微细电火花加工的基本规律及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电火花加工的非接触加工、宏观作用力小等自身特点决定了其在微细加工领域的优势地位。经过几十年的发展以及加工工艺的不断完善,微细电火花加工不仅仅适用于微细轴、微细孔的加工,还能够进行三维微结构的加工。正因如此,微细电火花加工技术研究已成为微型机械制造领域的一个非常重要的方向,受到了国内外学者的广泛关注。但目前国内外学者对微细电火花加工技术的研究尚不系统,尤其是对微细电火花加工基础理论研究方面更显力度不足,至今还没有一套完整的理论模型来解释整个电火花加工过程。为此,本文尝试对微细加工过程中放电通道的建立过程以及通道的电磁特性;微细放电过程中电极材料的沉积、去除的微观过程;单脉冲放电电极材料蚀除量预测的热传导过程等微细电火花加工过程中的若干关键环节进行分析以及仿真模拟,并设计相应的实验来对所建立的模型进行了验证。
     由于电火花加工过程是在放电通道中发生、进行的,因此,放电通道的研究对于电火花加工技术研究有着重要意义。本文首先就放电通道展开研究,采用粒子模拟方法建立了放电过程的通道模型;对放电过程中等离子体通道的形成过程、以及等离子体通道的振荡特性进行了模拟研究;模拟结果清晰的反映了放电通道的发展过程,以及在此过程中,电子、离子的运动状态、带电粒子的空间分布。本文还分析了放电通道中等离子体的纵振和横振的形成机理;并且通过脉冲放电实验,证明了放电过程中放电通道的振荡波动对材料蚀除的影响,以及放电通道的电磁特性对于放电沉积过程中带电沉积粒子运动轨迹的影响。
     在电火花加工过程中,电极材料的物质转移是一个瞬时、微观的过程,因此采用微观模拟的手段对放电过程中电极材料的微粒运动过程进行分析模拟,将更有助于探寻电火花加工过程中电极材料形貌变化的工艺规律。为此,本文采用分子动力学方法建立了针尖电极放电的分子动力学模型,以及气中放电沉积的分子动力学模型;模拟了单脉冲放电钨针尖电极的形成过程和气中放电沉积的微观过程。在模拟过程中发现在针尖电极形成过程中存在着单个原子的气化去除和团簇原子的气化去除现象,并且就不同的放电点机制以及外加电场力进行了讨论。发现在匀强电场力作用下,针尖电极的形成过程与实验现象更加相符,并且分析了不同的电场强度以及放电点温度对于针尖电极形貌的影响。在气中放电沉积的分子动力学模拟中,得到了放电沉积过程模拟中微观参数与放电沉积参数之间的对应关系。模拟结果表明:仿真沉积过程中电场力、沉积动能与沉积速度的变化关系与实验所得到的沉积实验峰值电流和沉积速度关系十分吻合,很好的模拟了放电沉积过程中沉积粒子的微观运动过程,为进一步研究气中微细电火花沉积的工艺规律以及三维微细沉积加工奠定了一定的理论基础。
     从热传导角度来研究放电能量与电极材料蚀除量之间的关系,以此探寻电火花加工过程中材料的蚀除机理,一直都是电加工理论研究的热点之一。为此,本文采用有限元方法对不同热源模型下放电过程中电极材料的温度场分布进行了深入分析,得到了在格林热源载荷方式下,时变半径、定功率的热传导的解析方程;并且应用有限元仿真软件对单脉冲电火花加工过程的电极材料的温度场(变化)进行了仿真。在仿真过程中,充分考虑了电火花加工过程中的载荷以及电极材料物性参数随温度的变化特性、加工过程中的相变问题。对放电通道中的热流密度载荷的分布情况进行了深入的分析,得到了凹坑直径、深度与单脉冲脉宽、电流的对应关系。最后,本文研制了单脉冲放电实验电源,通过单脉冲放电试验对放电点热传导的有限元仿真模型的预测精度进行了检验。通过试验证明仿真模型具有85%以上的预测精度。
Electrical Discharge Machining (EDM) is a non-contact machining technique with little cutting force, which establishes its advantage station in the fields of micromachining. After continual development for decades, micro Electrical Discharge Machining (micro-EDM) is not only applied for machining micro-shafts, micro-holes and micro three dimensional structures, but also shows excellent potential for machining silicon materials. Study of micro-EDM technology is of great significance in the fields of micro-machine manufacture and been regarded greatly by researchers home and abroad. However, there is not systemic research on this technology at present, especially for its basic theory problems. There is no systematical theory model to illustrate the discharge process. For this reason, a discharge model is built in this research and computer simulation technology to analyze discharge process, relevant experiments were designed to validate the accuracy of the models.
