变高度、变倾角的翼梢小翼驱动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减阻是飞机设计的主要任务之一,翼梢小翼能有效降低飞机的诱导阻力。传统翼梢小翼仅面向巡航状态优化,而在起飞、爬升等非设计状态的减阻效率较低。针对该问题,本文研究了一种可变高度和倾斜角的变体翼梢小翼,能根据飞机的飞行状态主动改变自身的高度和倾斜角,实现整个飞行包线内实时优化飞机阻力特性的目的。
     本文的研究工作重点围绕以下三方面进行:
     首先,研究了变体翼梢小翼的变形方式和变形范围问题。翼梢小翼的参数类型较多,各参数对小翼减阻效率的影响程度也不同,变体翼梢小翼应改变哪些参数、以及这些参数在什么范围内变化,是研究变体翼梢小翼面临的首要问题。针对变形方式问题,本文采用Plackett-Burman试验设计分析了小翼的各类几何参数对减阻效率的影响程度,筛选出对小翼减阻效率影响最大的关键参数,以此为依据指出了变体翼梢小翼的变形方式。在此基础上,采用响应曲面设计得到了小翼的关键参数在起飞、爬升和巡航阶段的最佳值,确定了小翼关键参数的变形范围。研究结果表明,翼梢小翼的高度和倾斜角是影响其减阻效率的关键参数,因此变体翼梢小翼应该通过改变高度和倾斜角的方式来提高起飞、爬升阶段的减阻效率。
     其次,研究了变体翼梢小翼的驱动技术。以变体翼梢小翼的变形方式和变形范围为依据,本文提出了三种驱动机构——用于变高度翼梢小翼的伸缩栅格、用于变倾角翼梢小翼的主动弯曲梁、以及用于高度和倾斜角复合式变形的差动式伸缩栅格。通过数值模拟和模型实验研究了三种驱动机构的运动特性,推导了机构的运动方程,并研究了相应的控制方法。研究结果显示,三种驱动机构可以实现变体翼梢小翼所需的变形动作。
     第三,研究了变体翼梢小翼的气动收益问题。本文采用计算流体力学(CFD)与风洞实验相结合的方法,分析了变体翼梢小翼变形前与变形后对机翼展向载荷分布、翼梢尾涡流场控制、机翼的升阻力和翼根弯矩的影响。研究结果表明,变体翼梢小翼不仅能显著改善飞机起飞阶段的气动效率,还能进一步削弱翼尖尾涡强度。其中,变高度的变形方式获得的气动收益最大,高度和倾斜角复合式变形获得的气动收益次之,而变倾斜角的变形方式获得的气动收益最小。但是,三种变形方式都会引起气动载荷向机翼翼尖区集中,带来额外的翼根弯矩增量,因此必须保证变形幅度不得超过预设的变形范围,否则会损害机翼结构的安全。
     本文研究工作在机械结构力学及控制国家重点实验室完成,并得到了国家自然科学基金项目“用于近空间飞行器仿生机翼的驱动器基础研究”(项目批准号:90605003)的资助。
Drag reduction is one of the main goals in aircraft design. Although winglet has the capability ofreducing the induced drag of an aircraft, traditional designs of the winglet are only optimized forcruise phase and are inefficient at non-cruise condition, including taking off phase and climbing phase.In this thesis, a new morphing winglet design is proposed in which the height and cant angle of thewinglet can be changed to provide the optimal drag reduction efficiency for both cruise andnon-cruise conditions, overcoming the shortage of traditional winglet at non-cruise condition.
     The main contents and achievements are as follows.
     First the deformation modes and the range the parameters of the morphing winglet areinvestigated. Many parameters are employed to describe the performances of the winglet, each ofwhich has different influence on drag reduction efficiency. The main challenges of morphing wingletsare to determine which parameter should be deformed and what is the deformation range. By usingPlackett-Burman test method, the effects of the winglet parameters on drag reduction are analyzed todetermine the key parameters that affected the drag reduction, from which the deformation mode ofwinglets could be obtained. The optimal value of the key parameters and their ranges during takingoff, climbing and cruise are then obtained by using the response curve surface design. The resultsshowed that the key parameters of winglet are height and cant angle, which suggests that themorphing winglet should change its height and cant angle to improve the drag reduction efficiencyduring taking off and climbing.
