高韧性低收缩纤维增强水泥基复合材料设计与应用基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PVA-ECC是一种高韧性的纤维增强水泥基复合材料。应力-裂纹口张开宽度关系是控制PVA-ECC性能的关键。本文旨在探讨如何设计材料的应力-裂纹口张开宽度关系以实现应变硬化和多点开裂。具有低收缩特性的PVA-ECC能与传统的混凝土复合用于结构中,提高结构的延性和耐久性。本文将对ECC-混凝土组合梁的抗弯性能做实验和理论研究。
     本文采用2种性能相似,断面直径不同的PVA纤维,4种具有低收缩特性的基材配比。对2种纤维增强材料的抗压和抗拉性能做了对比研究。实验结果显示:材料抗拉性能受纤维直径影响显著;在基材配比、纤维掺量均相同时,采用直径较大的纤维可获得应变硬化与多点开裂模式,而采用直径较小的纤维,复合材料却表现出明显的应变软化与单点开裂模式。当采用细的PVA纤维时,材料的抗拉强度有所提高。其主要原因是纤维的粗细影响纤维的桥接应力。保证纤维从水泥石中拔出而非断裂是优化纤维桥接性能的基本条件。
     同样采用上述的4种配合比和2种纤维,用已有的导出σ-w关系的方法,导出了2种低纤维掺量下的σ-w关系。实验结果显示:加入纤维后,σ-w曲线由单峰值变为双峰值。应力达到开裂强度后降低至最低点,然后上升至第二个峰值,呈现出应变硬化的特点。但加入纤维并不会影响第一个峰值的大小。第二个峰值随着纤维掺量的增大而提高,当第二个峰值高于第一个峰值时才可能实现应变硬化。
     时至今日,PVA-ECC材料的成本依旧比较高,经济因素阻碍了这种材料在建筑结构中的应用,为了使这种高性能材料能得到较好的应用,砼与ECC组合后形成一种复合材料是一种比较理想的提高性价比的方式。本文研究了将低收缩PVA-ECC应用于复合梁的实际效果。并建立了模型来预测梁的抗弯承载力。复合上ECC后,ECC层出现多条细密裂缝,裂缝上升至混凝土层后转变为单一的裂缝。当ECC层的强度较高时,梁的承载力随ECC层厚的增加而增大。当上部混凝土的强度较高时,梁的承载力随ECC层厚的变化不明显。模型能较好预测梁的承载力随ECC层厚的变化规律。
PVA-ECC is a kind of high ductile fiber reinforced cementitious composites.Stress-crack opening relationship is the key to control the performance of PVA-ECC. Inorder to achieve strain-hardening and multiple cracking, stress-crack openingrelationship is studied.The PVA-ECC with low shrinkage characteristics can work withtraditional concrete, as well as increase the ductility and durability of structures. Thispaper is dedicated to the experimental and theoretical studies of ECC-concretecomposite beam with flexural performance.
     Two types of PVA fibers with different diameters and four kinds low-shrinkagecements are adopted. Comparison of compressive and tensile properties between twofiber-reinforced composites is studied. Experimental results show that the tensileperformance of the composites may greatly be influenced by the dimension of fibers. Asusing thicker fiber, the strain hardening and performances of multiple cracking can beobtained under tensile load. Whereas using thinner fiber leads to significant behaviorsof strain softening and single cracking. Some increase of tensile strength amongcomposites reinforced with thinner fibers is also observed, which is mainly due to theinfluence of fiber thickness upon its bridging capability. Ensuring that fibers pull out ofcement base instead of fracture is a fundamental requirement for optimizing its bridgingproperty.
     Using the above-mentioned four kinds of complexes and two kinds of fiber, we cansolve the stress-crack opening relationship with exiting methods. After adding polyvinylalcohol fibers, the stress-crack opening relationship of the composites changes to adouble peak mode. The second peak is greatly increased with increase of fiber content.The second peak stress larger than the cracking strength means strain-hardening andmultiple cracking performances can be expected under tension.