     Discharge channel is the surrounding where discharge process occurs, so research on discharge channel is the basis of the research of discharge machining. Thereby, a discharge channel model based on particle in cell method is built. Forming process and oscillation characters of discharge channel are simulated and analyzed. From the simulation result plots, it can be clearly observed that electrical particles movement during the discharge process and particles’distribution under balance state vividly. Mechanism of channel’s oscillation, composed of vertical oscillation and horizontal oscillation, is also demonstrated. Subsequently, influences of oscillation to electrode material erosion and influences of discharge channel’s electromagnetic characters to particles’movement locus in deposition in gas are testified by discharge experiment.
     Because discharge process is instantaneous and microcosmic, microcosmic method has to be applied to measure the particles’movement in electrode surface. For this reason, molecular dynamics method is applied to simulate the pinpoint electrode forming process and electrode deposition process. From the simulation plot, it is found that during tungsten microelectrode self-sharpening process, single atom removing and bulk atom cluster removing both exist. Electric field force is a key factor for microelectrode shape forming. Influences of electric field force to microelectrode self-sharpening and temperature in discharge point to microelectrode self-sharpening process are discussed.
     In deposition experiments in air, it is found that with discharge current increases, energy of single discharge increase, correspondingly the deposited granule’s size and deposition height both increase. However when discharge current exceeds a certain value, energy of single discharge is too excessive that deposition electrode is easy to burn, deposition height decreases, even to naught. From the simulation results it is found the same law. Simulation results show that the relation of emitting velocity to deposition height and relation of discharge electric field to deposition height of the simulation result are accordant to the trend of deposition height to discharge current in experiment. In the end it is found the critical values of discharge electric field and emitting velocity of depositing molecules of Cu. This research provides the reliable theoretical basis for further experimental study on the processing law of deposition and three dimensional deposition in air in Micro EDM.
     Electrode material erosion mechanism and how to measure the relationship of discharge energy and quantity of electrode erosion are the keys of research of EDM theory. In this paper, the heat conduction process in electrode is analyzed and a relatively rational model is built, in model both thermal current density load of gauss distribution and convection load are applied, material properties varying with temperature was considered, phase change is solved with enthalpy method. Analytic solution of temperature pattern of round heat sources is presented under the changing discharge channel radius with time and fixed input total power. The temperature fields of single pulse EDM are simulated by ANSYS and relation of crater shape and discharge parameters through simulation under different pulse-on time and current discharge condition is anylized. Finally, a single pulse power supply was designed and some corresponding experiments were done, the results show that the simulation results have the preferable precision of prediction, indicating a worthwhile theoretical foundation for continuous EDM simulation in further.
