蜂窝夹芯梁高温疲劳试验及寿命预测研究,哈尔滨工程大学学报,21-25页
    [125] Yang J N.Jones D L.Yang S H.Meskini.A stiffness degradation model for graphite/epoxy laminates.Journal of Composite Materials,1990,24:753-769P
    [126]余同希等,塑性弯曲理论及应用,科学出版社,1992.25-37页
    [127]丁大钧,弹性地基梁计算理论和方法,南京工学院出版社,1986.,25-47页
    [128]李佳,SPS复合钢板的屈曲性能和面/芯粘结属性研究,哈尔滨工程大学硕士论文,2012.3,25-47页
    [129]徐培林,张淑琴编著.聚氨酯材料手册.北京:化学工业出版社.2002:7-10页
    [130] http://www.aosailuo.net/HTM/Technical/20116815732.htm
    [131]莫乃榕工程流体力学,华中科技大学出版社(第二版),2009.7,15-22页
    [132]杨挺青,粘弹性力学,华中理工大学出版社,1990,15-52页
    [133]石勇,朱锡,李海涛,李永清等,考虑表层抗弯刚度影响的夹层板静力学等效分析[J],海军工程大学学报,第18卷第6期,2006,45-52页
    [134]李志慧.钢夹层板船体结构强度分析方法研究[D].哈尔滨工程大学2010.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700