     Second actuation techniques of the morphing winglet are studied. Three types of drivingmechanisms are investigated which include the retractable grid for variable height winglet, the activebending beams for variable cant angle winglet and the antagonistic retractable grid for variable heightand cant angle winglet. The kinematics of the three mechanisms was studied by numerical simulationand model experiments to derive the equations of motion and find the control method. The resultsshow that the three kinds of driving mechanisms could meet the requirements of the morphingwinglets.
     Finally, the aerodynamic benefit of morphing winglet is analyzed. By combining computationalfluid dynamics (CFD) with wind tunnel test, the aerodynamic benefit of morphing winglet isconsidered. The spanwise pressure distribution, the wingtip vortices dissipation, the aerodynamiccharacteristics and root bending moment of a wing before and after morphing were analyzed. Theresult demonstrates that the morphing winglet could significantly improve the aerodynamic performance of an aircraft in the takeoff phase of flight, among which the height deformation mode isthe most efficient in improving the aerodynamic benefit of morphing winglet, the height and cantangle coupled deformation mode is lesser and the cant angle deformation mode is the least.Furthermore, all three ways of deformation modes would induce the pressure augmentation inoutboard wing, which produce extra wing root bending moment. Therefore, the morphing wingletshould be controlled within the optimal range to prevent from wing structure failure.
     This thesis is accomplished in State Key Laboratory of Mechanics and Control of MechanicalStructures, as well as funded by the National Natural Science Foundation of China under Contract No.90605003.
引文
[1]路风.我国大型飞机发展战略研究报告.商务周刊,2005,3:29-49.
    [2]朱自强,王晓璐,吴宗成,等.民机设计中的多学科优化和数值模拟.航空学报,2007,28(1):1-13.
    [3]姜澄宇,宋笔锋.从国外民机重大研究计划看我国大型民机发展的关键技术.航空制造技术,2008,(1):28-33.
    [4]吴慧欣.基于环保和经济性的民机概念设计,[硕士学位论文].上海:上海交通大学,2011.
    [5]方宝瑞.飞机气动布局设计.北京:航空工业出版社,1997.
    [6]马汉东,崔尔杰.大型飞机阻力预示与减阻研究.力学与实践,2007,29(2):1-8.
    [7] R.T. Whitcomb. A design approach and selected wind-tunnel results at high subsonic speeds forwing-tip mounted winglets NASA TN D-8260,1976.
    [8] K.K. Ishimitsu. Design and Analysis of Winglets for Military Aircraft. AFFDL-TR-76-6,1976.
    [9] K.K. Ishimitsu. Aerodynamic design and analysis of winglets. American Institute of Aeronauticsand Astronautics, Aircraft Systems and Technology Meeting, Dallas: AIAA,1976.
    [10]党铁红,陆红雷.民用飞机翼梢小翼的设计研究.民用飞机设计与研究,2004,(4):13-16.
    [11]顾蕴松,程克明,郑新军.翼尖涡流场特性及其控制.空气动力学学报,2008,26(4):446-451.
    [12]徐德康.低风险低成本高回报——融合式翼梢小翼的功能与设计特点.国际航空,2002,(02).
    [13] J.D. Anderson. Introduction to flight. Columbus: McGraw-Hill,2005.
    [14] K.K. Ishimitsu. Design and Analysis of Winglets for Military Aircraft. Phase2. AFFDL-TR-77-23,1977.
    [15]李德海.浅谈波音737NG安装翼梢小翼优缺点.航空维修与工程,2010,(2):79-80.
    [16] J.B. Crichley, P.B. Foot. Analysis of incidents reported between1972and1990. Proceedings ofthe Aircraft Wake Vortices Conference, London: Civil Aviation Authority Wake Vortex Database,1992.
    [17]徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述.航空学报,2010,31(4).
