大渡河沙坪二级水电站坝址左岸堆积体力学参数及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个地质灾害频发的国家,尤其是西南地区,崩塌、滑坡、泥石流等浅表生地质灾害异常突出。据中科院统计资料显示,近10余年来泥石流、滑坡造成的经济损失达25亿~40亿元,每年有500~1000人丧生。随着人口的急速增长和土地资源的过度开发,边坡问题已变成同地震和火山相并列的全球性三大地质灾害(源)之一,严重威胁着国家财产和人民生命安全。
     本文拟研究的堆积体位于大渡河沙坪二级水电站坝址左岸,紧靠坝肩。坝址位于官料河河口上游约230m处,初拟坝型为混凝土闸坝,坝顶高程557m,最大坝高63.0m,坝顶长320.2m。正常蓄水位554m,水库库容2084万m~3,总装机容量为345MW。堆积体沿SWW方向呈喇叭形展布。前缘高程约545m,直抵大渡河;后缘高程790m左右,为坡度陡缓交界处。前后缘高差约245m,纵向长约375m,横向最长可达390m,分布面积约10.6×10~4m~2,平均厚度约20m,体积约200×10~4m~3。如此规模庞大的堆积体恰又位于左岸坝肩部位,其稳定与否,将对坝线选择及电站的安全运营造成严重影响。一旦失稳,将直接危及大坝与其它枢纽建筑的安全,因而有必要对其岩土体的力学参数进行研究,再进一步对其稳定性情况进行深入细致的分析。
     为准确判断该堆积体的稳定状态,本文在环境地质背景条件研究的基础上,建立其地质力学概念模型。从堆积体基本特征、变形破坏模式、成因机制及影响因素等方面入手,着重针对其覆盖层岩土体的力学参数进行研究。研究方法选取室内试验、经验公式、工程类比和计算反演4种方法,其中室内试验采用大剪试验、真三轴试验和直剪试验。研究结果表明:在这3种试验方法中,大剪试验的统计结果略高,但总体上3种方法的统计值均较为接近。同时,试验方法所得出的参数值处于类比统计值范围之内、略高于经验公式计算值和反演分析结果。将这几种方法的参数取值进行综合对比、统计分析,最终确定该堆积体的计算参数取值。
     在前述堆积体力学参数研究的基础上,进一步通过数值模拟和极限平衡计算,对堆积体整体和局部稳定性进行预测。极限平衡法分别计算堆积体在天然、暴雨、地震和开挖工况下的整体稳定性。除此之外,针对堆积体前、中、后部潜在不稳定体进行搜索计算。再利用FLAC软件对其进行模拟计算,分析堆积体的应力场、变形场和稳定性特征。研究结果表明:堆积体天然工况下稳定性较好,暴雨工况下处于基本稳定状态,地震工况下处于极限平衡~失稳状态。堆积体前缘由于受开挖的影响,失稳方量相对较大;中部存在有小方量的失稳体;后部无局部不稳定体。与开挖前相比,堆积体坡脚开挖面上部水平位移明显增大,剪应变增量集中带进一步延伸,易沿开挖面发生垮塌破坏。
     最后在堆积体破坏形式及破坏规模分析的基础上,探讨堆积体失稳的工程影响。研究结果表明:堆积体前缘局部失稳体进入水库,产生的涌浪高度较低,不存在翻坝的危险。淤积方量不大,对水库有效库容影响微弱。
China is a country prone to geological disasters, mostly are the superficial department disasters such as collapse, landslide, debris flow, etc, particularly in the southwest region. According to statistics from Chinese Academy of Sciences, debris flows and landslides caused economic losses of 2.5 billion to 4 billion, and which killed 500 to 1,000 people each year over the past 10 years. With the rapid population growth and over-exploitation of land resources, slope problem which parallels with the earthquake and volcano has become one of the three global major geological disasters. It’s a serious threat to the safety of state property and people.
     The accumulation, in this article, located in the left bank of the ShapingⅡHydropower Station dam in the Dadu River. The dam is about 230m from the Guanliaohe estuary, concrete dam, which top elevation is 557m and the length is 320.2m, the maximum height is 63.0m. The normal water level of the hydropower station is 554m, reservoir storage capacity is 2084 million m~3, total capacity is 345MW. The accumulation body flared along the SWW direction, like a trumpet. Front elevation was about 545m, closing to the Dadu River; posterior margin elevation was about 790m, the junction of steep slope relief. Its elevation from front to posterior margin was about 245m, vertical length of about 375m, horizontal length of about 390m, the distribution area of about 10.6×10~4m~2, the average thickness of about 20m, the volume of about 200×10~4m~3. Such a large accumulation body just located in the left bank of dam, so the choice of dam location and the security operation of hydropower station are seriously affected by its stability. Once collapsing, it will directly endanger the dam and other important construction safety. So that it is necessary to research its mechanical parameters, and go further to analyze its stability in depth and detailedly.