     Nowadays, the high price of PVA-ECC restrains its application in structures. Thecombination of ECC and ordinary concrete is a good way of reducing the cost. In thispaper, the practical effect of applying low-shrinkage PVA-ECC to composite beam wasstudied, and a corresponding model was established to predict flexural capacity of thebeam. Results shows that ECC could significantly improve the ductility of the beam.Observation was made that multiple fine cracking appeared in ECC layer, and whileascending to concrete layer, they transformed into one single cracking until failure. When the strength of ECC is relatively higher, beam capacity increased with thickerECC layer; Whereas when the strength of concrete layer is higher, influence of ECClayer thickness is not obvious. The corresponding model can be used to predict flexuralcapacity of the beam with different thickness of ECC layers.
引文
[1]李明顺等.混凝土结构裂缝问题,建筑科学,2000(3).
    [2]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用.土木工程学报,2008,41(6):45-60.
    [3]Control of Cracking in Concrete Structures,Reported by ACI Committee224,2000.
    [4]P.K.Mehta. Durability—Critical Issues for the Future. Concrete International. July1997.
    [5]R. W. Burrows, The Visible&Invisible Cracking of Concrete, ACI Publisher,1998.
    [6]Proceedings of the International Symposium on Thermal Cracking in Concrete at Early Ages,edited by R. Springenschmid,1994.
    [7]Proceedings of the International RILEM Workshop “Shrinkage of Concrete, Shrinkage2000”,edited by V. Boroghai-Bouny and P-C. Aitcin,2000.
    [8]Proceedings of the International RILEM Conference on Early Age Cracking in CementitiousSystems-EAC'01, Edited by K. Kovler and A. Bentur,2001.
    [9]Proceedings of the International Workshop on Control of Cracking in Early Age Concrete, editedby H. Mihashi and F.H. Wittmann,2002.
    [10]Proceedings of the Sixth International Conference on Creep, Shrinkage and DurabilityMechanics of Concrete and Other Quasi-brittle Materials, edited by F.J., Ulm, Z.P. Bazant andF.H. Wittmann,2001.
    [11]徐至钧.纤维混凝土技术及应用.北京:中国建筑工业出版社,2003:1-536.
    [12]吴李国. PVA纤维的应用现状及进展.现代纺织技术.2001(4):2-54.
    [13]Li, V. C., Advances in ECC Research. ACI Special Publication on Concrete: Material Science toApplications,2002,SP206-23:373-400.
    [14]Li, V.C., Large Volume, High-Performance Applications of Fibers in Civil Engineering. Journalof Applied Polymer Science,2002,83(2):660-686.
    [15]Zhang, J., Li, V.C., Nowak, A. and Wang, S., Introducing Ductile Strip for DurabilityEnhancement of Concrete Slabs. ASCE Journal of Materials in Civil Engineering,2002,14(3):253-261.
    [16]Zhang J, Li V C. Monotonic and Fatigue Performance in Bending of Fiber-reinforcedEngineered Cementitious Composite in Overlay System. Journal of Cement and ConcreteResearch,2002,32(3):415-423.
    [17]Takashima H, Miyagai K, Hashida T. Fracture Properties of Discontinuous Fiber ReinforcedCementitous Composites Manufactured by Extrusion Molding [A]. In: Proceedings of the JClInternational Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DRFCC-2002)[C]. Takayama, Japan, Oct.2002:75-84.
    [18]Fukuyama H, Sato Y, Li V C, et al. Ductile Engineered Cementitious Composites Elements forSeismic Structural Application [A]. In: Proceedings of the12WCEE [C],2000.
    [19]Kim, Y.Y., Fischer, G., and V.C. Li, Performance of Bridge Deck Link Slabs Designed withDuctile ECC, ACI Structural J.,2004,101(6):792-801.
    [20]Li, V. C., Integrated Structures and Materials Design. Materials and Structures, RILEM, Jan2006:1-10.
    [21]公成旭.高韧性低收缩纤维增强水泥基材料研发:[硕士学位论文].北京:清华大学土木工程系,2008.
    [22]Li V C, Wang S X, Wu C. Tensile Strain-Hardening Behavior of Polyvinyl Alcohol EngineeringCementitious Composite (PVA-ECC) ACI Materials Journal,2001,November-December:484-492.