引文
1 http://www.skypaper.cn/Education/Education_16078.html
    2 http://www.kjzg.com.cn/newver/browarticle.php?articleid=468
    3 吕亚玲,杨晓红.现代先进制造技术的趋势.2004,l42(2):25~26
    4 赵万生,先进电火花加工技术,国防工业出版社,2003,(10):1~2
    5 赵万生,韦红雨等.微细电火花加工的新进展.仪器仪表学报.1996,17(1):65~69
    6 楼乐明,肖文芳,李明辉,彭颖红,计算机仿真技术在电火花加工中的应用.电子工艺技术.1999,(3):115-119
    7 M.Hihara.Magagement Technology in Mold Life and Recent Trend.Die and Mould Technology.1997,12(1):4~9
    8 郑红,宋博岩,刘晋春等.模糊控制技术在电火花加工中的应用现状与展望.电加工.1996,(2):2~7
    9 小林和彦,真柄卓司,尾崎好雄,弥富刚.电火花加工的现状与未来.金属成形工艺.1995,13(5):38~41
    10 K.Kobayashi.The Present and Future Technological Developments of EDM and ECM . International Symposium for Electro-Machining(ISEM-11), Presses Polytechniques Et Universitaires Roamndes. Lausanne,1995,Swiitzerland:29~48
    11 Wilfried Konig, Fritz Klocke, Rainer Lenzen.The Electrical Machining Processes-What Demands will They Face in the Future . International Journal of Electrical Machining.1996,(1):3~8
    12 赵万生,韦红雨等.微细电火花加工的新进展.仪器仪表学报.1996,17(1):65~69
    13 许华宇,李明辉,彭颖红.电火花加工理论研究现状与展望.电加工.1997,(3):8~12
    14 CIMT’97 特种加工机床评述组.第五届中国国际机床展览会特种加工机床展品水平分析.电加工.1997,(4):2~4
    15 沈 洪 . 90 年 代 的 电 火 花 加 工 技 术 和 电 火 花 加 工 机 床 . 电 加工.1997,(1):2~5
    16 王 克 锡 . 电 火 花 成 形 机 的 发 展 特 点 和 今 后 的 方 向 . 电 加工.1992,(2):42~51
    17 沈洪.EDM 的新动向及新技术.机床.1995,(7): 1~3
    18 M.Kunieda.Improvement of EDM Efficiency by Supplying Oxygen Gas into Gap.Annals of the CIRP.1991,40(1):215~218
    19 连克仁,王克锡等. CIMT’93 国内外参展电加工机床评述.电加工.1994,(1):2~11
    20 沈洪.电火花加工技术发展的里程碑.电加工.1995,(4):37~38
    21 CIMT’95 电加工机床评述小组.第四届中国国际机床展览会参展电加工机床评述.电加工.1996,(1):2~6
    22 陈德忠.第六届国际模具技术和设备展览会-模具加工设备及其新工艺、新技术.电加工.1996(4):2~6
    23 徐 均 良 , 连 克 仁 , 陈 德 忠 . 我 国 电 加 工 机 床 市 场 分 析 . 电 加工.1997,(6):43~46
    24 李 指 俊 , 冯 同 建 . 特 种 加 工 技 术 及 其 发 展 趋 势 . 机 械 制造.1996,(4):7~10
    25 Beherens,M.P.Witzak.Integrating Fuzzy Technology in EDM Process Control.Proc.of ISEM-11,April,1995,Swizerland:287~294
    26 Yan , Y.S.Liao . Adaptive Control of Fuzzy Controllers in High-Performance Die-Sinking EDM Machines. Proc.of ISEM-11, April,1995,Swizerland:343~352
    27 Boccadoro M.,Sauw D.F.About the Application of Fuzzy Controllers in High-Performance Die-Sinking EDM Machines. Annals of CIRP.1995,44(1):147~150
    28 Dipl EI Ing ETHZ , Marco Boccadoro , and D.F.Dauw . About the Application of Fuzzy Controllers in High-Performance Die-Sinking EDM Machines.ISEM,.1995,Switzerland:333~341
    29 迟恩田.电火花成型加工技术现状.机械科学与技术.1996.25 (2):5~1125
    30 N.Mohri, N.Saito,and Y.Tsunekawa.Metal Surface Modification by Electrical Discharge Machining with Composite Electrode.Annals of the CIRP.1993,42(1):219~222
    31 N.Mohri,N.Saito,M.Suzuki,T.Takawashi,and K.Kobayashi.Surface Modifi -cation by EDM.Research and Technological Development in Nontraditional Machining,Proceedings of the WinterAnnual Meeting ofASME, 1988,Chicago,34:21~31
    32 H.Narumiya,N.Mohri,N.Saito,H.Ootake,Y.Tsunekawa,T.Takawashi,and K.Kobayashi . EDM by Powder Suspended Working Fluid . ISEM-IX.1989:825~828
    33 Bernd M. Schumacher. After 60 years of EDM the discharge process remains disputed. Journal of Materials Processing Technology.2004,(149)376~381
    34 Antoine Descoeudres, Christoph Hollenstein , René Demellayer, Georg W?lder,Optical emission spectroscopy of electrical discharge machining plasma, Journal of Materials Processing Technology.2004,(149)184~190
    35 于 学 文 , 黄 涤 非 , 金 玉 惠 . 电 火 花 加 工 放 电 通 道 的 探 讨 . 电 加工.1984,(03):8~13
    36 井上洁著,帅元伦,于学文译.放电加工的原理-模具加工技术.北京,国防工业出版社,1983
    37 元利伟,楼乐明,李明辉.放电通道的波动性与电火花加工机理.上海交通大学学报.2001,35(7):989~997.