    [18] C.W. Martz, J.D. Church, J.W. Goslee. Free-Flight Investigation To Determine Force andHinge-Moment Characteristics at Zero Angle of Attack of a600Sweptback Half-Delta TipControl on a600Sweptback Delta Wing at Mach Numbers Between0.68and1.44. NACA RML51114,1951.
    [19] C.W. Martz, J.D. Church. Flight Investigation at Subsonic, Transonic, and Supersonic Velocitiesof the Hinge-moment Characteristics, Lateral-control Effectiveness, and Wing Damping in Roll ofa60Degrees Sweptback Delta Wing with Half-delta Tip Ailerons. NACA RM L51G18,1951.
    [20] A. Shelton, A. Tomar, J. Prasad, et al. Active multiple winglets for improved UAV performance.22nd Applied Aerodynamics Conference and Exhibit, Providence: AIAA,2004.
    [21] F.M. Catalano, H.D. Cerón-Mu oz. Experimental Analysis of the Aerodynamic Characteristics ofAdaptive Multi-winglets.43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno: AIAA,2005.
    [22] A. Gatto, F. Mattioni, M.I. Friswell. Experimental Investigation of Bistable Winglets to EnhanceWing Lift Takeoff Capability. Journal of Aircraft,2009,46(2):647-655.
    [23] N.M. Ursache, T. Melin, A.T. Isikveren, et al. Morphing winglets for aircraft multi-phaseimprovement.7th AIAA Aviation Technology, Integration and Operations Conference, Belfast:AIAA,2007.
    [24] L. Falc o, A.A. Gomes, A. Suleman. Aero-structural Design Optimization of a Morphing Wingtip.Journal of Intelligent Material Systems and Structures,2011,22(10):1113-1124.
    [25] C. Boller, C.M. Kuo. Demonstration of Adaptive Structure Performance on Modular Micro AirVehicle.51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference, Orlando: AIAA,2010.
    [26] P. Bourdin, A. Gatto, M.I. Friswell. Aircraft control via variable cant-angle winglets. Journal ofAircraft,2008,45(2):414-423.
    [27] N. Conley. Winglet toe-out angle optimization for the gates learjet longhorn wing. Journal ofaircraft,1980,17(12):851-855.
    [28] P. Gerontakos, T. Lee. Effects of winglet dihedral on a tip vortex. Journal of aircraft,2006,43(1):117-124.
    [29] K. Takenaka, K. Hatanaka, W. Yamazaki, et al. Multidisciplinary design exploration for a winglet.Journal of aircraft,2008,45(5):1601-1611.
    [30] M.M.K.V. Sankrithi, J.B. Frommer. Controllable winglets, USA, A1, US2008/0308683,2008.
    [31] Z.C. Hoisington, B.K. Rawdon. Ground effect wing having a variable sweep winglet, USA, B1,US6547181,2003.
    [32] T.F. Fitzgibbon. Wing fold actuator system for aircraft, USA, A, US5310138,1994.
    [33] J.B. Allen. Articulating winglets, USA, A, US005988563,1999.
    [34] V. Werthmann, M. Kordt. Concept of a Variable Winglet for Lateral Load Reduction forCombined Lateral and Vertical Load Reduction, and for Improving the Performance of Means ofLocomotion, USA, A1, US2008/0191099,2006.
    [35] P. Bourdin, A. Gatto, M.I. Friswell. The application of variable cant angle winglets for morphingaircraft control.24th Applied Aerodynamics Conference, San Francisco: AIAA,2006.
    [36] P. Bourdin, A. Gatto, M. Friswell. Potential of articulated split wingtips for morphing-basedcontrol of a flying wing.25th AIAA Applied Aerodynamics Conference, Miami: AIAA,2007.
    [37] N. Ameri, M.H. Lowenberg, M.I. Friswell. Modelling the Dynamic Response of a Morphing Wingwith Active Winglets. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head:AIAA,2007.
    [38] N. Ameri, M.I. Friswell, M.H. Lowenberg, et al. Modelling Continuously Morphing Aircraft forFlight Control.19th International Conference on Adaptive Structures and Technologies Ascona:AIAA,2008.