    [23]Li V C, Leung C K Y, Theory of Steady State and Multiple Cracking of Random DiscontinuousFiber-Reinforced Brittle Matrix Composites. ASCE journal of Engineering Mechanics,1992,118(11):2246-2264.
    [24]Li V C, Fukuyama H, Mikame A. Development of Ductile Engineered Cementitious CompositeElements for Seismic Structural Applications. Structural Engineering World Congress. SanFrancisco,1998, Paper T177-5.
    [25]Zhang J, Li V C. Effect of Inclination Angle on Fiber Rupture Load in Fiber ReinforcedCementitious Composites. Composites Science and Technology,2002,62:775-781.
    [26]Marshall, D. and Cox, B.N. A J-integral Method for Calculating Steady-State Matrix CrackingStress in Composites, Mechanics of Materials,1988,7:127-133.
    [27]Li, V.C., From Micromechanics to Structural Engineering--the Design of CementitousComposites for Civil Engineering Applications. JSCE J. of Struc. Mechanics and EarthquakeEngineering,1993,10(2):37-48.
    [28]Kong H J, Stacy G B, Li V C. Constitutive Rheological Control to Develop Self-consolidatingEngineered Cementitious Composite Reinforced with Hydrophilic Polyvinylalcohol Fibers.Cement&Concrete Composite,2003,25:333-341
    [29]Kong H J, Stacy G B, Li V C. Development of a Self-consolidating Engineered CementitiousComposite Employing Electrosteric Dispersion/Stabilization. Cement&Concrete Composite,2003,25:301-309.
    [30]Mette R G, Mari B, Lars N T, et al. The Effect of Measuring Procedure on the ApparentRheological Properties of Self-compacting Concrete. Cement&Concrete Composite,2002,32:1791-1795.
    [31]Don D K, Gpag V Z. Extrusion of Engineered Cement-Based Composite Material.6th RILEMSymposium on Fiber-Reinforced concretes(FRC). Varenna.2004:1301-1310.
    [32]Hiroyuki T, Kiyotaka M, Toshiyuki H, et al. A Design Approach for the Mechanical Propertiesof Polypropylene Discontinuous Fiber Reinforced Cementitious Composites by ExtrusionMolding.Engineering Fracture Mechanics,2003,70:853-870.
    [33]Alva P, Surendra P S. Processing Effects in Cementitious Composites: Extrusion and Casting.Journal of Materials in Civil Engineering,2003, March/April:192-199.
    [34]Shah S P, Srinivasan R, DeFord D. The Use of Extrusion Rheometry in the Development ofExtruded Fiber-reinforced Cement Composites. Concrete Science and Engineering,1999,1:26-36.
    [35]Kim Y Y, Kong H J, Li V C. Design of Engineered Cementitious Composite Suitable forWet-Mixture Shotcreting. ACI Materials Journal,2003,100(6):511-518.
    [36]Kim Y Y, Fischer G, Lim Y M, et al. Mechanical Performance of Sprayed EngineeredCementitious Composite Using Wet-Mix Shotcreting Process for Repair Applications. ACIMaterials Journal,2004,101(1):42-49.
    [37]Lepech M., V.C. Li, Durability and Long Term Performance of Engineered CementitiousComposites [C], Proceedings of Int'l workshop on HPFRCC in structural applications, Honolulu,Hawaii, USA, May,2005:23-26.
    [38]Information on http://www.engineeredcomposites.com/Applications/mitaka_dam.html [OL].
    [39]K. Rokogo and T. Kanda, Presentation “Recent HPFRCC R&D Progress in Japan” inProceedings of Int'l workshop on HPFRCC in Structural Applications, Honolulu, Hawaii, USA,May23-26,2005.
    [40]张君,王林,孙明,刘骞.粗细骨料比例和水泥石强度对混凝土断裂参数的影响.工程力学,2004,21(1):136-142.
    [41]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究[C].第十一届全国纤维混凝土学术会议,大连,2006.
    [42]刘小泉.高延性纤维增强水泥基复合材料的制备与性能研究[硕士学位论文].南京:东南大学,2007.