     In order to accurately judge the stability of the accumulated body, based on the research of geological environment, establish conceptual model of geological mechanics. According to basic features, pattern of deformation and failure, formation mechanism and influence factors analysis, focus on researching the mechanical parameters of rock and soil covering on the slope. The research selects four methods such as laboratory experiments, empirical formula, engineering analogy and inverse calculation. To laboratory experiments, it includes large shear experiments, true triaxial experiments and direct shear experiments. The research shows that the large shear experiments statistical results are a little higher than another two experiments, however all of the experiments statistical results are almost closer as a whole. At the same time, the experiments results are within the scope of engineering analogy statistical results, which are slightly higher than empirical formula results and inverse calculation results. By comprehensive comparison and statistical analysis of several methods results, determining the calculation parameters of the accumulation body finally.
     Based on the research of accumulation mechanical parameters, going further to forecast its overall and local stability by numerical simulation and limit equilibrium calculation. Based on the research of accumulation mechanical parameters, go further to forecast its overall and local stability by numerical simulation and limit equilibrium calculation. The overall stability is calculated in nature、heavy rain、earthquake and excavation condition. Also search and compute its potential unstable block. Then use FLAC sofeware to simulate and analyze its stress、deformation and stability feature. The research shows that the accumulation body is stable in nature, basic stable in heavy rain, limit equilibrium~instability in earthquake. Because of excavation, the volume of unstable body in front is more than which is in the middle. There is not existing unstable body in the posterior edge. To contrast before excavation, the horizontal displacement increased clearly in part of body foot on the excavation face, the increased concentrating strip of shear strain extended further. So that it is easy to collapse along excavation face.
     Finally based on the form of damage and scale of destruction of the accumulation body, go further to analyze the engineering effect while collapsing. The research shows that there does not exit danger by climbing over the dam because of a lower surge height which caused by unstable body in front. And it also influences faintly to reservoir storage capacity by a lower volume of alluvial object.
引文
[1]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99) [S].
    [2]中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001) [S].
    [3]中华人民共和国国家标准.建筑边坡工程技术规范(GB50330-2002) [S].
    [4]中华人民共和国国家标准.中国地震动参数区划图(GB18306-2001) [S].
    [5]中华人民共和国国家标准.中国地震震级规定(GB17740-99) [S].
    [6]中华人民共和国国家标准.中国地震烈度表(GB17742-99) [S].
    [7]中华人民共和国电力行业标准.水利水电工程边坡设计规范(DL5353-2006) [S].
    [8]中华人民共和国电力行业标准.水电枢纽工程等级划分及设计安全标准(DL5180-2003) [S].
    [9]中华人民共和国地质矿产部.土工试验规程[M].北京:地质出版社,1984.7.
    [10]中华人民共和国建设部,中华人民共和国水利部.土的分类标准[M].北京:中国建筑工业出版社,2002.
    [11]国家电力公司华东勘测设计研究院.四川大渡河沙坡二级水电站预可行性研究报告[D],2008,1.
    [12]张倬元,王兰生,王士天.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [13]袁聚云,钱建国,张宏鸣,梁发云.土质学与土力学[M].北京:人民交通出版社,2007.
    [14]钱家欢.土力学[M].南京:河海大学出版社,1995.
    [15]钱家欢,殷宗泽.土工原理与计算(第二版) [M].北京:中国水利水电出版社,1996.
    [16]石豫川,吉锋,刘汉超,邓忠文.某水电站古崩滑体的成因机制及稳定性研究[J].地质灾害与环境保护,2006,(03):46-50.
    [17]石豫川,李曰国,陈小春.老林坪古崩滑体稳定性评价[J].成都理工学院学报,1997,(S1):124-129.
    [18]吉锋,石豫川,刘汉超,邓忠文.大渡河新华古滑坡体成因机制及稳定性研究[J].水文地质工程地质,2005,(04):24-27.
    [19]石豫川,巨能攀.新店子滑坡成因机制分析及稳定性评价[J].公路交通技术,2000,(02):12-14+24.
    [20]巨能攀,黄润秋,涂国祥.含水砂层对堆积体稳定性的影响研究[J].工程地质学报,2006,14(4):46-50.
    [21]黄润秋,许强.显示拉各朗日差分法在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,Vol.14No.4:346-354.
    [22]时卫民,郑颖人,唐伯明.滑坡稳定性评价方法的探讨[J].岩土力学,2003.8,Vol.24No.4:53-56+60.
    [23]赵其华,王运生.边坡地质工程理论与实践[M].成都:四川大学出版社,2000.
    [24]李艳春,张建新,刘熙媛.土质学与土力学[M].北京:中国建筑工业出版社,2005.
    [25]孙玉科等.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [26]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [27]金德濂.水利水电工程边坡的工程地质分类[M].西北水电,2000.
    [28]陈祖煜.土质边坡稳定性分析—原理.方法.程序[M].北京:中国水电出版社,2003.
    [29]董倩.重庆地区矸石山堆积形态及稳定性分析研究[D].重庆大学硕士论文,2006.
    [30]何军.大渡河干海子堰塞堆积体成因机制及稳定性研究[D].成都理工大学硕士论文,2009.