    [39] N.M. Ursache, T. Melin, A.T. Isikveren, et al. Technology Integration for Active Poly-MorphingWinglets Development. ASME Conference on Smart Materials, Adaptive Structures andIntelligent Systems Ellicott City: ASME,2008.
    [40] K.W. Goodson. Airfoil, USA, US4671473,1987.
    [41] J.E. Blondeau, D.J. Pines. Pneumatic Morphing Aspect Ratio Wing.45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference, PalmSprings: AIAA,2004.
    [42] J. Felício, P. Santos, P. Gamboa, et al. Evaluation of a Variable-Span Morphing Wing for a SmallUAV.52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference, Denver: AIAA,2011.
    [43] T.A. Weisshaar, B. Sanders. Morphing aircraft technology-new shapes for aircraft design. NATORTO conference on Advanced Flight Concepts, Vilnius, Lithuania,2006.
    [44] J.S. Flanaganl, R.C. Strutzenberg, R.B. Myers, et al. Development and flight testing of a morphingaircraft, the NextGen MFX-1. The48th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference, Honolulu, Hawaii: AIAA,2007.
    [45] S. Bharti, M. Frecker, G. Lesieutre, et al. Tendon actuated cellular mechanisms for morphingaircraft wing. Modeling, Signal Processing, and Control for Smart Structures, San Diego,California: SPIE,2007.
    [46]左林玄,王晋军.全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究.空气动力学学报,2010,28(2).
    [47]冯立好,王晋军,于东升.多操纵面无尾布局飞机横航向控制.北京航空航天大学学报,2010,36(9):1038-1042.
    [48]司亮,王和平.翼梢小翼后缘舵面偏转对机翼气动特性影响研究.航空计算技术,2010,(3).
    [49]马裕.翼尖小翼飞行试验结果分析及其设计航空学报,1987,8(2): B22-B31.
    [50]唐登斌,钱家祥.机翼翼尖减阻装置的应用和发展.南京航空航天大学学报,1994,26(1):9-16.
    [51]徐新,赵选民,周喜军,等.基于正交设计的某型飞机翼尖小翼优化设计方法研究.航空计算技术,2004,34(4):13-16.
    [52]吴希拴,师小娟,王建培.无人机翼尖小翼参数优化及风洞试验研究.飞行力学,2004,22(1):30-36.
    [53]金海波,刘玲,丁运亮.水陆两用飞机翼尖小翼外形参数优化.南京航空航天大学学报,2008,40(4):469-474.
    [54]姜琬,金海波,孙卫平.基于多级响应面法的翼梢小翼气动优化设计.航空学报,2010,31(9).
    [55]王盼乐,赵美英,严子规.伸缩机翼变形机构多柔性体动力学仿真分析.科学技术与工程,2009,9(13):3708-3712.
    [56]李闻,宋笔锋,张炜.飞翼布局无人机变形机翼设计与模型验证研究.飞行力学,2010,28(4):17-20.
    [57]金鼎,张炜.一种变体飞机机翼折叠作动器的优化设计.机械科学与技术,2011,30(2):286-289.
    [58]王辉,屈晓波,郑良怡.升力面积可变的固定翼无人飞行器,中国, U, CN201604793,2010.
    [59]李贺. SMA-电机混合驱动原理与可折叠翼机构设计研究,[硕士学位论文].合肥:中国科学技术大学,2011.
    [60]万志强,杨超,王立波,王耀坤.一种可折叠的小型无人机中国, A, CN101712379,2010.
    [61]郭小良,裴锦华,杨忠清,等.无人机折叠机翼展开运动特性研究.南京航空航天大学学报,2006,38(4):438-441.
    [62]李强,李周复,张国友,刘铁中,黄丹,高小荣.风动模型折叠变形机翼,中国, A, CN101380999,2009.
    [63]江永泉.飞机翼梢小翼设计.北京:航空工业出版社,2009.
    [64]江永泉.翼梢小翼的空气动力机理.民用飞机设计与研究,1993,(3):16-22.
