液态金属银凝固过程及微观结构演变特征的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对液态金属快速凝固技术和理论的发展与现状、纳米团簇的结构与能量以及分子动力学(MD)模拟技术的发展历程等方面进行了简要回顾。对MD模拟方法从原理到实现的各个环节、从基本的NVE系综到能够与实验结果进行直接对比分析的NPT系综进行了分析与整理,修正了有关文献中NPH和NPT系综计算方程中的错误,并对随机数、初始位形、元胞链表等MD算法进行了改进。发展完善了以HA-Pair为基础的基本团簇分析法(Basic Cluster Analysis,BCA):将CTIM(Cluster Type Index Method)扩展为CTIM-2,以表征更多种类的基本团簇;提出用基本团簇类型来标识其中心原子的分类方法(Basic Cluster Label-ing,BCL),BCL结合三维图形技术可简单清晰地描述相结构和纳米团簇的对称特征;并开发了配套的三维可视化图形分析软件。
     采用quantum Sutton-Chen(QSC)多体势对液态金属银在不同冷速下的凝固过程进行了分子动力学模拟。结果表明,冷速对凝固的最终结构具有关键性作用,且形成非晶的临界冷速约为10~(13)K/s。高于此冷速凝固,可得到以二十面体为主要特征的金属玻璃。低于临界冷速,能形成hcp和fcc基本团簇按不同比例共存的混合结构甚至hcp、fcc晶体。且混合共存体中fcc和hcp中心原子有随机分布和规则分层两种形式。模拟得到伊辛模型为↑↑↓↓和↓↓↓↑(hcp和fcc中心原子单层和双层交替)的4H和12R分层晶体。随着冷速下降,随机分布先于规则分层形成;结晶温度Tc、fcc结构在凝固体系中的比例、体系结构的对称度都不断升高;但hcp结构和1422键型的比例却是先增后减,增减趋势发生转换的冷速约为5.0×10~(12)K/s。
     细致模拟和深入分析表明:快冷结晶过程经历了两次相变三种状态:第一次液-固相变,亚稳bcc结构而非稳定的fcc结构首先从液态中形成;而且初始结晶温度Tic随冷速下降而升高。第二次固-固相变,亚稳bcc结构转变成不同的更加稳定的结构。由此可得快凝过程遵循“step rule”规则,结合形成自由能垒和快凝的特点合理解释了“随冷速降低,Cu和Ag结晶体系中hcp结构的比例先增后减”的现象。另外,同一冷速下多次模拟得到的固态结构并不相同,以及不同冷速下得到的凝固结构也并不总是遵循“冷速越慢体系能量最低”的关系,因此运动学因素对凝固过程及最终结构有重要影响。
     对2.5~10nm的非幻数纳米液滴,在冷速10~3和10~2K/ns下的快凝模拟表明:绝大多数凝固过程包含一次一级相变和一次连续相变;而且随着尺寸增大,初始凝固温度Tis平均值升高,凝固得到的纳米颗粒中,原子平均能量降低且趋于块体系统的平均能量。Tis的平均值与尺寸的关系,多次凝固中Tis所表现的混沌特征,以及晶体、二十面体、十面体等类型的纳米颗粒的比例等模拟结果都与实验结果符合得很好。除了规则晶体、十面体和二十面体以外,借助BCL和三维可视化方法,还发现了一类结构新颖的纳米颗粒—表面异构体(surface-isomers)。从几何结构来看,它们是在规则的晶体、十面体或二十面体外面再增加几个特殊排列方式(...ABCB或...ABCBA等)的密排原子层构成。虽然外层结构的改变在表面引入了一些非密排的(1 0 0)面,但外形更接近球体,整体能量仍可降低,特别是那些具有良好的全局(三重或五重)对称性的颗粒,应该足够稳定以致能在实验室观察到。实际上具有Umb-Dh结构的AuPd和AuCu合金颗粒已经在实验室观察到;我们模拟得到的银Fractal-Ih颗粒与Hendy对铅的模拟计算结果也完全吻合。
The development of the rapid cooling theory and technology, the structure and en-ergy of nano-clusters, and the history of the molecular dynamics (MD) simulation arebrie?y reviewed in this thesis firstly. The MD principles and implementations for particu-lar ensembles from NVE to NPT which can be compare to experiment results directly, aresummarized compactly. Faults in some literatures for isobaric ensembles have been cor-rected; MD algorithms for random number, initial configuration and velocity, cell-list andso on are also improved. Basic Cluster Analysis (BCA) which is on the base of HA-pairs,is improved: extending CTIM to CTIM-2 that can express more basci clusters; combiningBasic Cluster Labeling (BCL)– and 3D graphics, the structure of phases and the symme-try of nanoparticles can be described clearly and tersely; and a corresponding 3D visualsoftware for structure analysis has been developed.
     The MD simulations for metal silver solidification at different cooling ratesγhavebeen performed with Quantum Sutton-Chen potential. The analysis reveals thatγis cru-cial for the final solid structure and the critical for amorphous forming is about 1013K/s.Whenγ<γc, the mixture of fcc and hcp basic clusters with different proportions evenhcp and fcc crystals can be formed. Moreover, both the scattering and layering states areaffirmed in mixtures; and the former usually occurs at higherγ. Layering crystals of 4Hand 12R whose Ising models are↑↑↓↓and↓↓↓↑respectively, have been obtained. Withγdecreasing, the crystallizing point Tc, the percentage of fcc basic cluster (1421 HA-pair),the degree of symmetry are all increasing; while the proportions of hcp cluster (1422HA-pair) rise firstly and then decline, and the summit appears at about 5.0×10~(12) K/s.
     More meticulous calculations and analysis reveal that there are twice phase transi-tions in rapid crystal processes. The first is from liquid to metastable (transitional) bccphase, and the initial crystallizing point Tic increases withγdecreasing. The second isfrom the transitional bcc phase to more stable solid states whose structure depends uponthe cooling rate. This reveals that rapid cooling follows the’step rule’; taking into ac-count the barrier of forming free energy and the characteristic of rapid cooling, it is canbe made clear that for the crystal system of silver and copper, the proportions of hcp struc-tures ascend firstly and then descend withγdecreasing. In addition, the final structuresfrom different runs are usually different from each other even at an identicalγ; the energyof final states is not always decreasing withγdecrease; Therefore the kinetic acts as an important role in cooling processes and final structures.
     Most freezing processes for 2.5~10nm Ag nanodroplets containing non-magic num-ber of atoms at cooling rate 10~3 and 10~2 K/ns show that there are a first order and a contin-uous phase transitions in turn. With the size increasing, the mean of Tis is increasing whilethe average of energy per atom in nanoparticles (at 273K) is decreasing and closing to thebulk case. The percentages of crystal, icosahedron, decahedron and other structures, thedependence of T_(is) on the size and its’chaos characteristic are all in good agreement withthe previous experiment results. Besides regular crystalline, decahedral and icosahedralnanoparticles, some very interesting novelty morphologies—surface-isomers—have alsobeen found with the help of BCA and 3D graphics. Surface-isomers can be constructedon the base of a regular crystal, decahedron, icosahedron and so on, by adding few layerswith specific atomic arrangement, such as ABCB, ABCBA. Some (100) facets whichare not close-packed introduced into surface-isomars, but they make the outmost surfacecloser to sphere than its’regular kernel, and reduce the total energy, enhance the stabil-ity. Therefore the surface-isomars should be stable enough to be observed in experiment,especially for those with well global (three- or five-fold) symmetry. Alloy nanoparticlesof AuPd and AuCu holding Umb-Dh structure have in fact been obtained in experiment.And the Fractal-Ih obtained in our simulations is close consistent with the recent calcula-tion about lead clusters.