    [31]曾佳.西溪河联补水电站左坝肩堆积体成因机制及稳定性研究[D].成都理工大学硕士论文,2008.
    [32]Hasofer A M,Lind N C. Exact and invariant secondmoment codeformat[J]. Journal of Engineering Mechanics,ASCE,1974,100(1).
    [33] Lind N C. Optimal Reliability Analysis by Fast Convolution[J]. Journal of the Engineering MechanicsDivision,1979,105(3).
    [34]Itasca. FLAC3D vesrion2.0. User’s manual. Minneapolis[M]:ICG,1997.
    [35]Michalowski R L. slope stability analysis a kinematical approach[J]. Geotechnique,1995,45(2).
    [36]W B A. The use of the slip circle in the stability analysis of slope[J]. Geotechnique,1954,5(1).
    [37]M D J. State of the art:limit equilibrium and finite element analysis of slope[J].1996,122(7).
    [39]林峰,徐蓉,陈宁.地下水对土坡稳定性的影响分析[J].地质灾害与环境保护,1999,10(4):46-50.
    [40]张玉军,朱维申.小湾水电站左岸坝前堆积体在自然状态下稳定性的平面离散元与有限元分析[J].岩石力学与工程学报,1999(5):42-45.
    [41]陈砺,祁豫疆.小湾水电站左岸坝前堆积体结构特征及稳定性研究[J].云南水力发电,2000(1):27-31.
    [42]杨建,李同春,张丹.紫坪铺水库区倒流坡库岸堆积体稳定性分析[J].水电站设计,2003(3):56-59.
    [43]简文星,张宜虎,尹红梅.作揖沱崩滑堆积体稳定性评价及防治对策[J].水文地质工程地质,2004(增刊):93-97.
    [44]肖明砾,何江达,王开云.金安桥水电站B1堆积体边坡静动力稳定性分析[J].四川水利,2004(6):32-35.
    [45]简文星,殷坤龙,汪洋.万州西溪铺松散堆积体成因分析及稳定性评价[J].地质科技情报,2005(增刊):171-175.
    [46]陈强,聂德新,王维早.结义复合堆积体组成特征及其成因分析[J].水利水运工程学报,2006(2):38-43.
    [47]徐永辉,胥勤勉,杨达源.金沙江河谷金坪子堆积体成因及其地质意义[J].第四纪研究,2006(3):131-137.
    [48]胥良.金沙江白鹤滩水电站金江滑坡成因机制及稳定性研究[D].成都理工大学硕士论文,2004.
    [49]刘贵荣.金江滑坡稳定性及工程影响研究[D].成都理工大学硕士论文,2007.
    [50]丁秀美.西南地区复杂环境下典型堆积(填)体斜坡变形及稳定性研究[D].成都理工大学博士论文,2005.
    [51]Marti.l and Cundall P.Mixed Discretization Procedure for Accurate Modelling of Plastic Collapse,Int.I Num.& Analy Methods in Geomech,1982(8).
    [52]Jon D.Pelletier,Bruce D.Malamud,TroyBlodgett etc. Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Engineering Geology, Volume 48 Issue 3-4(199712).
    [53]David K.Keefer. Investigating Landslides Caused by Earthquakes-A Historical Review. Surveys in Geophysics. Volume 23 Issue(2002).
    [54]赵锡宏,张启辉等.土的剪切带试验与数值分析[M].北京:机械工业出版社,2003.
    [55]刘汉超,陈明东等.金沙江向家坝水电站重大工程地质问题研究之——库区环境地质评价研究[M].成都:成都科技大学出版社,1993.
    [56]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [57]孔德坊等.工程岩土与环境地质[M].成都:西南交通大学出版社,1999.
    [58]王小锋.两家人堆积体三维地质特征及稳定性分析[D].河海大学硕士论文,2007.
    [59]杨建荣.大渡河双江口水电站近坝段冰水堆积体稳定性研究[D].西南交通大学硕士论文,2005.
    [58]王彬.云南万家口子水电站九子崩滑堆积体稳定性研究[D].吉林大学硕士论文,2009.
    [59]段永侯.中国地质灾害的基本特征与发展趋势[J].第四纪研究,1999,19(3):208-216.
    [60]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [61]蒋承松.中国地质灾害的现状与防治工作[J].中国地质,2000,No.4:5-7.
    [62]王兰生,张倬元.斜坡岩体变形破坏的基本地质力学模式[J].水文工程地质论丛,1983.
    [63]张季如.边坡开挖有限元模拟和稳定性评价[J].岩石力学与工程学报,2002,21(6):85-89.
    [64]张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版社,1987.
    [65]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [66]孙慕群,陈晓平.土坡稳定可靠度分析[J].武汉水利电力大学学报,1999,32(2):19-22.
    [67]王保田.多层土质边坡抗滑稳定的可靠性分析[J].河海大学学报,1994,22(4):8-13.
    [68]刘衡秋,胡瑞林,曾如意.云南虎跳峡两家人松散堆积体的基本特征及成因探讨[J].第四纪研究,2005(1):103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700