    38 小岛弘之,国枝正典.形腔り放电加工における放电点分布の观察.精密工学会志.1991,57(9):1603~1608
    39 Kojima H., Kunieda M., Nishiwaki N. Understanding Discharge Location Movements During EDM. 10th International Symposium for Electromachining (ISEM-10), Magdeburg, Germany,1992:144~149
    40 M. Kunieda, H. Xia, N. Nishiwaki.Observation of Arc Column Movement During Monopulse Discharge in EDM. Annals of the CIRP. 1992,41(1):227~230
    41 Y. F. Luo . An Evaluation of Spark Mobility in Electrical Discharge Machining. IEEE Transactions on Plasma Science. 1998, 26(3): 1010~1016
    42 赵伟,任延华,任中根,方宗德.电火花放电通道中带电粒子运动规律的研究.机械科学与技术.2001, 20(5)762~763
    43 Hayakawa, Kojima, Kunieda etc. Influence of plasma temperature in EDM process.Journal of the Japan Society for Precision Engineering.1996, 62(5):686~690
    44 Hayakawa, Kunieda. Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics, Transactions of Japan Society of Mechanical Engineers.1996,62(8):3171~3177
    45 Hashiguchi. K.Numerical calculations for the electron energy distribution in ahelium,hollow-cathode glow discharge.Plasma Science, 1985,105(8):451
    46 H.-P. Schulze, M. L?uter, W. Rehbein, K. Mecke, G. Wollenberg.Channel spreading during the spark discharge for selected conditions and working fluids . 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena CEIDP, IEEE Dielectrics and Electrical Insulation Society, 2003:297~300
    47 Daryl D. Dibitonto, Philip T. Eubank, Mukund R. Patel, Maria A. Barrufet. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys. 1989, 66(9):4096~4103
    48 Mukund R. Patel, Maria A. Barrufet, Philip T. Eubank, Daryl D. Dibitonto. Theoretical models of the electrical discharge machining process. II. The anode erosion model. J. Appl. Phys. 1989, 66(9):4104~4111
    49 Philip T. Eubank, Mukund R. PateL, Maria A. Barrufet, Bedri Bozkurt. Theoretical Models of the Electrical Discharge Maching Process. III. The Variable Mass, Cylindrical Plasma Model. Texas A&M University. J. Appl. Phys. 1993, 73(11): 7900~7909
    50 Xia, H; Hashimoto, H; Kunieda, M; Nishiwaki, N. Measurement of energy distribution in continuous EDM process. Journal of the Japan Society for Precision Engineering. 1996, 62(8),:1141~1145
    51 Heng Xia, Kunieda, Nishiwaki, etc. Measurement of energy distribution into electrode in EDM process. Advancement of Intelligent Production, 1994(5):601-606
    52 Zingerman. Regarding the Problem of the Volume of Molten Metal During Electrical Erosion. Sov. Phys. Solid State, 1959,(25):25~29
    53 Zolotykh. The Mechanism of Electrical Erosion of Metals in Liquid Dielectric Media Phys. Sov.Tech. Phys. 1960, 4(2):234-237
    54 Spur etc. Anode Erosion in Wire-EDM-A Theory Model, Annals of CIRP.1993,42(1): 253~256
    55 Rykalin etc. Laser Machining and Welding, translated from the Russian by O.Glebov(MIR. Moscow, and Permon, New York,1978 )
    56 H.P. Schulze, R. Herms, H. Juhr, W. Schaetzing, G. Wollenberg. Comparison of measured and simulated crater morphology for EDM. Journalof Materials Processing Technology. 2004,149(6):316~322
    57 Jennes etc. Computer of various approaches to model the thermal load on the EDM-Wire electrode, Annals of CIRP. 1984, 33(1):245~248
    58 X. Zhou, J.Heberlein, and E.Pfender, MODEL PREDICTION OF ARC CATHODE EROSION RATE DEPENDENCE ON PLASMA GAS AND ON CATHODE MATERIAL, IEEE,1993(5):229~236
    59 Isak I. Beilis,Anode Spot Vacuum Arc Model: Graphite Anode, IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES. 2000, 23(2):334~341
    60 Ajit Singh, Amitabha Ghosh, A thereto-electric model of material removal during electric discharge machining, International Journal of Machine Tools&Manufacture, 1999, (39):669-682.