引文
[1]余永宁.金属学原理.北京:冶金工业出版社,2004: 220-275
    [2]常国威,王建中.金属凝固过程中的晶体从生长与控制.北京:冶金工业出版社,2002: 1-146
    [3]陈光,傅恒志.非平衡凝固新型金属材料.北京:科学技术出版社,2004:1-19
    [4]傅恒志,柳百成,魏炳波.凝固科学技术与发展.北京:国防工业出版社,2005: 2-69
    [5] Alder B J, Wainwright T E. Phase transition for a hard sphere system. J. Chem.Phys., 1957, 27(5): 1208-1209
    [6] Streitz F H, Glosli J N, Patel M V. Beyond finite-size scaling in solidificationsimulations. Phys. Rev. Lett., 2006, 96(22): 225701-4
    [7] Klaus Schulten, Charles Brooks. power play. Nature. 2008, 451: 240-243
    [8] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Pub. Ltd,1998: 26-358
    [9] Fleming M C. Solidication processing. New York: McGraw-Hill Book Co, 1974:53-155
    [10]胡汉起主编.金属凝固原理.北京:机械工业出版社,2000: 220-275
    [11] Chalmer B. Principles of Solidification. New York: Wiley, 1996: 123-257
    [12] Turnbull D. on the relation between crystalization rate and liquid structure. JournalPhysical Chemistery,1962,66:609-613
    [13] Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibriumstructure of their surfaces. Royal Soc. London Philos. Trans. 1951, A243: 299-358
    [14]冯端等.金属物理学.第二卷,第七编,相变动力学;第八编,界面稳定性与形态演变.北京:科学出版社, 1998: 111-298
    [15]姚连增.晶体生长基础.合肥:中国科学技术大学出版社, 1995: 110-258
    [16]师昌绪主编.材料科学与技术百科全书.北京:中国大百科全书出版社,1995:25-168
    [17] Mullins W W, Sckerka R F. Stability of a Planar Interface During Solidification ofa Dilute Binary Alloy. J. Appl. Phy., 1964, 35(2): 444-451
    [18] Jackson K A,Hunt J D. Lamellar and rod eutectic growth. Trans. Metall. Soc.AIME,1966,236:1129-1142
    [19]关绍康,张富巨,黄光杰等.材料成形基础.长沙:中南大学出版社, 2009: 1-120
    [20] Langer J S, Muller-Krumbhaar H. Theory of dendritic growth I. element analysis.Acta Metall, 1978, 26:1681-1687
    [21]王海丰,刘峰,陈正等.非平衡凝固条件下耦合弛豫效应的M-S理论.中国科学E辑:技术科学, 2007, 37(5):674-685
    [22] Lipton J, Kurz W, Trivedi. Rapid dendrite growth in undercooled alloys. ActaMetall, 1987, 35:957-964
    [23] Trivedi R, Kurz W. morphological stability of a planar interface under rapid solid-ification conditions. Acta Metall, 1986, 34:1663-1670
    [24] Aziz M J. Model for solute redistribution during rapid solidification. J. Appl. Phys.1982,53:1158-1168
    [25] Klement W, Willens R, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960, 187(4740): 869-870
    [26] Duwez P. Glassy Metals I. Heidelberg: Springer Berlin, 1981: 19-23
    [27] Turnbull D, Cech R E. Microscopic Observation of the Solidification of SmallMetal Droplets. J. Appl. Phys., 1950, 21(8): 804-810
    [28] Volmer M, Weber A. Nucleus formation in supersaturated systems. Z. Phys.Chem., 1926, 119(1): 277-301
    [29] Becher R, D o¨ring W. The kinetic treatment of nuclear formation in supersaturedvapors. Ann. Phys., 1935, 24(2): 719-752 [Annalen der physik, Berlin Germany]
    [30] Turnbull D, Fisher J C. Rate of nucleation in condensed systems. J. Chem. Phys.,1949, 17(1): 71-73
    [31]李超.金属学原理.哈尔滨:哈尔滨工业大学出版社, 1996: 52-54
    [32] Trivedi R, Kurz W. Dendritic growth. International Metals Reviews.1994,39(2):49-74
    [33] Gill S C,Zimmermann M, Kurz W. Laser re-solidification of the Al-Al2Cu eutectic:the coupled zone. Acta Metall. Materials, 1992,40(11):2895-2906
    [34] Baricco M. Thermodynamics of nonequilibrium Materials. Key Engineering Ma-terials, 1995,103:1-20
    [35] Muller B A, Scharfer R J, Perepezko J H. The solidification of aluminum-manganese powders. J. Mater. Res., 1987,2:809-817
    [36] Saunders N, Miodowaik A P. Evaluation of glass forming ability in binary andternay metallic alloys system―an application of thermodynamics phase diagramcalculation. Mater. Sci. Tech., 1988,4:768-777
    [37] Baker J C, Cahn J W. Solute Trapping by Rapid Solidification. Acta Met., 1969,17: 575-578
    [38] Lu L,Sui M L,Lu K. Superplastic extensibility of nanocrystalline copper at roomtemperature. Science, 2000,287:1463-1466
    [39] Castleman A W, Bowen K H. Clusters: Structure, energetics, and dynamics ofintermediate states of matter. J. Phys. Chem., 1996, 100(31): 12911-12944
    [40] Johnston R L. Atomic and Molecular Clusters. London: Taylor and Francis, 2002:56-80
    [41] Wales D J. Energy landscapes: Applications to clusters, biomolecules and glass-eses. Cambridge: Cambridge University, 2003: 38-165
    [42] Reinhard D, Hall B D, Ugarte D, et al. Size-independent fcc-to-icosahedral struc-tural transition in unsupported silver clusters: An electron diffraction study of clus-ters produced by inert-gas aggregation. Phys. Rev. B, 1997, 55: 7868-7881
    [43] Reinhard D, Hall B D, Berthoud P, et al. Size-independent icosahedral-to-fcc struc-tural change confirmed in unsupported nanometer-sized copper clusters. Phys. Rev.Lett., 1997, 79(8): 1459-1462
    [44] Reinhard D, Hall B D, Berthoud P, et al. Unsupported nanometer-sized copperclusters studied by electron diffraction and molecular dynamics. Phys. Rev. B,1998,58(8): 4917-4926
    [45] Cleveland C L, Luedtke W D, Landman U. Melting of gold clusters. Phys. Rev. B,1999, 60(7): 5065-5077
    [46] Baletto F, Mottet C, Ferrando R. Reentrant morphology transition in the growth offree silver nanoclusters. Phys. Rev. Lett., 2000, 84(24): 5544-5547
    [47] Baletto F, Mottet C, Ferrando R. Microscopic mechanisms of the growth ofmetastable silver icosahedra. Phys. Rev. B, 2001, 63(15):155408-10
    [48] Yaroslav G. Chushak, Bartell L S. Melting and Freezing of Gold Nanoclusters. J.Phys. Chem. B, 2001,105(47):11605-11614
    [49] Rossi G, Ferrando R. Freezing of gold nanoclusters into poly-decahedral structures.Nanotechnology, 2007, 18: 225706-6
    [50] Qi Y, Cagin T, Johnson W L, et al. Melting and crystallization in Ni nanoclusters:The mesoscale regime. J. Chem. Phys., 2001, 115(1): 385-394
    [51] Bonac?ic′-Koutecky′V, Burda J, Mitric′R, et al. Density functional study of structuraland electronic properties of bimetallic silver-gold clusters: Comparison with puregold and silver clusters. J. Chem. Phys., 2002, 117(7): 3120-3131
    [52] Darby S, Mortimer-Jones T V, Johnston R L, et al. Theoretical study of Cu-Aunanoalloy clusters using a genetic algorithm. J. Chem. Phys., 2002, 116(4): 1536-1550
    [53] Baletto F, Mottet C, Ferrando. Growth of three-shell onionlike bimetallic nanopar-ticles. Phys. Rev. Lett., 2003, 90(13): 135504-4
    [54] Rossi G, Rapallo A, Fortunelli A, et al. Magic polyicosahedral core-shell clusters.Phys. Rev. Lett., 2004, 93(10): 115503-4
    [55] Ferrando R,Alessandro F, Johnstonc R L. Searching for the optimum structures ofalloy nanoclusters. Phys. Chem. Chem. Phys., 2008, 10(5): 640-649
    [56] Kim W J, Gibbons P C, Kelton K F, et al. Structural refinement of bcc approximantsto quasicrystals Bergman-type and Mackay-type alloys. Phys. Rev. B, 1998, 58(5):2578-2584
    [57] Sadoc A, THuett V, Kelton K F. Local structure in Ti–Hf–Ni metallic glasses andits evolution with hydrogenation. J. Phys.: Condens. Matter, 2005,17: 1481-1492
    [58] Hennig R G, Majzoub E H, Kelton K F. Location and energy of interstitial hy-drogen in the 1/1 approximant W-TiZrNi of the icosahedral TiZrNi quasicrystal:Rietveld refinement of x-ray and neutron diffraction data and density-functionalcalculations. Phys. Rev. B, 2006,73(18):184205-6
    [59] Martin T P, Na¨her U, Schaber H, et al. Clusters of fullerene molecules. Phys. Rev.Lett., 1993, 70(20): 3079-3082
    [60] Alivisatos A P, Johnsson K P, Peng X G, et al. Organization of”nanocrystalmolecules”using DNA. Nature, 1996, 382: 609-611
    [61] García-Rodeja J, Rey C, Gallego L J. Prediction of the structures of clusters of C60molecules using an atom-atom interaction potential. Phys. Rev. B, 1997, 56(11):6466-6469
    [62] Wales D J, Doye J P K, Miller M A, et al. Energy landscapes: From clusters tobiomolecules. Adv. Chem. Phys., 2000, 115: 1-111
    [63] Doye J P K, Wales D J, Branz W, et al. Modeling the structure of clusters of C60molecules. Phys. Rev. B, 2001, 64(23): 235409-11
    [64] Baletto F, Doye J P K, Ferrando R. Evidence of kinetic trapping in clusters of C60molecules. Phys. Rev. Lett., 2002, 88(7): 075503-4
    [65] Baletto F, Doye J P K, Mottet C, et al. Adsorption and diffusion on nanoclustersof C60 molecules. Surf. Sci., 2003, 532-535: 898-904 (Proceedings of the 7th In-ternational Conference on Nanometer-Scale Science and Technology and the 21stEuropean Conference on Surface Science)
    [66] Tommei G E, Baletto F, Ferrando R, et al. Energetics of fcc and decahedralnanowires of Ag, Cu, Ni, and C60, A quenched molecular dynamics study. Phys.Rev. B, 2004, 69(11): 115426-8
    [67] Alonso J A. Structure and properties of atomic nanoclusters. London: ImperialCollege, 2006: 1-427
    [68] Andres R P, Averback R S, Brown W L, et al. Research opportunities on clus-ters and cluster-assembled materials: A department of energy-council on materialsscience. J. Mater. Res., 1989, 4(3): 704-736
    [69] Baletto F, Ferrando R. Structural properties of nanoclusters: Energetic, thermody-namic, and kinetic effects. Rev. Mod. Phys., 2005, 77: 371-423
    [70] Wang Z L, Petroski J M, Green t C, et al. Shape transformation and surface meltingof cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B, 1998, 102(32):6145-6151
    [71] Koga K, Sugawara K. Population statistics of gold nanoparticle morphologies:Direct determination by HREM observations. Surf. Sci., 2003, 529: 23-35