    [65] H.F. Faery. The effect of Whitcomb winglets and other wingtip modifications on wake vortices,[Ph.D. Thesis]. Blacksburg: Virginia Polytechnic Institute and State University,1977.
    [66] M.D. Maughmer. Design of winglets for high-performance sailplanes. Journal of Aircraft,2003,40(6):1099-1106.
    [67] S.G. Flechner, P.F. Jacobs, R.T. Whitcomb. A high subsonic speed wind tunnel investigation ofwinglets on a representative second-generation jet transport wing. NASA TN D-8264,1976.
    [68]马彦辉,何桢.基于QFD, TRIZ和DOE的DFSS集成模式研究.组合机床与自动化加工技术,2007,(1):17-20.
    [69]陈魁.试验设计与分析.北京:清华大学出版社,2005.
    [70] D.C. Montgomery. Design and analysis of experiments. Beijing: Posts&Telecom Press,2007.
    [71] R.L. Plackett, J.P. Burman. The design of optimum multifactorial experiments. Biometrika,1946,33(4):305-325.
    [72]韩健,刘朝辉,齐崴,等. β-甘露聚糖酶发酵液絮凝条件的统计学筛选与响应面优化.生物加工过程,2007,5(2):29.
    [73] T. Melin, A. Isikveren, M. Friswell. Induced-Drag Compressibility Correction forThree-Dimensional Vortex-Lattice Methods. Journal of aircraft,2010,47(4):1458-1460.
    [74]陆志良.空气动力学.北京:北京航空航天大学出版社,2009.
    [75] H.S. Tsien. Problems in motion of compressible fluids and reaction propulsion,[Ph.D Thesis].Pasadena: California Institute of Technology,1939.
    [76]姜琬.基于多级响应面法的翼梢小翼优化设计方法研究,[硕士学位论文].南京:南京航空航天大学,2010.
    [77] G.E.P. Box, D. Behnken. Some new three level designs for the study of quantitative variables.Technometrics,1960,2(4):455-475.
    [78] G.E.P. Box, J.S. Hunter. Multi-factor experimental designs for exploring response surfaces. TheAnnals of Mathematical Statistics,1957,28(1):195-241.
    [79]哈尔滨工业大学,成都电动机厂.步进电动机.北京:科学出版牡,1979.
    [80]王宗培,孔昌平,李楚武.步进电动机及其控制系统.哈尔滨:哈尔滨工业大学出版社,1984.
    [81]陈坚.交流电动机数学模型及调速系统.北京:国防工业出版社,1989.
    [82]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机.北京:机械工业出版社,1995.
    [83]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [84]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,1998.
    [85]坂本正文.王自强步进电机应用技术.北京:科学出版社,2010.
    [86]洪少彬.基于DSP的PCB雕刻机精密数控系统设计及其关键技术研究,[硕士论文].天津:河北工业大学,2007.
    [87]李自平.小口径管道内膛参数测量系统研究,[硕士学位论文].南京:南京理工大学,2009.
    [88]安立宇.基于Nios Ⅱ的步进电机细分控制系统设计与研究,[硕士学位论文].上海:东华大学,2009.
    [89]史敬灼,王宗培.步进电动机驱动控制技术的发展.微特电机,2007,35(7):50-54.
    [90]吴海涛,郭猛.步进电机及其单片机控制.福建电脑,2007,(2):183-184.
    [91]张占立,康春花,郭士军,等.基于单片机的步进电机控制系统.电机与控制应用,2011,38(3):28-31.
    [92] G.G. Baluta, M.M. Albu, R.I. Bojoi. Reversible Pulse Sequencers for Step Motor Operation.6thIEEE International Conference on Optimization of Electrical and Electronic Equipments, Brasov,Romania: IEEE,1998.
    [93]马茂冬,杨红梅.基于SCM和PLC的两种步进电机控制方法.组合机床与自动化加工技术,2007,(011):70-72.
    [94]孙卫祥.双轴柔性滚弯数控技术研究与实现,[硕士学位论文].南京:南京航空航天大学,2003.