    61 Philip G. Rutberg, Alexander A. Bogomaz,etc. Investigation of Anode and Cathode Jets Influence on Electric Arc Properties With Current Up to 500 kA. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31(2):201-206
    62 A. Watson, A. L. Donaldson, K. Ikuta, and M. Kristiansen. MECHANISM OF ELECTRODE SURFACE DAMAGE AND MATERIAL REMOVAL IN HIGH CURRENT DISCHARGES. IEEE TRANSACTIONS ON MAGNETICS. 1986, 22(6):1799~1804
    63 周勇,刘正埙,电火花加工中工具电极损耗理论研究.电加工与模具.1998, (4)1~3.
    64 J. R. Crookall, A theory of planar electrode-face wear in EDM, Annals of the CIRP. 1979, 28(1):125~129.
    65 Schoichi Shimada, Hiroaki Tanaka. Molecular Dynamics Analysis of Self-sharpening Phenomenon of Thin Electrode in Single Discharge. Journal of Materials Processing Technology. 2004,(149):358~362.
    66 邵福球.等离子体粒子模拟.科学出版社.北京.2002.02:9~11.
    67 栗岩,赵万生,冯晓光,两点输入 EDM 放电位置的仿真研究.电加工与模具.1997,9(4):8~1l.
    68 韩强,何勇,赵万生,电火花加工放电位置检测厚壁模型的仿真.电加工与模具.2001,(2):16~18.
    69 闰换新,冉宇瑶,赵万生,郭永丰.电火花加工间隙流场的研究及仿真.中国机械工程.2001,(8):858-861.
    70 吕敏,于源,王小椿.基于混合八叉树模型的电火花数控加工仿真研究.组合机床与自动化加工技术.2001, (9):9~12.
    71 楼乐明,李明辉,彭颖红.利用神经网络建立电火花加工工艺模型.中国机械工程.2001,12(4):408~410.
    72 肖文芳,李明辉,殷信义.高速走丝线切割加工工艺效果仿真系统.电加工.1991, (1):1~4.
    73 楼乐明.电火花加工计算机仿真研究.上海交通大学博士学位论文.2000:45~49
    74 任俊,李明辉.人工智能技术在电火花线切割加工中的应用.电加工与模具.1999, (6):1~4.
    75 肖文芳,李明辉.电火花线切割加工过程的人工神经网络模型.电加工与模具.1998, (5):10~13.
    76 Y Konishi, M. Hasegawa, L. Sugimoto. Recognition of EDM process using neural networks. International Journal of the Japan Society for precision engineering. 1991,25 (3):206~207.
    77 J. Y Kao, Y S. Tamg. Neural-network approach for the on-line monitoring of the electrical discharge machining process. Journal of Materials Processing Technology. 1997,69 (1):112~119.
    78 G. Indurkhya, K. P.网 urkar, Artificial neural network approach in modeling of EDM process, ASME , No.15-18, Vo1.2 (1992)845-850.
    79 M. Kunieda, W. Kowaguchi, T. Takita, Reverse simulation of die-sinking EDM, Annals of the CIRP. 1999, 48(1):115~118.
    80 杨晓东,刘光壮,赵万生.基于智能技术的电火花加工条件优化.电加工与模具.1998, (5):5~9.
    81 罗元丰,赵万生,曹光宇.人工神经网络技术在电火花加工中的应用.电加工与模具.1999, (5):20~23.
    82 杨晓冬,赵万生,刘光壮.基于遗传算法的电火花加工条件优化.电加工.1999, (2):1~4.
    83 Mohri N., Takezawa H., etc, A new process of additive and removal machining by EDM with a thin electrode. Annals of the CIRP, 2000, 49(1): 123~126.