    [72] Raoult B, Farges J, M. F. de Feraudy, et al. Comparison between icosahedral,decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms.Philos. Mag. B, 1989, 60(6): 881-906
    [73] Cleveland C L, Landman U, Schaaff T G, et al. Structural evolution of smallergold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett., 1997, 79(10):1873-1876
    [74] Cleveland C L, Luedtke W D, Landman U. Melting of gold clusters icosahedralprecursors. Phys. Rev. Lett., 1998, 81(10): 2036-2039
    [75] Noya E G, Doye J P K. Structural transitions in the 309-atom magic numberLennard-Jones cluster. J. Chem. Phys., 2006,124(10):104503-6
    [76] Garzón I L, Posada-Amarillas A. Structural and vibrational analysis of amorphousAu55 clusters. Phys. Rev. B, 1996, 54(16): 11796-11802
    [77] Northby J A. Structure and binding of Lennard-Jones clusters. J. Chem. Phys.,1987, 87(10): 6166-6177
    [78] Romero G, Barrón C, Gómez S. The optimal geometry of Lennard-Jones clusters:148–309. Comput. Phys. Commun., 1999, 123(1-3): 87-96
    [79] Schmidt M, Kusche R, Hippler T, et al. Negative heat capacity for a cluster of 147sodium atoms. Phys. Rev. Lett., 2001, 86(7): 1191-1194
    [80] Li T X, Lee S M, Han S J, et al. Structural transitions of Au55 isomers. Phys. Lett.A, 2002, 300(1): 86-92
    [81] Shah P, Roy S, Chakravarty C. Melting of 55-atom Morse clusters. J. Chem. Phys.,2003, 118(23): 10671-10682
    [82] Garzón I L, Michaelian K, Beltrán M R, et al. Lowest energy structures of goldnanoclusters. Phys. Rev. Lett., 1998, 81(8): 1600-1603
    [83] Jennison D R, Schultz, Sears M P. Ab initio calculations of Ru, Pd, and Ag clusterstructure with 55, 135, and 140 atoms. J. Chem. Phys., 1997, 106(5): 1856-1862
    [84] ApràE, Fortunelli A. Density-functional calculations on platinum nanoclusters:Pt13, Pt38, and Pt55. J. Phys. Chem. A, 2003, 107(16): 2934-2942
    [85] Hoare M R, McInnes J. Statistical-mechanics and morphology of very small atomicclusters. Chem. Soc., 1976, 61: 12-24
    [86] Muetterties E L, Rhodin T N, Eliot B, et al. Clusters and surfaces. Faraday Discuss.Chem. Rev., 1979, 79(2): 91-137
    [87] Ertl G, Freund H J. Catalysis and surface science. Phys. Today, 1999, 52(1): 32-38
    [88] Henry C R. Surface studies of supported model catalysts. Surf. Sci. Rep., 1998,31(7-8): 231-325
    [89] Mirkin, C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationallyassembling nanoparticles into macroscopic materials. Nature, 1996 382: 607-609
    [90] Alivisatos A P. Less is more in medicine - Sophisticated forms of nanotech-nologywill find some of their first real-world applications in biomedical research, diseasediagnosis and, possibly, therapy. Sci. Am., 2001, 285(3): 66-73
    [91] de Heer W A. The physics of simple metal clusters: Experimental aspects andsimple models. Rev. Mod. Phys., 1993, 65(3): 611-676
    [92] Baletto F, Mottet C, Ferrando R. Molecular dynamics simulations of surface diffu-sion and growth on silver and gold clusters. Surf. Sci., 2000, 446(1-2): 31-45
    [93] Itoh M, Kumar V, Kawazoe Y. Ab initio calculations of the stability of a vacancyin Na clusters and correlation with melting. Phys. Rev. B, 2006, 73(3): 035425-6
    [94] Boustani I, Pewestorf W, Fantucci P, et al. Systematic ab initio configuration-interaction study of alkali-metal clusters: Relation between electronic structureand geometry of small Li clusters. Phys. Rev. B, 1987, 35(18): 9437-9450
    [95] Ro¨thlisberger U, Andreoni W. Structural and electronic properties of sodium mi-croclusters (n = 2–20) at low and high temperatures: New insights from ab initiomolecular dynamics studies. J. Chem. Phys., 1991, 94(12): 8129-8151
    [96] Bonac?ic′-Koutecky′V, Fantucci P, Fuchs C, et al. Ab initio predictions of opti-cally allowed transitions in Na20. Nature of excitations and in?uence of geometry.Chem. Phys. Lett., 1993, 213(5-6): 522-526
    [97] Bonac?ic′-Koutecky′V, Fantucci P, Koutecky′J. Systematic ab initio configuration-interaction study of alkali-metal clusters. II. Relation between electronic structureand geometry of small sodium clusters. Phys. Rev. B, 1988, 37(9): 4369-4374
    [98] Jellinek J, Bonac?ic′-Koutecky′V, Fantucci P, et al. Ab initio Hartree–Fock self-consistent-field molecular dynamics study of structure and dynamics of Li8. J.Chem. Phys., 1994, 101(11): 10092-10100
    [99] Garzón I L, Kaplan I G, Santamaria R, et al. Molecular dynamics study of theAg6 cluster using an ab initio many-body model potential. J. Chem. Phys., 1998,109(6): 2176-2184
    [100] Zacarias A G, Castro M, Tour J M, et al. Lowest energy states of small pd clustersusing density functional theory and standard ab initio methods. A route to under-standing metallic nanoprobes. J. Phys. Chem. A, 1999, 103(38): 7692-7700
    [101] Ishikawa Y, Sugita Y, Nishikawa T, et al. Ab initio replica-exchange Monte Carlomethod for cluster studies. Chem. Phys. Lett., 2001, 333: 199-206
    [102] Chuang F C, Wang C Z, O¨gu¨t S, et al. Melting of small Sn clusters by ab initiomolecular dynamics simulations. Phys. Rev. B, 2004, 69: 165408-12
    [103] Liu P, Berne B J. Quantum path minimization: An efficient method for globaloptimization. J. Chem. Phys., 2003, 118(7): 2999-3005
    [104] Baletto F, Ferrando R, Fortunelli A, et al. Crossover among structural motifs intransition and noble-metal clusters. J. Chem. Phys., 2002, 116(9): 3856-3863
    [105] van de Waal B W, Torchet W G, de Feraudy M F. Structure of large argon clustersArN, 103 < N < 105: Experiments and simulations. Chem. Phys. Lett., 2000,331(1): 57-63
    [106] Arslan H, Guven M H. Melting dynamics and isomer distributions of small metalclusters. New J. Phys., 2005, 7(60): 1-22
    [107] Tsai C J, Jordan K D. Use of an eigenmode method to locate the stationary pointson the potential energy surfaces of selected argon and water clusters. J. Phys.Chem., 1993, 97(43): 11227-11237
    [108] Doye J P K, Wales D J, Berry R S. The effect of the range of the potential on thestructures of clusters. J. Chem. Phys., 1995, 103(10): 4234-4249
    [109] Oren M. Becker, Martin Karplus. The topology of multidimensional potential en-ergy surfaces: Theory and application to peptide structure and kinetics. J. Chem.Phys., 1997,106(4): 1495-1517
    [110] Doye J P K, Wales D J. Thermodynamics of global optimization. Phys. Rev. Lett.,1998, 80(7): 1357-1360
    [111] Liu H B. Improved sampling in Monte Carlo simulations of small clusters [disser-tation]. Pittsburgh: Univ. of Pittsburgh, 2005,60: 31-42
    [112] Nelson D R, Spaepen F. Polytetrahedral order in condensed matter. Solid StatePhysics vol. 42, Academic Press, San Diego, CA (1989): 1-90
    [113] Doye J P K, Wales D J. The structure and stability of atomic liquids: From clustersto bulk. Science, 1996, 271(5284): 484-487
    [114] Martin T P. Shells of atoms. Phys. Rep., 1996, 273: 199-241
    [115] Uppenbrink J, Wales D J. Structure and energetics of model metal clusters. J.Chem. Phys., 1992, 96(11): 8520-8534
    [116] Cox H, Johnston R L, Murrell J N. Empirical potentials for modeling solids, sur-faces, and clusters. J. Solid State Chem., 1999, 145: 517-540
    [117] Besley N A, Johnston R L, Stace A J, et al. Theoretical study of the structures andstabilities of iron clusters. J. Mole. Stru. (Theochem), 1995, 341: 75-90
    [118]张智.金属纳米团簇的结构演变与熔化特性的原子模拟[湖南大学博士论文].长沙:湖南大学, 2007: 1-58
    [119] Valkealahti S, Manninen M. Diffusion on aluminum-cluster surfaces and the clustergrowth. Phys. Rev. B, 1998, 57(24): 15533-15540
    [120] Zhao J J, Xie R H. Genetic algorithms for the geometry optimization of atomic andmolecular clusters. J. Comput. Theor. Nanosci., 2004, 1(2): 117-131
    [121] Mackay A L. A dense non-crystallographic packing of equal spheres. Acta Crys-tallogr., 1962, 15: 916-918
    [122] Hendy S C,Hall B D. Molecular-dynamics simulations of lead clusters. Phys. Rev.B, 2001, 64(8):085425-11
    [123] Shaun C. Hendy,Jonathan P. K. Doye. Surface-reconstructed icosahedral struc-tures for lead clusters. Phys. Rev. B, 2002, 66(23):235402-8
    [124] Ino S. Stability of multiply-twinned particles. J. Phys. Soc. Jpn., 1969, 27(4):941-953
    [125] Marks L D. Modified Wulff constructions for twinned particles. Journal of CrystalGrowth, 1983, 61(3): 556-566
    [126] Marks L D. Surface structure and energetics of multiply twinned particles. Philos.Mag. A, 1984, 49(1): 81-93
    [127] Marks L D. Experimental studies of small particle structures. Rep. Prog. Phys.,1994, 57(6): 603-649
    [128] Knight W D, Clemenger K, Heer W A, et al. Electronic shell structure and abun-dances of sodium clusters. Phys. Rev. Lett., 1984, 52(24): 2141-2143
    [129] Ekardt W. Size-dependent photoabsorption and photoemission of small metal par-ticles. Phys. Rev. B, 1985, 31(10): 6360-6370
    [130] Brack M. The physics of simple metal clusters: Self-consistent jellium model andsemiclassical approaches. Rev. Mod. Phys., 1993, 65(3): 677-732
    [131] Martin T P, Bj?rnholm S, Borgreen J, et al. Electronic shell structure of laser-warmed Na clusters. Chem. Phys. Lett., 1991, 186(1): 53-57
    [132] Pedersen J, Bj?rnholm S, Borgreen J, et al. Observation of quantum supershells inclusters of sodium atoms. Nature, 1991, 353: 733-735
    [133] Brèchignac C, Cahuzac P, Carlier F, et al. Temperature effects in the electronicshells and supershells of lithium clusters. Phys. Rev. B, 1993, 47(4): 2271-2277