    [43]姜国庆. ECO-ECC的制备技术、性能、微观机理及仿真分析[博士学位论文].南京:东南大学,2009.
    [44]P.K.Mehta. Durability—Critical Issues for the Future. Concrete International. July1997.
    [45]洪定海,混凝土中的钢筋锈蚀与保护[M],中国铁道出版社,北京,1998.
    [46]Control of Cracking in Concrete Structures,Reported by ACI Committee224,2000.
    [47]Proceedings of the International RILEM Conference on Early Age Cracking in CementitiousSystems, Edited by K. Kovler and A. Bentur,2001.
    [48]Proceedings of the International Workshop on Control of Cracking in Early Age Concrete, editedby H. Mihashi and F.H. Wittmann,2002.
    [49]王德志,张金喜,张建华.沿海公路钢筋混凝土桥梁氯盐侵蚀的调研与分析,北京工业大学学报,32(2):187-192,2006.
    [50]王琴.正确选用氯离子的检测方法.企业标准化,2008,(9).
    [51]Evans R H, Marathe M S. Microcracking and Stress-stain Curves for Concrete in Tension [J].Materials and Structures,1968,1(1):61-64.
    [52]Petersson P-E. Crack Growth and Development of Fracture Zones in Plain Concrete and SimilarMaterials. Report TVBM-1006, Lund Institute of Technology,1981.
    [53]Schorn H, Berger-bocker T. Test Method for Determining Process Zone Position and FractureEnergy of Concrete [J]. Experimental Techniques,1989,29:29-33.
    [54]Li Z, Kulkarni S M, Shah S P. New Test Method for Obtaining Softening Response ofUnnotched Concrete Specimen under Uniaxial Tension [J]. Experimental Mechanics,1993,33:181-188.
    [55]Li Qingbin, Farhad Ansari. High Strength Concrete in Uniaxial Tension [J]. ACI MaterialsJournal,2000,97(1):49-57.
    [56]Gopalaratnam V S, Shah S P. Softening Response of Plain Concrete in Direct Tension [J]. ACIJournal,1985,82(3):310-323.
    [57]Wang Youjiang, Li Victor C, Backer Stanley. Experimental Determination of Tensile Behavior ofFiber Reinforced Concrete [J]. ACI Material Journal,1990,87(5):461-468.
    [58]Reinhardt H W, Cornelissen A W, Hordijk D A. Tensile Tests and Failure Analysis of Concrete[J]. Journal of Structure Engineering,1986,112:2462-2477.
    [59]Carpinteri A, Chiaia B, Ferro G. Scale Dependence of Tensile Strength of Concrete Specimens:A Multifractal Approach [J]. Magazine of Concrete Research,1998,50(3):237-246.
    [60]Li V C, Chan C M and Leung C K Y. Experimental Determination of the Tension-softeningRelations for Cementitious Composites. Cement and Concrete Research,1987,17:441-452.
    [61]Zhang J., Liu Q., Determination of Fracture Parameters of Concrete by Three-point BendingTest. Tsinghua Science and Technology, No.6,2003.
    [62]Zhang, J., and Li, V.C., Simulation of Crack Propagation in Fiber-reinforced Concrete byFracture Mechanics. Cement and Concrete Research,34,2, February,2004,333-339.
    [63]Cox, B.N. and Marshall, D.B.. Stable and Unstable Solutions for Bridged Cracks in VariousSpecimens, Acta Metall. Mater.,39,4,579-589,1991.
    [64]刘骞.由三点弯曲试验确定混凝土断裂参数——基于Windows的程序设计:[硕士学位论文].北京:清华大学土木工程系,2005.
    [65]陈婷.高强高弹PVA纤维增强水泥基材料的研制与性能[硕士学位论文].安徽,合肥工业大学,2004.
    [66]张君,李启宏,赵金平.挤压脱水与普通浇筑成型纤维水泥板性能对比.建筑材料学报,2011,14(2):238-243.
    [67]张君,李启宏,侯东伟.挤压纤维增强水泥板及复合梁抗弯与耐久性能.土木建筑与环境工程,2009,31(6):81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700