    84 Y.S. Wong , M. Rahman, H.S. Lim, H. Han, N. Ravi. Investigation of micro-EDM material removal characteristics using single RC-pulse discharges.Journal of Materials Processing Technology 2003, (14): 303~307
    85 M. Kunieda, X. Nishiwaki, Observation of arc column movement during mono-pulse discharge in EDM, Annals of CIRP, 1992,41(l):227~230.
    86 Hideki Takezawa, Yoshiro Ito, Naotake Mohri. The behavior of thin electrode wear in electrical discharge machining. 13th international symposium for electro-machining ISEM XIII. 2001, (11):727~731
    87 曹国辉.基于单脉冲放电的若干微细加工方法及实验研究.哈尔滨工业大学博士学位论文.2004:73~78
    88 C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985:134~136.
    89 J.M.Dawson. Particle simulation of plasma, Rev.Mod.Phys. 1983,(55):403~409
    90 J.M.Dawson. Computer modeling of plasma: past, present and future. phys. Plasmas, 1995,(2):218~219
    91 Dawson J M. One-dimensional plasma model [J]. Phys. Fluids, 1962, (5) :445~ 459.
    92 Eldridge O C, Feix M. One-dimensional plasma model at the thermody n amic equilibriumJ[J]. Phys. Fluids., 1962, (5):1076~1080.
    93 Buneman O. Dissipation of currents in ionized media[J]. Phys. Rev., 1959, (115):503~517.
    94 C.K. Birdsall, Clouds-in-Clouds, Clouds-in-Cells physics for many-body plasma simulation. J Comput Phy. 1969, (3): 494~452
    95 Landgon A.B. Theory of plasma simulation using Finite-size particles. Phys Fluids, 1970,(13):211~219
    96 H.Okuda and C.K. Birdsall. Phys.Fluids, 1970,13:9170~9176
    97 Hallquist J O. LS-DYNA3D user's manual. Livermore California: Livermore Software Technology Corporation, 1992.
    98 Lax.P.D. Symmetrizing hyperbolic differential equations. Nonlinear Hyperbolic Problems.Eds.c Carasso.P-A.Raviart and D.Serre,lecture Notes in Mathematics 1270,Springer-Verlag,1987.150~151.
    99 C.K.Birdsall and A.B.London, Plasma Physics Via Computer Simulation, New York: McGraw-Hill Book Company.(1985)
    100 Shuvra Dasa, Mathias Klotz, F. Klocke. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology. 2003, (142): 434~451
    101 刘 爱 红 , 佘 守 宪 . 等 离 子 体 的 振 荡 及 流 体 效 应 的 解 释 . 大 学 物理.2001,20(12):35~37
    102 M. W. Finnis, J. E. Sinclair. A Simple Empirical N-body Potential for Transition Metals. Philosophical Magazine A. 1984, Vol. 50, No. 1:45~55
    103 孙杏凡.等离子体及其应用.北京:人民教育出版社.1982:45~48
    104 熊家贵,王德武.平行极板间等离子体 RF 共振特性研究. 2000(4):56-61
    105 Takeo Tamura, Yoshinobu Kobayashi.Measurement of impulsive forces and crater formation in impulse discharge. Journal of Materials Processing. Technology. 2004,(149):212~216
    106 Thomas Schoenemann. COMPARING INVESTIGATIONS OF THE EROSION PHONOMANA ON SELECTED ELECTRODE MATERIALS IN AIR AND SULFURHEXAFLURIDE IEEE,1996:115~120
    107 谢卫平,王文斗等.快 Z 箍缩物理过程的 PSPICE 电路模拟方法分析.强激光与粒子束.2003, 15(1):61~63
    108 袁敬闳,莫怀德.等离子体中的波.电子科技大学出版社.1990:1~15
    109 Takeo Tamura, Yoshinobu Kobayashi. Measurement of impulsive forces and crater formation in impulse discharge[J]. Journal of Materials Processing Technology,2004,(149):212~216.