    [134] Pellarin M, Baguenard B, Bordas C, et al. Electronic shell and supershell structuresin gallium clusters containing up to 7000 electrons. Phys. Rev. B, 1993, 48(23):17645-17658
    [135] Martin T P. From atoms to solids. Solid State Ionics, 2000, 131: 3-12
    [136] Nishioka H, Hansen K, Mottelson B R. Supershells in metal clusters. Phys. Rev.B, 1990, 42(15): 9377-9386
    [137] Bj?rnholm S, Borggreen J, Echt O, et al. Mean-field quantization of several hun-dred electrons in sodium metal clusters. Phys. Rev. Lett., 1990, 65(13): 1627-1630
    [138] Ro¨thlisberger U, Andreoni W, Giannozzi P. Thirteen-atom clusters: Equilibriumgeometries, structural transformations, and trends in Na, Mg, Al, and Si. J. Chem.Phys., 1992, 96(2): 1248-1256
    [139] Spiegelman F, Poteau R, Montag B, et al. Global structure of small Na clusters indifferent approaches. Phys. Lett. A, 1998, 242: 163-168
    [140] Solov’yov I A, Solov’yov A V, Greiner W. Structure and properties of smallsodium clusters. Phys. Rev. A, 2002, 65(5): 053203-19
    [141] Solov’yov I A, Solov’yov A V, Greiner W, et al. Cluster growing process and asequence of magic numbers. Phys. Rev. Lett., 2003, 90(5): 053401-4
    [142] Martin T P, Na¨her U, Schaber H. Evidence for octahedral shell structure in alu-minum clusters. Chem. Phys. Lett., 1992, 199(5): 470-474
    [143] Baguenard B, Pellarin M, LerméJ, et al. Competition between atomic shell andelectronic shell structures in aluminum clusters. J. Chem. Phys., 1994, 100(1):754-755
    [144] Zhao S J, Wang S Q, Chen D Y, et al. Three distinctive melting mechanisms inisolated nanoparticles. J. Phys. Chem. B, 2001, 105: 12857-12860
    [145] Farges J, Feraudy M F, Raoult B, et al. Noncrystalline structure of argon clusters.I. Polyicosahedral structure of ArN clusters, 20 < N < 50. J. Chem. Phys., 1983,78(8): 5067-5080
    [146] Farges J, Feraudy M F, Raoult B, et al. Noncrystalline structure of argon clusters.II. Multilayer icosahedral structure of ArN clusters 50 < N < 750. J. Chem. Phys.,1986, 84(6): 3491-3501
    [147] Harris I A, Kidwell R S, Northby J A. Structure of charged argon clusters formedin a free jet expansion. Phys. Rev. Lett., 1984, 53(25): 2390-2393
    [148] Hoare M R, Pal P. Physical cluster mechanics: Statistical thermodynamics andnucleation theory for monatomic systems. Adv. Phys., 1975, 24(5): 645-678
    [149] Farges J, Feraudy M F, Raoult B, et al. Cluster models made of double icosahedronunits. Surf. Sci., 1985, 156(1): 370-378
    [150] Freeman D L, Doll J D. Quantum Monte Carlo study of the thermodynamic prop-erties of argon clusters: The homogeneous nucleation of argon in argon vapor and“magic number”distributions in argon vapor. J. Chem. Phys., 1985, 82(1): 462-471
    [151] Wille L T. Minimum-energy configurations of atomic clusters: New results ob-tained by simulated annealing. Chem. Phys. Lett., 1987, 133(5): 405-410
    [152] Coleman T, Shalloway D, Wu Z. A parallel build-up algorithm for global energyminimizations of molecular clusters using effective energy simulated annealing. J.Global Optim., 1994, 4(2): 171-185
    [153] Xue G L. Improvement on the northby algorithm for molecular conformation:Better solutions. J. Global Optim., 1994, 4(4): 425-440
    [154] Pillardy J, Piela L. Molecular Dynamics on Deformed Potential Energy Hypersur-faces. J. Phys. Chem., 1995, 99(31): 11805-11812
    [155] Deaven D M, Tit M, Morris J R, et al. Structural optimization of Lennard-Jonesclusters by a genetic algorithm. Chem. Phys. Lett., 1996, 256(1-2): 195-200
    [156] Wales D J, Doye J P K. Global Optimization by Basin-Hopping and the LowestEnergy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys.Chem. A, 1997, 101(28): 5111-5116
    [157] Xie J, Northby J A, Freeman D L, et al. Theoretical studies of the energetics andstructures of atomic clusters. J. Chem. Phys., 1989, 91(1): 612-619
    [158] Benjamin W, van de Waal. Stability of face-centered cubic and icosahedralLennard-Jones clusters. J. Chem. Phys.,1989, 90(6):3407-3408
    [159] Luo F,McBane G C,Kim G, et al. The weakest bond: Experimental observation ofhelium dimer. J. Chem. Phys.,1993,98(4):3564-3567
    [160] Grisenti R E,Sch o¨llkopf W,Toennies J P, at al. Determination of the Bond Lengthand Binding Energy of the Helium Dimer by Diffraction from a Transmission Grat-ing. Phys. Rev. Lett.,2000, 85(11): 2284-2287
    [161] Lewerenz M. Structure and energetics of small helium clusters: Quantum simula-tions using a recent perturbational pair potential. J. Chem. Phys., 1997, 106(11):4596-4603
    [162] Toennies J P,Vilesov A F. Spectroscopy of atoms and molecules in liquid helium.Annu. Rev. Phys. Chem., 1998, 49: 1-41
    [163] Chin S A,Krotscheck E. Structure and collective excitations of 4He clusters. Phys.Rev. B, 1992, 45(2): 852-874
    [164] Aziz R A,McCourt F R W,Wong C C K. A new determination of the ground stateinteratomic potential for He2. Mol. Phys.,1987, 61(6):1487-1511
    [165] Chin S A, Krotscheck E. Systematics of pure and doped 4He clusters. Phys. Rev.B, 1995, 52(14): 10405-10428
    [166] Brühl R,Guardiola R,Kalinin A,et al. Diffraction of Neutral Helium Clusters: Evi-dence for”Magic Numbers”. Phys. Rev. Lett.,2004, 92(18):185301-4
    [167] Swendsen R H, Wang J S. Replica Monte Carlo Simulation of Spin-Glasses. Phys.Rev. Lett., 1986, 57(21): 2607-2609
    [168] Poteau R, Spiegelmann F. Structural properties of sodium microclusters (n=4-34)using a Monte Carlo growth method. J. Chem. Phys., 1993, 98(8): 6540-6557
    [169] Sung M W, Kawai R, Weare J H. Packing transitions in nanosized Li clusters.Phys. Rev. Lett., 1994, 73(26): 3552-3555
    [170] Reyes-Nava J A, Garzón I L, Beltrán M R, et al. Melting of sodium clusters. Rev.Mex. Fis., 2002, 48(5): 450-456
    [171] Gupta R P. Lattice relaxation at a metal surface. Phys. Rev. B, 1981, 23(12):6265-6270
    [172] Lai S K, Hsu P J, Wu K L, et al. Structures of metallic clusters: Mono- andpolyvalent metals. J. Chem. Phys., 2002, 117(23): 10715-10725
    [173] Solov’yov I A, Solov’yov A V, Greiner W. Fusion process of Lennard–Jonesclusters: Global minima and magic numbers formation. Int. J. Mod. Phys. E, 2004,13(4): 697-736
    [174] Bravo-Pérez G, Garzón I L, Novaro O. Non-additive effects in small gold clusters.Chem. Phys. Lett., 1999, 313(3-4): 655-664
    [175] Bravo-Pérez G,Garzón I L, Novaro O. study of small gold clusters. J. Mol. Struct:Theochem.,1999, 493: 225-231
    [176] Wang J L, Wang G H, Zhao J J. Density-functional study of Aun (n=2-20) clusters:Lowest-energy structures and electronic properties. Phys. Rev. B, 2002, 66(3):035418-6
    [177] Gilb S, Weis P, Furche F, et al. Structures of small gold cluster cations (Aun+ ,n < 14): Ion mobility measurements versus density functional calculations. J.Chem. Phys., 2002, 116(10): 4094-4101
    [178] Li J, Li X, Zhai H J,et al. Au20: A tetrahedral cluster. Science, 2003, 299(5608):864-867
    [179] Wang J L, Wang G H, Zhao J J. Structures and electronic properties of Cu20,Ag20, and Au20 clusters with density functional method. Chem. Phys. Lett., 2003,380(5-6): 716-720
    [180] Bonacic′-Koutecky′V, Cespiva L, Fantucci P, et al. Effective core potential-configuration interaction study of electronic structure and geometry of small neu-tral and cationic Agn clusters: Predictions and interpretation of measured proper-ties. J. Chem. Phys., 1993, 98(10): 7981-7994
    [181] Bonacic′-Koutecky′V, Cespiva L, Fantucci P, et al. Effective core potential-configuration interaction study of electronic structure and geometry of small an-ionic Agn clusters: Predictions and interpretation of photodetachment spectra. J.Chem. Phys., 1994, 100(1): 490-506
    [182] Matulis V E,Ivashkevich O A, Gurin V S. DFT study of electronic structure andgeometry of neutral and anionic silver clusters. J. Mol. Struct.: THEOCHEM,2003, 664-665:291-308
    [183] Santamaria R, Kaplan I G, Novaro O. A comparative theoretical study of stablegeometries and energetic properties of small silver clusters. Chem. Phys. Lett.,1994, 218(5-6): 395-400
    [184] Fournier R. Theoretical study of the structure of silver clusters. J. Chem. Phys.,2001, 115(5): 2165-2177
    [185] Oviedo J, Palmer R E. Amorphous structures of Cu, Ag, and Au nanoclusters fromfirst principles calculations. J. Chem. Phys., 2002, 117(21): 9548-9551
    [186] Doye J P K, Wales D J. Global minima for transition metal clusters described bySutton–Chen potentials. New J. Chem., 1998, 22: 733-744
    [187] Sutton A P, Chen J. Long-range Finnis-Sinclair potentials. Philos. Mag. Lett.,1990, 61(3): 139-146
    [188] Bauschlicher C W. On the electron affinity of Au3. Chem. Phys. Lett., 1989,156(1): 91-94
    [189] Bauschlicher C W, Langhoff S R, Partridge H. Theoretical study of the structuresand electron affinities of the dimers and trimers of the group IB metals (Cu, Ag,and Au). J. Chem. Phys., 1989, 91(4): 2412-2419
    [190] Bauschlicher C W, Langhoff S R, Partridge H. Theoretical study of the homonu-clear tetramers and pentamers of the group IB metals (Cu, Ag, and Au). J. Chem.Phys., 1990, 93(11): 8133-8137
    [191] Bauschlicher C W, Langhoff S R, Taylor P R. Theoretical study of the electronaffinities of Cu, Cu2, and Cu3. J. Chem. Phys., 1988, 88(2): 1041-1045