    [95]王福军.计算流体动力学分析: CFD软件原理与应用.北京:清华大学出版社,2004.
    [96]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [97]陈丽君.七孔探针测试系统研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [98]顾蕴松.大攻角前体非对称流动的控制技术,[博士学位论文].南京:南京航空航天大学,2005.
    [99] C. Rogers. Intelligent materials. Scientific American,1995,273(3):122-5.
    [100] C. Rogers, H. Robertshaw. Shape memory alloy reinforced composites. Engineering SciencePreprints,1988,25:20-22.
    [101]陶宝祺,熊克,袁慎芳,等.智能材料结构.北京:国防工业出版社,1997.
    [102]古世磊.基于智能材料的关节型仿生机器鱼的研究,[硕士学位论文].哈尔滨:哈尔滨工程大学,2009.
    [103] C. Jackson, H. Wanger, R. Wasilewski.55-NITINOL-The alloy with a memory: Its physicalmetallurgy, properties, and applications NASA-SP-5110,1972.
    [104]李旻.微小型3-CSR并联机构形状记忆合金驱动器的设计.机械与电子,2009,(012):58-61.
    [105] H.J. Lee, J.J. Lee. Evaluation of the characteristics of a shape memory alloy spring actuator. Smartmaterials and structures,2000,(9):817-823.
    [106]杨杰,吴月华.形状记忆合金及其应用.合肥:中国科学技术大学出版社,1993.
    [107]李显凌.用于微创介入手术的导管导向机器人研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [108]陈奕翀.基于智能材料的微小步行机器人系统运用研究,[硕士学位论文].汕头:汕头大学,2004.
    [109]贾宝贤,刘永红.形状记忆合金螺旋弹簧的设计方法.机械设计,1999,16(4):13-17.
    [110]阎绍泽,徐峰,刘夏杰,等.形状记忆合金弹簧驱动的机械手控制系统,中国, A, CN1593862,2005.
    [111]刘霞.基于形状记忆合金的免充气直肠扩张装置的控制算法研究,[硕士学位论文].重庆:重庆大学,2011.
    [112]周志扬.形状记忆合金驱动器控制方法的研究,[硕士学位论文].合肥:中国科学技术大学,2011.
    [113]刘畅,阎石,王伟.形状记忆合金位置控制系统数值分析与研究.华中科技大学学报:城市科学版,2008,(4):305-308.
    [114]贺志荣,宫崎修一. Ni含量对TiNi形状记忆合金相变行为的影响.金属学报,1996,32(004):351-356.
    [115]贺志荣,王芳,周敬恩. Ni含量和热处理对Ti-Ni形状记忆合金相变和形变行为的影响.金属热处理,2006,31(009):17-21.
    [116]李志云,刘福顺,徐惠彬. Fe元素对TiNi形状记忆合金相变点和力学性能的影响.航空学报,2004,25(1):84-87.
    [117]贺志荣,周敬恩,宫崎修一.固溶时效态Ti-Ni合金相变行为与Ni含量的关系.金属学报,2003,39(6):617-622.
    [118]沈文罡.形状记忆合金扭力驱动器基本力学性能研究,[硕士学位论文].南京:南京航空航天大学,2002.
    [119]邱自学. SMA传感,驱动性能及其结构健康监测技术研究[博士学位论文].南京:南京理工大学,2002.
    [120]张平,周丽,邱涛.一种新的柔性蜂窝结构及其在变体飞机中的应用.航空学报,2011,32(001):156-163.
    [121]颜芳芳,徐晓东.负泊松比柔性蜂窝结构在变体机翼中的应用.中国机械工程,2012,23(005):542-546.
    [122]董二宝.智能变形飞行器结构实现机制与若干关键技术研究,[博士学位论文].合肥:中国科学技术大学,2010.
    [123]陶宝祺.智能材料结构的概念和应用.国际航空,1995,(002):58-61.
    [124]牟常伟.用于变体机翼的大变形柔性蒙皮构型及性能的初步探究,[硕士学位论文].南京:南京航空航天大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700