    110 张永伟,王自强.分子动力学方法在研究材料力学行为中的应用进展.力学进展.1996, 26(1):14~27
    111 Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987:421~426
    112 Gear C W. Numerical Integration of Ordinary Differential Equations. New Jersey: Prentice-Hall, Englewood Cliffs, 1971:123~126
    113 Ackland, G. J.; Finnis, M. W.; Vitek, V. J. Phys. F, 1988, (18):153
    114 CC Matthai, DJ Bacon - Philos. Mag. A. Relaxed Vacancy Formation and Surface Energies in BCC Transition Metals. Phys. Rev B. 1985, (54):2941~2951
    115 AH Foster, JM Harder, DJ Bacon .Computer Simulation of Interstitial Clusters in BCC and HCP Metals. Mater. Sci. Forum.1986, (15):849~856,.
    116 MASAO Doyama , Kogure Y. Embedded atom potentials in fcc and bcc etals.Computational Materials Science .1999,(14):80~83.
    117 GAO H , HUANG Y, ABRAHAM F F. Continuum and atomisitc studies of intersonic crack propagation. J Mech Phys Solids .2001,(49):2113~2132.
    118 TAN H L ,YAN G W. Atomistic/continuum simulation of interfacial fracture , Part II: Combined atomistic/dislocation/continuum simulation. Acta Mechanica Sinica ,1994,10 (3):237~249.
    119 卢柯,卢磊.金属纳米材料力学性能的研究进展.金属学报.2000, 36(8) :785~789.
    120 Shuvra Dasa, Mathias Klotz, F. Klocke. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology. 2003, (142): 434~451
    121 M. L?uter , H.P. Schulze, W. Rehbein, K. Mecke, G. Wollenberg,Channel spreading during the spark discharge for selected conditions and working fluids, 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena CEIDP, IEEE Dielectrics and Electrical Insulation Society, 2003:297–300.
    122 Thomas Schoenemann. COMPARING INVESTIGATIONS OF THE EROSION PHONOMANA ON SELECTED ELECTRODE MATERIALS IN AIR AND SULFURHEXAFLURIDE IEEE,1996:115~120
    123 Antoine Descoeudres, Christoph Hollenstein , René Demellayer, Georg W?lder,Optical emission spectroscopy of electrical discharge machining plasma, Journal of Materials Processing Technology . 2004, (149) 184~190
    124 Bernd M. Schumacher. After 60 years of EDM the discharge process remains still disputed. Journal of Materials Processing Technology. 2004, (149):376~381
    125 A Descoeudres, Ch Hollenstein, R Demellayer andGW¨alder. Optical emission spectroscopy of electrical discharge machining plasma. J. Phys. D: Appl. Phys. 2004, (37):875~882
    126 Darkrim F, Levesque D. J. Chem. Phys. ,1998, 109(12):4981~4984
    127 Yi bing L, Barojas E B,Papaconstantopoulos D A.Phys. Rev. B, 1998, (57):15519~15524
    128 Daw M S, Baskes M I, et al.Phys. Rev. B, 1984, (29):6443~6453
    129 Ackland G J, Tichy G, Finnis M W, et al.Phil. Mag. , 1987, (56):735~737
    130 Newll R G, Feuston B P , Garofalini S H.J. Mater. Res., 1989, (4):434
    131 Leach A R.Molecular Modelling Principles and Applications. London: Addison Wesley Longman Limited, 1996:321~323
    132 罗明道,颜晓慈.量子化学原理及其应用.武汉:武汉大学出版社,1999.89~90
    133 肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分法在化学和材料物理学中的应用.北京:科学出版社,1998:34~39
    134 Itiro O R,早川伸哉,系魚川文等. 微細放電加工にぉけゐ付着加工を利用した造型法.電加工學全國大講演論文集,1999 ,(11) :89~92
    135 李明辉编,电火花加工理论基础.北京:国防工业出版社,1989:34~39
    136 F.Soldera, A.Lasagni, F.Mucklich, T.Kaiser, K.Hrastnik.Determination of The Cathode Erosion And Temperature For The Phases of Hith Voltage Discharges Using FEM Simulations.Computational Materials Sicence. 2005 (32): 123~139
    137 陈 海 清 等 . 铸 件 凝 固 过 程 数 值 模 拟 . 重 庆 : 重 庆 大 学 出 版 社 ,1991:154~159
    138 谭真,郭广文.工程合金热物性.北京:冶金工业出版社,1994:64~69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700