    [192] Fujima N, Yamaguchi T. Shell Structure of Electronic State of Icosahedral Al andCu Clusters. J. Phys. Soc. Jpn., 1989, 58(4): 1334-1346
    [193] Massobrio C, Pasquarello A, Car R. Structural and electronic properties of smallcopper clusters: a first principles study. Chem. Phys. Lett., 1995, 238(4-6): 215-221
    [194] Jug K, Zimmermann B, Ko¨ster A M. Growth pattern and bonding of copper clus-ters. Int. J. Quantum Chem., 2002, 90(2): 594-602
    [195] Jug K, Zimmermann B, Calaminici P, et al. Structure and stability of small copperclusters. J. Chem. Phys., 2002, 116(11): 4497-4507
    [196]彭平,李贵发,杨峰等. Configuration evolution of Aln(n = 3,4,6,13,19) clus-ters studied using linear synchronous transit method.中国有色金属学报,2006,16(B02): S808-S812
    [197] Gro¨nbeck H, Andreoni W. Density functional calculations of beryllium clustersBen, n=2–8. Chem. Phys., 2000, 262(1): 15-23
    [198] Zhang W, Ge Q, Wang L. Structure effects on the energetic, electronic, and mag-netic properties of palladium nanoparticles. J. Chem. Phys., 2003, 118(13): 5793-5801
    [199] Moseler M, Ha¨kkinen H, Barnett R N, et al. Structure and magnetism of neutraland anionic palladium clusters. Phys. Rev. Lett., 2001, 86(12): 2545-2548
    [200] Ha¨kkinen H, Moseler M, Landman U. Bonding in Cu, Ag, and Au clusters: Rela-tivistic effects, trends, and surprises. Phys. Rev. Lett., 2002, 89(3): 033401-4
    [201] Kumar V, Kawazoe Y. Icosahedral growth, magnetic behavior, and adsorbate-induced metal-nonmetal transition in palladium clusters. Phys. Rev. B, 2002,66(14): 144413-11
    [202] Barreteau C, Desjonquères M C, Spanjaard D. Theoretical study of the icosahedralto cuboctahedral structural transition in Rh and Pd clusters. Eur. Phys. J. D, 2000,11(3): 395-402
    [203] Barreteau C, Guirado-López R, Spanjaard D, et al. spd tight-binding model ofmagnetism in transition metals: Application to Rh and Pd clusters and slabs. Phys.Rev. B, 2000, 61(11): 7781-7794
    [204] Reuse F A, Khanna S N. Geometry, electronic structure, and magnetism of smallNin (n = 2-6, 8, 13) clusters. Chem. Phys. Lett., 1995, 234(1-3): 77-81
    [205] Reuse F A, Khanna S N, Bernel S. Electronic structure and magnetic behavior ofNi13 clusters. Phys. Rev. B, 1995, 52(16): R11650-R11653
    [206] Nayak S K, Reddy B, Rao B K, et al. Structure and properties of Ni7 clusterisomers. Chem. Phys. Lett., 1996, 253(5-6): 390-396
    [207] Nayak S K, Khanna S N, Rao B K, et al. Thermodynamics of small nickel clusters.J. Phys.: Cond. Matt., 1998, 10: 10853-10862
    [208] Nygren M A, Siegbahn P E M, Wahlgren U, et al. Theoretical ionization energiesand geometries for nickel (Nin, 4≤n≤9). J. Phys. Chem., 1992, 96(9): 3633-3640
    [209] Bo¨yükata M, Güvenc Z B, O¨zc?elik S, et al. Structure and reactivity of Nin (n=7-14,19) clusters. Int. J. Quantum Chem., 2001, 84(2): 208-215
    [210] Parks E K, Zhu L, Ho J, et al. The structure of small nickel clusters. I. Ni3-Ni15. J.Chem. Phys., 1994, 100(10): 7206-7222
    [211] Parks E K, Zhu L, Ho J, et al. The structure of small nickel clusters. II. Ni16-Ni28.J. Chem. Phys., 1995, 102(19): 7377-7389
    [212] Parks E K, Kerns K P, Riley S J. The structure of Ni39. J. Chem. Phys., 1998,109(23): 10207-10216
    [213] Parks E K, kerns K P, Riley S J. The structure of nickel-iron clusters probed byadsorption of molecular nitrogen. Chem. Phys., 2000, 262: 151-167
    [214] Bachels T, Güntherodt H J, Scha¨fer R. Melting of isolated tin nanoparticles. Phys.Rev. Lett., 2000, 85(6): 1250-1253
    [215] Kaxiras E, Jackson K. Shape of small silicon clusters. Phys. Rev. Lett., 1993,71(5): 727-730
    [216] Jarrold M F, Constant V A. Silicon cluster ions: Evidence for a structural transition.Phys. Rev. Lett., 1991, 67(21): 2994-2997
    [217] Raghavachari K, Logovinsky V. Structure and bonding in small silicon clusters.Phys. Rev. Lett., 1985, 55(26): 2853-2856
    [218] Fournier R, Sinnott S B, DePristo A E. Density functional study of the bonding insmall silicon clusters. J. Chem. Phys., 1992, 97(6): 4149-4161
    [219] Li B X, Qiu M, Cao P L. A full-potential linear-muffin-tin-orbital molecular-dynamics study of the fourteen stable structures for cluster Si9. Phys. Lett. A,1999, 256(5-6): 386-390
    [220] Zickfeld K, García M E, Bennemann K H. Theoretical study of the laser-inducedfemtosecond dynamics of small Sin clusters. Phys. Rev. B, 1999, 59(20): 13422-13430
    [221] Yu D K, Zhang R Q, Lee S T. Structural transition in nanosized silicon clusters.Phys. Rev. B, 2002, 65(24): 245417-6
    [222] Raghavachari K, McMichael-Rohlfing C. Bonding and stabilities of small siliconclusters: A theoretical study of Si7-Si10. J. Chem. Phys., 1988, 89(4): 2219-2234
    [223] Grossman J C, Mitás L. Quantum Monte Carlo determination of electronic andstructural properties of Sin Clusters (n≤20). Phys. Rev. Lett., 1995, 74(8): 1323-1326
    [224] Ramakrishna M V, Bahel A. Combined tight-binding and density functionalmolecular dynamics investigation of Si12 cluster structure. J. Chem. Phys., 1996,104(24): 9833-9840
    [225] Li T X, Yin S Y, Ji Y L, et al. A genetic algorithm study on the most stabledisordered and ordered configurations of Au38?55. Phys. Lett. A, 2000, 267: 403-407
    [226] Raabe D.计算材料学.北京:化学工业出版社,2002: 3-10
    [227]陈舜麟.计算材料科学.北京:化学工业出版社,2005: 1-9
    [228] Mandell M J, McTague J P, Rahman. Crystal nucleation in a three-dimensionalLennard-Jones system. II. Nucleation kinetics for 256 and 500 pacticies. J. Chem.Phys., 1977, 66(7): 3070-3081
    [229] Jund P, Caprion D, Jullien R. Is there an ideal quenching rate for an ideal glass?Phys. Rev. Lett., 1997, 79(1): 91-94
    [230] Yu D Q, Chen M, Han X. Structure analysis methods for crystalline solids andsupercooled liquids. Phys. Rev. E, 2005, 72(5): 051202-7
    [231] O’Malley B, Snook I. Crystal nucleation in the hard sphere system. Phys. Rev.Lett., 2003, 90(8): 085702-4
    [232] Kob W. Computer simulations of supercooled liquids and glasses. J. Phys.: Con-dens. Matter, 1999, 11(10): R85-R115
    [233] Rahman A. Correlations in the motion of atoms in liquid argon. Phys. Rev., 1964,136(2A): A405-A411
    [234] Rahman A. Density ?uctuations in liquid rubidium. II. Molecular-dynamics calcu-lations. Phys. Rev. A, 1974, 9(4): 1667-1671
    [235] Van Duijneveldt J S, Frenkel D. Computer simulation study of free energy barriersin crystal nucleation. J. Chem. Phys., 1992, 96(6): 4655-4668
    [236] Haliciogˇlu T, Pound G M. Calculation of potential energy parameters form crys-talline state properties. Phys. Stat. Sol., 1975, 30(2): 619-623
    [237] Zhen S, Davies G J. Calculation of the Lennard-Jones n-m potential energy param-eters for metals. Phys. Stat. Sol. A, 1983, 78(2): 595-605
    [238] Ghatee M H, Sanchooli M. Structural properties of liquid cesium metal by appli-cation of cohesive energy density. Fluid Phase Equilib., 2006, 240(1): 22-28
    [239] Heine V, Abarenkov V. A new method for the electronic structure of metals. Phil.Mag., 1964, 9(99): 451-465
    [240] Shaw R. Optimum Form of a Modified Heine-Abarenkov Model Potential for theTheory of Simple Metals. Phys. Rev., 1968, 174(3): 173-178
    [241] Appapillai M, Williams A R. The optimized model potential for thirty-three ele-ments. J. Phys. F: Metal. Phys., 1973, 3(4): 759-770
    [242] Harrison W A. Model pseudopotential and the Kohn effect in lead. Phys. Rev.,1965, 139(1A): A179-A185
    [243] Jena P, Das T P, Mahanti S D. Pseudopotential calculation of the knight shift andrelaxation time in magnesium. Phys. Rev. B, 1970, 2(6): 2264-2267
    [244] Hausleitner C, Hafner. A novel hybridised nearly-free-electron tight-binding-bondapproach to interatomic forces in disordered transition-metal alloys application tothe modelling of metallic glasses. J. Phys.: Condens. Matter, 1990, 2(31): 6651-6657
    [245] Woo C H, Wang S, Matsuura M. Electronic structure of metals. I. Energy inde-pendent model pseudopotential formalism. J. Phys. F: Metal Phys., 1975, 5(10):1836-1848
    [246] Woo C H, Wang S, Matsuura M. Electronic structure of metals. II. Phonon spectraand Fermi surface distortions. J. Phys. F: Metal Phys., 1975, 5(10): 1849-1859
    [247] Wang S, Lai S K. Structure and electrical resistivities of liquid binary alloys. J.Phys. F: Metal. Phys., 1980, 10(12): 2717-2737
    [248] Li D H, Li X R, Wang S. Variational calculation of Helmholtz free energies withapplications to the sp-type liquid metals. J. Phys. F: Metal. Phys., 1986, 16(3):309-321
    [249] Lai S K, Wang S, Wang K P. A computer“experiment”on the microstructure ofamorphous Cr. J. Chem. Phys., 1987, 87(1): 599-603
    [250] Li D H, Moore, R A, Wang S. A computer and analytic study of the metallicliquid-glass transition. J. Chem. Phys., 1988, 88(4): 2700-2705
    [251] Lu J, Szpunar J A. Glass formation and crystallization of liquid and glass rubidium:A constant-pressure molecular-dynamics study. J. Chem. Phys., 1992, 97(2): 1313-1319
    [252] Qi D W, Lu J, Wang S. Crystallization properties of a supercooled metallic liquid.J. Chem. Phys., 1992, 96(1): 513-516
    [253] Liu C F, Wang S. On the phase transitions of binary Al0.86V0.14 glass. J. Phys.:Condens. Matter, 1992, 4(32): 6729-6734
    [254] Jin Z H, Lu K, Gong Y D, et al. Glass transition and atomic structures in super-cooled Ga0.15Zn0.15Mg0.7 metallic liquids: A constant pressure molecular dynam-ics study. J. Chem. Phys., 1997, 106(21): 8830-8840
    [255] Liu R S, Wang S. Anomalies in the structure factor for some rapidly quenchedmetals. Phys. Rev. B, 1992, 46(18): 12001-12003
    [256] Liu R S, Qi D W,Wang S. Subpeaks of the structure factors for rapidly quenchedmetals. Phys. Rev. B, 1992, 45(1): 451-453
    [257]刘让苏,覃树萍,侯兆阳等.液态金属In凝固过程中微观结构转变的模拟研究.物理学报,2004, 53(9): 3119-3124
    [258]张海涛,刘让苏,侯兆阳等.冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究.物理学报,2006, 55(5): 2409-2417
    [259]易学华,刘让苏,田泽安等.冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究.物理学报, 2006, 55(10): 5386-5393
    [260] Yi X H, Liu R S, Tian Z A et al. Formation and evolution properties of clusters inliquid metal copper during rapid cooling processes. Trans. Nonferrous Met. Soc.China, 2008, 18(01): 33-39
    [261] Liu H R, Liu R S, Zhang A L, et al. A simulation study of microstructure evolutionduring solidification process of liquid metal Ni. Chin. Phys., 2007, 16(12): 3747-3753
    [262]刘让苏,周群益,李基永.液态金属急冷过程中微观结构转变的研究.原子与分子物理学报,1995,12(1):16-22
    [263]董科军,刘让苏,李基永等.液态金属Al快凝过程中纳米级大团簇结构的形成特性模拟研究.稀有金属材料与工程, 2003, 32(11): 0893-05
    [264] Liu R S, Dong K J, Tian Z A, et al. Formation and magic number characteristics ofclusters formed during solidification processes. J. Phys.: Condens. Matter, 2007,19(19): 196103-17
    [265] Hou Z Y, Liu R S, Liu H R,et al. Simulation study on the formation and evolutionproperties of nano-clusters in rapid solidification structures of sodium. ModellingSimul. Mater. Sci. Eng., 2007, 15(8): 911-922
    [266]侯兆阳,刘让苏,田泽安等.熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.物理学报, 2007, 56(1): 376-383
    [267]侯兆阳,刘让苏,李琛珊等.冷速对液态金属Na凝固过程中微观结构影响的模拟研究.物理学报, 2005, 54(12): 5723-5729
    [268]林艳,刘让苏,田泽安等.冷却速率对液态金属Zn快速凝固过程中微观结构的影响.物理化学学报, 2008, 24(2): 250-256
    [269]周丽丽,刘让苏,侯兆阳等.冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.物理学报Acta Physica Sinica, 2008, 57(6) :3653-3660
    [270] Liu F X, Liu R S , Hou Z Y et al. Formation mechanism of atomic cluster structuresin Al-Mg alloy during rapid solidification processes. Annals of Physics, 2008,324(2):332-342
    [271] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrationallevels. Phys. Rev., 1929, 34(1): 57-64
    [272] Swope W C, Anderson H C. 106 particle molecular-dynamics study of homoge-neous nucleation of crystals in supercooled atomic liquid. Phys. Rev. B., 1990,41(10): 7042-7054
    [273] Daw M S, Baskes M I. Embedded atom method:Derivation and application toimpurities, surfaces, and other defects in metals. Phys. Rev. B, 1983, 29(12): 6443-6453
    [274] Johnson R A. Analytic nearest-neighbor model for FCC metals. Phys. Rev. B,1989, 37(12): 3924-3931
    [275] Johnson R A. Alloy models with the embedded-atom method. Phys. Rev. B, 1989,39(17): 12554-12559
    [276] Foiles S M, Baskes M I, Daw M S. Embedded-atom-method function for the fccmetal Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys. Rev. B, 1986, 33(12): 7983-7991
    [277] Manninen M, Johnson R A. Interatomic interactions in solids: An effective-Medium approach. Phys. Rev. B, 1986, 34(12): 8486-8495
    [278] Zhang B W, Ouyang Y F, Liao S Z, et al. An anslytic MEAM mode for all BCCtransition metals. Physica B, 1999, 262(3-4): 218-225
    [279] Hu W Y, Zhang B W, Huang B Y, et al. Analytic modified embedded atom poten-tials for HCP metlas. J. Phys.: Conden. Mater, 2001, 13(6): 1193-1213
    [280]王丽,边秀房,李辉.金属Cu液固转变及晶体生长的分子动力学模拟.化学物理学报,2000, 16(9): 825-829
    [281]陈魁英,刘洪波,金朝晖,胡壮麒.过冷液态Mg70Zn30合金微观结构的分子动力学研究.自然科学进展-国家重点实验室通讯,1996, 6(1): 98-104
    [282] Sheng H W, He J H, Ma E. Molecular dynamics simulation studies of atomic-level structures in rapidly quenched Ag-Cu nonequilibrium alloys. Phys. Rev. B,2002,65(18): 184203-10
    [283] Xiao S F, Hu W Y. Comparative study of microstructural evolution during meltingand crystallization. J. Chem. Phys.,2006, 125(1): 014503-7
    [284]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用–原子尺度材料设计理论.第一版.长沙:湖南大学出版社,2003:245-425
    [285] Finnis M W, Sinclair J E. A simple empirical n-body potential for transition-metals.Philos. Mag. A, 1984, 50(1): 45-55
    [286] Qi Y, C? agˇ?n T, Kimura Y. Goddard III W A Molecular-dynamics simulations ofglass formation and Cu-Ag and Cu-Ni crystallization in binary liquid metals. Phys.Rev. B, 1999, 59(5):3527-3533
    [287] Ercolessi F, Adams J B. Interatomic Potentials from First-Principles Calcula-tions:the Force-Matching Method. Euro. Phys. Lett., 1994, 26:583-588
    [288] Mei J, Davenport J W, Fernando G W. Analytic embedded-atom potentials for fccmetals: Application to liquid and solid copper. Phys. Rev. B, 1991, 43(6): 4653-4658
    [289] Cleri01 F, Rosato V. Tight-binding potentials for transition metals and alloys. Phys.Rev. B, 1993, 48(1): 22-33
    [290] Tersoff J. New empirical approach for the structure and energy of covalent systems.Phys. Rev. B, 1988, 37(12): 6991-7000
    [291] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicompo-nent systems. Phys. Rev. B, 1989, 39(8): 5566-5568
    [292] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chem-ical vapor deposition of diamond films. Phys. Rev. B, 1990, 42(15): 9458-9471
    [293] Finney J L. Random Packing and the structure of simple liquids I: The geometryof random close packing. Proc. Roy. Soc. Lond. A, 1970, 319(10): 479-493
    [294] Yamamoto R, Doyama M. The polyhedron anc cavity analyses of a structuralmodel of amorphous iron. J. Phys. F: Metal Phys., 1979, 9(4): 617-627
    [295] Hsu C S, Rahman A. Interaction potentials and their effect on crystal nucleationand symmetry. J. Chem. Phys., 1979, 71(12): 4974-4986
    [296] Watanabe M S, Tsumuraya K. Crystallization and glass formation processes inliquid sodium: a molecular dynamics study. J. Chem. Phys., 1987, 87(8): 4891-4900
    [297] Srolovitz D, Maeda K Takeuch S, et al. Local structure and topology of modelamorphous metal. J. Phys. F: Metal Phys., 1981, 11(11): 2209-2219
    [298] Takagi T, Ohkubo T, Hirotsu Y, et al. Local structure of amorphous Zr70Pd30 alloystudied by electron diffraction. Appl. Phys. Lett., 2001, 79(4): 485-487
    [299] Boudreaux D S, Frost H J. Short-range order in theoretical models of binary metal-lic glass alloys. Phys. Rev. B, 1981, 23(4): 1506-1516
    [300] Nose S, Yonezawa F. Isothermal–isobaric computer simulations of melting andcrystallization of a Lennard-Jones system. J. Chem. Phys., 1986,84(3):1803-1814
    [301] Qi D W, Wang S. Icosahedral order and defects in metallic liquids and glasses.Phys. Rev. B, 1991, 44(2): 884-887
    [302] Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids andglasses. Rhys. Rev. B, 1983, 28(2): 784-805
    [303] Nelson D R, Rubinstein M, Spaepen F. Order in two-dimensional binary randomarrays. Philos. Mag. A, 1982, 46(1): 105-126
    [304] Ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical calculation of the rateof crystal nucleation in a Lennard-Jones system at moderate unercooling. J. Chem.Phys.,1996, 104(24): 9932-9947
    [305] Honeycutt J D, Andersen H C. Molecular-dynamics study of melting and freezingof small Lennard-Jones clusters. J. Phys. Chem., 1987, 91(19):4950-4963
    [306] Liu R S, Li J Y, Dong K J, et al. Formation and evolution properties of clustersin larger liquid metal system during rapid cooling processes. Mater. Sci. Eng. B,2002, 94(2-3): 141-148
    [307] Liu R S, Dong K J, Li J Y, at al. Formation and description of nano-clusters formedduring rapid solidification processes in liquid metals. J. Non-Cryst. Solids, 2005,351(6-7): 612-617
    [308] Tian Z A, Liu R S, Liu H R, et al. Molecular dynamics simulation for cooling ratedependence of solidification microstructures of silver. J. Non-Cryst. Solids, 2008,354: 3705-3712
    [309]李辉,边秀房,李玉忱等.铁磁性物质Co的液态结构分子动力学模拟.化学学报, 1999, 57(1): 47-52
    [310]孙民华,边秀房,王艳等. Al80Cu20合金液态原子微观结构及其与非晶形成能力的关系.金属功能材料, 2001, 8(4): 33-37
    [311]王丽,衣粟,边秀房. Ni3Al合金液态与非晶中的原子团簇.物理化学学报,2002, 18(4): 297-301
    [312]郑采星,刘让苏,彭平.二元液态金属Cu-Ni和Ag-Cu凝固过程的分子动力学模拟研究.原子与分子物理学报,2003, 20(2): 163-168
    [313]郑采星,刘让苏,田泽安等.二元液态金属AgxCu1-x快速凝固过程的分子动力学模拟研究.稀有金属材料与工程, 2005, 34(3): 350-354
    [314] Liu J, Zhao J Z, Hu Z Q. MD study of the glass transition in binary liquid metals:Ni6Cu4 and Ag6Cu4. Intermetallics, 2007, 15(10): 1361-1366
    [315] Liu J, Zhao J Z, Hu Z Q. The development of microstructure in a rapidly solidifiedCu. Mater. Sci. Eng. A, 2007, A452-453: 103-109
    [316] Bernal J. A geometrical approach to the structure of liquid. Nature, 1959,183(4655): 141-147
    [317] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006, 439(26):419-425
    [318] Bai X M, Li M. Test of classical nucleation theory via molecular-dynamics simu-lation. J. Chem. Phys., 2005, 122(22): 224510-3
    [319] Bai X M, Li M. Calculation of solid-liquid interfacial free energy: A classicalnucleation theory based approach. J. Chem. Phys., 2006, 124(12): 124707-8
    [320] Liu J, Zhao J Z, Hu Z Q. Kinetic details of the nucleation in supercooled liquidmetals. Appl. Phys. Lett., 2006, 89(3): 031903-4
    [321] Honeycutt J D, Anderson H C. Small system size artifacts in the molecular dynam-ics simulation of homogeneous crystal nucleation in supercooled atomic liquids. J.Phys. Chem., 1986, 90(8): 1585-1589
    [322] Gasser U, Weeks E R. Schofield A, et al. Real-space imaging of nucleation andgrowth in colloidal crystallization. Science, 2001, 292(13): 258-262
    [323] Hou Z Y, Liu R S, Liu H R, et al. Formation mechanism of critical nucleus duringnucleation process of liquid metal sodium. J. Chem. Phys., 2007, 127(17): 174503-9
    [324] Curtin W A, Runge K. Weighted-density-functional and simulation studies of thebcc hard-sphere solid. Phys. Rev. A, 1987, 35: 4755-4762
    [325] Dong H, Evans G T. The freezing transition of a hard sphere ?uid subject to thePercus-Yevick approximation. J. Chem. Phys., 2006, 125: 204506-6
    [326] ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical Evidence for bcc Order-ing at the Surface of a Critical fcc Nucleus. Phys. Rev. Lett., 1995, 75: 2714-2717
    [327] Moroni D, ten Wolde P R, Bolhuis P G. Interplay between Structure and Size in aCritical Crystal Nucleus. Phys. Rev. Lett., 2005, 94: 235703-4
    [328] Tian Z A, Liu R S, Zheng C X, et al. Formation and Evolution of Metastablebcc Phase during Solidification of Liquid Ag: A Molecular Dynamics SimulationStudy. J. Phys. Chem. A., 2008,112(48):12326-12336
    [329] Palle N, Dantzig J A. An adaptive mesh refinement scheme for sodification prob-lems. Metall. Mater. Trans. A, 1996, 27A: 695-705
    [330] Curreri P A, Kaukler W F. Real-time X-ray transmission microscopy of solidifyingAl-In alloy. Metall. Mater. Trans. A, 1996, 27A: 801-808
    [331] Wang L, Cong H R, Zhang Y N, Bian X F. Medium-range order of liquid metal inthe quenched state. Physica B, 2005, 355(1-4): 140-146
    [332]李基永,刘让苏,周征等.液态金属的初始状态对凝固微结构影响的模拟研究.原子与分子物理学报, 1998, 15(2): 193-197
    [333]刘让苏,刘凤翔,李基永等.液态金属Al的热历史对凝固微结构的影响.物理化学学报, 2003, 19(9): 791-794
    [334] Liu C S, Xia J C, Zhu Z G, et al. The cooling rate dependence of crystallizationof liq uid copper: A molecular dynamics study. J. Chem. Phys., 2001, 114(17):7506-7512
    [335] Johnson M D, Hutchinson P, March N H. Ion-Ion oscillatory potentials in liquidmetals. Proc. R. Soc. A, 1964, 282(3): 283-302
    [336] Lai S K, Chen H S. The structural and dynamical liquid-glass transition for metallicsodium. J. Phys.: Condens. Matter, 1993, 5(26): 4325-4332
    [337] Verlet L. Computer“experiments”on classical ?uids. I. Thermodynamical prop-erties of Lennard-Jones molecules. Phys. Rev., 1967, 159(1): 98-103
    [338] Frenkel,Smit.分子模拟―从算法到应用.汪文川等译.第一版.北京:化学工业出版社,2002:51-94,344-357
    [339] Rahman A, Stillinger F H. Molecular dynamics study of liquid water. J. Chem.Phys., 1971, 55(7): 3336-3359
    [340] Anderson H C. Molecular dynamics simulations at contant pressure and/or tem-perature. J. Chem. Phys., 1980, 72(4): 2384-2393
    [341] Hoover W G, Evans D J. Lennard-Lones triple-point bulk and shear viscosities.Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dy-namics. Phys. Rev. A, 1980, 22(4): 1960-1697
    [342] Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molec-ular dynamics method. J. Appl. Phys., 1981, 52(12): 7182-7190
    [343] Hoover W G, Ladd A J, Moran B. High-strain-rate plastic ?ow studied via nonequi-librium molecular dynamics. Phys. Rev. Lett., 1982, 48(26): 1818-1820
    [344] Evans D J. Computer“experiment”for nonlinear thermodynamics of Couette?ow. J. Chem. Phys., 1983,78(6): 3297-3302
    [345] Brown D, Clarke J H R. A comparison of constant energy, constant temperature andconstant pressure ensembles in molecular dynamics simulations of atomic liquids.Mol. Phys., 1984, 51(5): 1243-1252
    [346] Nose S. A molecular dynamics method for simulations in canonical ensemble.Mol. Phys., 1984, 52(2): 255-268
    [347] Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 1985, 55(22): 2471-2474
    [348]张跃,谷景华,尚家香,马岳.计算材料科学基础.北京:北京航空航天大学出版社, 2006: 82-84
    [349]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术.力学进展, 2003,33(1): 65-73
    [350] hockney R W. The potential calculation and some applications. Methods in Com-putational Physics,1970,9:136-210
    [351]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007:67-89
    [352] Evans D J,Hoover W G, Failor B H, et al. Nonequilibrium molecular dynamics viaGauss’s principle of least constraint. Phys. Rev. A.,1983, 28: 1016-1021
    [353] Haile J M,Graben H W. Molecular dynamics simulations extended to variousensembles. I. Equilibrium properties in the isoenthalpic–isobaric ensemble. J.Chem. Phys., 1980,73:2412-2419
    [354] Sun D Y,Gong X G. A new constant-pressure molecular dynamics method to finitesystems. J. Phys. Condens.Matter, 2002,14:L487-L493
    [355] Auerbach D J, Paul W, Lutz C, et al. A special purpose parallel computer formolecular dynamics: motivation, design, implementation, and application. J. Phys.Chem., 1987,91:1881-1890
    [356] Bekker H, Dijkstra E J, Renardus M K R, et al. An efficient, box shape indepen-dent non-bonded force and virial algorithm for molecular dynamics. Mol. Sim.,1995,14:137-151
    [357] Lochmann K,Anikeenko A,Elsner A, et al. Statistical verification of crystallizationin hard sphere packings under densification. Eur. Phys. J. B, 2006,53:67–76
    [358] Bernal J D. A geometrical approach to the structure of liquids. Nature,1959,183(4655): 141-147
    [359] Bernal J D. Proceedings of the Royal Society of London. Series A, Mathematicaland Physical Sciences, 1964,280(138):299-4
    [360] Richard P,Oger L,Troadec J P, et al. Geometrical characterization of hard-spheresystems. Phys. Rev. E,1999, 60(4): 4551-4558
    [361] Starr F W , Sastry S,Douglas J F, et al. What Do We Learn from the Local Geometryof Glass-Forming Liquids? Phys.Rev. Lett., 2002,89(12):125501-4
    [362] Finney J L. A procedure for the construction of Voronoi polyhedra. J. Comp.Phys.,1979, 32(): 137-143
    [363] Delaunay B N. Sur la Sphère Vide, Proceedings of the International MathematicalCongress in Toronto. 11–16 Aug. 1924, Toronto (University of Toronto Press,Toronto, 1928): 695-700
    [364] Medvedev N N, Naberukhin Y I. Shape of the delaunay simplices in dense randompackings of hard and soft spheres. J. Non-Cryst. Solids, 1987, 94: 402-406
    [365] Naberukhin Y I, Voloshin V P, Medvedev N N. Geometrical analysis of the struc-ture of simple liquids: percolation approach. Molecular Physics, 1991,73(4): 917-936
    [366] Volkov I,Cieplak M, Koplik J, et al. Molecular dynamics simulations of crystal-lization of hard spheres. Phys. Rev. E, 2002,66(6):061401-9
    [367] Mitus A,Weber H,Marx D. Local structure analysis of the hard-disk ?uid nearmelting. Phys. Rev. E, 1997,55(6):6855-6859
    [368] Aste T. Variations around disordered close packing. J. Phys.: Condens. Matter.,2005,17: S2361-S2390
    [369] Luchnikov V ,Gervois A ,Richard P ,et al. Crystallization of dense hard spherepackings : Competition of hcp and fcc close order. J. Molecular Liquids, 2002,96-97: 185-194
    [370] Truskett T M ,Torquato S, Debenedetti P G. Towards a quantification of disorderin materials: Distinguishing equilibrium and glassy sphere packings. Phys. Rev. E,2000,62(1):993-1001
    [371] Kansal A R , Torquato S , Stillinger F H. Diversity of order and densities in jammedhard-particle packings. Phys. Rev. E, 2002,66(4):041109-8
    [372] Lynden-Bell R M,Debenedetti P G. Computational Investigation of Order, Struc-ture, and Dynamics in Modified Water Models. J. Phys. Chem. B, 2005,109:6527-6534
    [373] Schladitz K, Baddeley A J. A third order point process characteristic. Scand. J.Statist., 2000,27:657-671
    [374] Liu R S, Qi D W,Wang S. Subpeaks of structure factors for rapidly quenchedmetals. Phys. Rev. B,1992,45(1):451-453
    [375] Sachdev S, Nelson D R. Theory of the Structure Factor of Metallic Glasses. Phys.Rev. Lett.,1984,53(20):1947-1950
    [376] Truskett T M , Torquato S,Sastry S ,et al. Structural precursor to freezing in thehard-disk and hard-sphere systems. Phys. Rev. E,1998,58(3):3083-3088
    [377]吴爱玲,张弢,丁世良. Simulation of Molten Ag in the Condition of Rapid Cooling.原子与分子物理学报, 2006,23(3):0485-04
    [378] Blaisten-Barojas E. Structural Effects of Three-Body Interactions on Atomic Mi-croclusters. KINAM,1984,6A:71-73
    [379] Mountain R D, Basu P K. Molecular dynamics study of homogeneous nucleationfor liquid rubidium. J. Chem. Phys., 1983, 78:7318-7322
    [380] Li D H, Moore R A, Wang S. A computer and analytic study of the metallicliquid–glass transition. II. Structure and mean square displacements. J. Chem.Phys., 1988, 89:4309-4312
    [381] Rafii-Tabar H,Sutton A P. Long-range Finnis-Sinclair potentials for FCC metallicalloys. Philos. Mag. Lett., 1991,63(4):217-224
    [382] Todd B D,Lyndenbell R M. Surface and bulk properties of metals modelled withSutton-Chen potentials. Surf. Sci., 1993,281:191-206
    [383] Wales D J,Munro L J. Changes of Morphology and Capping of Model TransitionMetal Clusters. J. Phys. Chem., 1996,100(6):2053-2061
    [384] Dereli G, C? ag??n T, Uludog?an M, et al. Thermal and mechanical properties of Pt-Rhalloys. Philos. Mag. Lett., 1997,75(4):209-218
    [385] C? ag??n T, Dereli G, Uludog?an M, et al. Thermal and mechanical properties of somefcc transition metals. Phys. Rev. B, 1999,59(5): 3468-3473
    [386] Lee H J, Cagin T, Johnson W L, et al. Criteria for formation of metallic glasses:The role of atomic size ratio. J. Chem. Phys., 2003,119(18):9858-9870
    [387] Ozdemir K S, Tomak M,Uludogan M, et al. Liquid properties of Pd–Ni alloys. J.Non-Cryst. Solids, 2004,337:101-108
    [388] Zheng C X,Liu R S,Peng P, et al. A simulation study of rapid solidification andcrystal configuration of Cu70Ni30 alloy. Science in China Ser. G, 2004,47:393-402
    [389] Xu P,Cagin T, and Goddard III W A. Assessment of phenomenological models forviscosity of liquids based on nonequilibrium atomistic simulations of copper. J.Chem. Phys., 2005, 123(10): 104506-8
    [390] Lloyd L D, Johnston R L. Theoretical analysis of 17–19-atom metal clusters usingmany-body potentials. J. Chem. Soc., Dalton Trans., 1999,2000:307-316
    [391] Huang S P, Balbuena P B. Melting of Bimetallic Cu-Ni Nanoclusters. J. Phys.Chem. B, 2002,106:7225-7236
    [392] Joswig J O, Springborg M. Genetic-algorithms search for global minima of alu-minum clusters using a Sutton-Chen potential. Phys. Rev. B,2003,68(8):085408-9
    [393] Sankaranarayanan S K R S, Bhethanabotla V R,Joseph B. Molecular dy-namics simulation study of the melting of Pd-Pt nanoclusters. Phys. Rev. B,2005,71(19):195415-15
    [394] Sankaranarayanan S K R S, Bhethanabotla V R,Joseph B. Molecular dynam-ics simulation study of the melting and structural evolution of bimetallic Pd-Ptnanowires. Phys. Rev. B, 2006,74(15):155441-12
    [395] Waseda Y. The Structure of Non-Crystalline Materials. New York: McGraw-Hill,1980: 268-275
    [396] Mandell M J,McTague J P,Rahman A. Crystal nucleation in a three-dimensionalLennard-Jones system: A molecular dynamics study. J. Chem. Phys., 1976,64(9):3699-3702
    [397] R. D. Mountain, Molecular-dynamics study of liquid rubidium. Phys. Rev. A,1982,26(5): 2859-2868
    [398] Belonoshko A B,Ahuja R,Eriksson O, et al. Quasi ab initio molecular dynamicstudy of Cu melting. Phys. Rev. B,1999, 61(6):3838-3844
    [399] Li H,Pederiva F. Anomalies in liquid structure of Ni3Al alloys during a rapidcooling process. Phys. Rev. B, 2003,68(5): 054210-5
    [400] Dong K J,Liu R S,Yu A B ,et al. Simulation study of the evolution mechanisms ofclusters in a large-scale liquid Al system during rapid cooling processes. J. Phys:Condens. Matter., 2003,15:743-753
    [401] Jacobaeus P,Madsen J U, Kragh F, et al. Triplet correlation in metallic glasses. Afield-ion microscopy study. Philos. Mag. B, 1980, 41(1):11-20
    [402] Pusey P N,Vanmegen W,Bartlett P, et al. Structure of crystals of hard colloidalspheres. Phys. Rev. Lett.,1989,63(25):2753-2759
    [403] Zhu J X,Li M,Rogers R,et al. Crystallization of hard-sphere colloids inmicrograv-ity. Nature, 1997,387(20):883-885
    [404] Ernst F,Finnis M W,Hofmann D, et al. Theoretical prediction and direct observationof the 9R structure in Ag. Phys. Rev. Lett., 1992,69(4):620-623
    [405] Ostwald W. Studien uber die Bildung und Umwandlung fester Korper. Z. Phys.Chem., 1897, 22:289-293
    [406] Stranski I N, Totomanow D. Kembildumgsgeschwindigkeit und OstwaldscheStufenregel. Z. Phys. Chem., 1933, 163:399-408
    [407] Alexander S, McTague J. Should All Crystals Be bcc? Landau Theory of Solidifi-cation and Crystal Nucleation. Phys. Rev. Lett., 1978, 41(10):702-705
    [408] Klein W, Leyvraz F. Crystalline Nucleation in Deeply Quenched Liquids. Phys.Rev. Lett., 1986, 57(22):2845-2848
    [409] Lutsko J F, Baus M. Can the thermodynamic properties of a solid be mapped ontothose of a liquid? Phys. Rev. Lett., 1990, 64(7):761-763
    [410] Yu C S, David W O. bcc Symmetry in the Crystal-Melt Interface of Lennard-Jones Fluids Examined through Density Functional Theory. Phys. Rev. Lett., 1996,77(17): 3585-3588
    [411] Groh B,Mulder B. Why all crystals need not be bcc: Symmetry breaking at theliquid-solid transition revisited. Phys. Rev. E, 1999, 59(5):5613-5620
    [412] Klein W. Instability of Alexander-McTague crystals and its implication for nucle-ation. Phys. Rev. E, 2001, 64(5):056110-9
    [413] Auer S, Frenkel D. Prediction of absolute crystalnucleation rate in hard-spherecolloids. Nature, 2001,409(22):1020-1023
    [414] Chen F F,Zhang H F, Qin F X,et al. Molecular dynamics study of atomic transportproperties in rapidly cooling liquid copper. J. Chem. Phys., 2004, 120(4):1826-6
    [415] Cech R E. Evidence for Solidification of a Metable Phase in Fe-Ni Alloys. J. Met.,1956, 8:585-589
    [416] Ghosh G. Observation and kinetic analysis of a metastable b.c.c. phase in rapidlysolidified Ni-9at.%Zr and Ni-8at.%Zr-1at.%X alloys. Mater. Sci. Eng. A, 1994,189:277-283
    [417] Li M, Liu X, Song G S, et al. Microstructure evolution and metastable phaseformation in undercooled Fe-30 at.% Co melt. Mater. Sci. Eng. A, 1999, 268(1-2):90-96
    [418] Bang J,Lodge T P. Long-Lived Metastable bcc Phase during Ordering of Micelles.Phys. Rev. Lett., 2004, 93(24):245701-4
    [419] Liu Y S, Nie H F, Bansil R. Kinetics of disorder-to-fcc phase transition via anintermediate bcc state. Phys. Rev. E, 2006, 73(6):061803-6
    [420] Li H, Wang G H, Zhao J J, et al. Cluster structure and dynamics of liquid aluminumunder cooling conditions. J. Chem. Phys., 2002, 116(24):10809-7
    [421] Li, H. In?uence of Intermediate-Range Order on Glass Formation. J. Phys. Chem.B, 2004, 108(17):5438-5442
    [422] Sun D Y, Asta M, Hoyt J J, et al. Crystal-melt interfacial free energies in metals:fcc versus bcc. Phys. Rev. B, 2004, 69(2):020102-4
    [423] Hoyt J J, Asta M, Sun D Y. Molecular dynamics simulations of the crystal-meltinterfacial free energy and mobility in Mo and V. Phil. Mag., 2006, 86: 3651-3664
    [424] Pronk S, Frenkel D. Can stacking faults in hard-sphere crystals anneal out sponta-neously? J. Chem. Phys., 1999, 110(9):4589-4
    [425] Bruce A D, Jackson A N, Ackland G J, et al. Lattice-switch Monte Carlo method.Phys. Rev. E, 2000, 61(1): 906-14
    [426] Pablo G D, Frank H S. Supercooled liquids and the glass transition. Nature, 2001,410:259-267
    [427] Aga R S, Morris J R, Hoyt J J, et al. Quantitative Parameter-Free Prediction ofSimulated Crystal-Nucleation Times. Phys. Rev. Lett., 2006, 96(22): 245701-4
    [428] Aiken J D III, Finke R G. A review of modern transition-metal nanoclusters: theirsynthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem.,1999, 145:1-44
    [429] Bonnemann H, Richards R M. Nanoscopic metal particles–Synthetic methods andpotential applications. Eur. J. Inorg. Chem., 2001,10:2455-2480
    [430] Jensen P. Growth of nanostructures by cluster deposition: Experiments and simplemodels. Rev. Mod. Phys.,1999,71(5):1695-1735
    [431] Harbich W.’Soft landing’of size-selected clusters in chemically inert substrates.Philos. Mag. B, 1999,79: 1307-1320
    [432] Howie A, Marks L D. Elastic strains and the energy balance for multiply twinnedparticles. Philos. Mag. A,1984, 49(1): 95-109
    [433] Ercolessi F,Andreoni W, Tosatti E. Melting of small gold particles: Mechanismand size effects. Phys. Rev. Lett.,1991, 66(7):911-914
    [434] Valkealahti S, Manninen M. Instability of cuboctahedral copper clusters. Phys.Rev. B,1992, 45(16): 9459-9462
    [435] Cleveland C L, Landman U. The energetics and structure of nickel clusters: Sizedependence. J. Chem. Phys.,1991,94(11):7376-7396
    [436] Farges J,de Feraudy M-F,Raoult B, et al. Relaxation of Mackay icosahedra. ActaCrystallogr. A, 1982, 38: 656-663
    [437] Haydar Arslan, M Haluk Güven. Melting dynamics and isomer distributions ofsmall metal clusters. New Journal of Physics, 2005, 7(60):1-22
    [438] Midgley P A, Weyland M. 3D electron microscopy in the physical sciences: the de-velopment of Z-contrast and EFTEM tomography. Ultramicroscopy,2003,96:413-431
    [439] Arslan I, Yates T J V, Browning N D, et al. Embedded Nanostructures Revealed inThree Dimensions. Science, 2005, 309:2195- 2198
    [440] Batson P E, Dellby N,Krivanek O L. Sub-a?ngstrom resolution using aberrationcorrected electron optics. Nature, 2002,418(6898):617-620
    [441] Li Z Y, Young N P, Di Vece M, et al. Three-dimensional atomic-scale structure ofsize-selected gold nanoclusters. Nature, 2008, 451(46):1-4
    [442] Koga K, Ikeshoji T,Sugawara K. Size- and Temperature-Dependent StructuralTransitions in Gold Nanoparticles. Phys. Rev. Lett., 2004, 92(11):115507-4
    [443] Koga K. Novel Bidecahedral Morphology in Gold Nanoparticles Frozen from Liq-uid. Phys. Rev. Lett., 2006, 96(11): 115501-4
    [444] Nepijko S A,Hofmeister H,Sack-Kongehl H, et al. Multiply twinned particles be-yond the icosahedron. J. Cryst. Growth.,2000, 213(1-2): 129-134
    [445] Montejano-Carrizales J M,Rodríguez-López J L,Pal U, et al. The Completion ofthe Platonic Atomic Polyhedra: The Dodecahedron. Small, 2006, 2(3): 351-355
    [446] Iijima S,Ichihashi T. Structural instability of ultrafine particles of metals. Phys.Rev. Lett., 1986, 56 (6): 616-619
    [447] Rodr′?guez-López J L, Montejano-Carrizales J M, Pal U, et al. Surface Reconstruc-tion and Decahedral Structure of Bimetallic Nanoparticles. Phys. Rev. Lett., 2004,92(19):196102-4
    [448] Mottet C, Tréglia G,Legrand B. New magic numbers in metallic clusters: an unex-pected metal dependence. Surf. Sci., 1997, 383:L719-L727
    [449] Leary R H,Doye J P K. Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. Phys. Rev. E, 1999,60(6): R6320-R6322
    [450] Kimura Y,Qi Y, Cagin T,Goddard III W. The Quantum Sutton-Chen Many-BodyPotential for Properties of fcc Metals.http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf, 2008.or http://wag.caltech.edu/home-pages/tahir/psfiles/51.ps, 1998,7,13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700