蔬菜系统镉污染的土壤化学与生物学响应及蔬菜安全诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过实验室模拟研究了我国长江三角洲地区三种典型土壤(红黄壤、小粉土、青紫泥)中镉的生物化学特性及镉污染对微生物活性的影响;系统研究了青菜-番茄-萝卜轮作体系中镉在不同蔬菜体内的积累、分配规律,并结合水培试验探讨低浓度镉对蔬菜生长及生理特性的影响。应用传统土壤微生物学研究方法及BIOLOG微生物碳源利用(功能)多样性、磷脂脂肪酸(PLFA)等群落结构分析方法研究了蔬菜轮作制下,镉胁迫对红黄壤、小粉土蔬菜根际及非根际土壤微生物生物量、代谢活性及群落结构多样性的影响,并探讨了土壤微生物对蔬菜轮作制及蔬菜根系活动的响应。探索了蔬菜土壤镉污染化学-微生物学诊断方法及蔬菜可食部镉卫生品质安全指标。主要研究结果如下:
     1.Langmuir方程和Freundlich方程可以很好地拟合镉在三种土壤(红黄壤、小粉土、青紫泥)中的吸附行为。三种土壤中,青紫泥对镉的吸附能力最强,其次为小粉土,红黄壤最弱,根据计算,其对Cd~(2+)的最大吸附量分别为6098,4065和3534mg kg~(-1);镉吸附能力的差异主要受土壤pH值、粘粒含量、CEC等因素影响。Cd~(2+)的吸附导致等温吸附平衡液的pH显著下降,其下降幅度依土壤类型及镉吸附量而变化。被土壤吸附的Cd~(2+)大部分不能被解吸,Cd~(2+)在三种土壤中的解吸行为差异明显,经过3次连续的解吸,红黄壤吸附态镉0-15%被解吸,小粉土吸附态镉0-9.1%被解吸,而青紫泥只有0-6.8%的吸附镉被解吸,即相同吸附量下,红黄壤镉解吸量最大,小粉土次之,青紫泥最小,说明青紫泥对Cd~(2+)的亲和力最大,红黄壤最小。
     2.镉在蔬菜体内的积累和分配随土壤类型、蔬菜种类及土壤镉含量的不同而不同。青菜体内镉含量的分配为根部>地上部,番茄体内镉含量的分配为根部>地上部>果实。青菜和番茄根系中镉的含量比较高,只有小部分镉可以通过转运在蔬菜地上部积累。青菜和番茄地上部及根系镉含量都随着土壤外源镉含量的增加而增加,但根系的增加速率比地上部快。而萝卜体内镉的积累分配规律和青菜、番茄不同。同一土壤镉处理条件下,地上部镉含量则比根部高,这主要是由于不同植物品种的生理特性不同。不同土壤同一蔬菜体内镉含量也存在差异,红黄壤上生长的蔬菜可食部含量高于小粉土蔬菜。每种蔬菜种植后,土壤NH_4OAc提取态和饱和水提取态镉含量都随着全量的增加而增加,而醋酸铵对镉的提取能力远高于饱和水。同一土壤种植不同蔬菜后可提取态镉含量存在差异,特别是饱和水可提取态。红黄壤对镉的吸附能力较弱,种植同一蔬菜后,红黄壤NH_4OAc和饱和水提取态镉含量高于小粉土。
     3.土壤中0-7.00mg kg~(-1)镉对青菜、番茄、萝卜生长都没有明显的抑制作用,且低浓度镉可以刺激蔬菜地上部及根系的生长;而在水培试验中,高浓度镉(>0.25mg L~(-1))显著降低青菜地上部干重。青菜根系各形态指标(除根体积外)对镉含量的变化比较敏感,当土壤中镉浓度为4.00mg kg~(-1),培养液中镉浓度为0.05 mg L~(-1)时,青菜根长,根直径以及根表面积达到最大值。低浓度镉促进青菜叶绿素合成,而高浓度镉则导致青菜叶绿素含量下降,叶片光合特性受抑制。高浓度镉(7.00mg kg~(-1)(土培),0.50mg~(-1)(水培))增加青菜体内丙二醛含量(MDA);过氧化物酶(POD)在低镉浓度下(0.70mg kg~(-1)(土培),0.05 mg L~(-1)(水培))活性增强,随着镉浓度的进一步增加,其活性下降,其抑制作用增强。镉对青菜体内脯氨酸(Pro)积累的影响并不明显。
     4.采用室内模拟培养试验研究了相对高浓度镉(0-128mg kg~(-1))对红黄壤、小粉土、青紫泥微生物生物量及其活性的影响。结果表明,微生物生物量受土壤类型和镉胁迫程度的影响。红黄壤、青紫泥较小粉土有更高的微生物生物量碳,且不同土壤微生物生物量对镉的响应存在差异。低浓度镉对红黄壤、小粉土微生物生物量碳有刺激作用,但在0-128mg kg~(-1)的处理浓度范围内没有发现镉对微生物生物量的显著抑制作用,而镉对青紫泥微生物生物量碳的影响不显著。镉影响土壤微生物代谢活性,8mg kg~(-1)镉对土壤基础呼吸作用有刺激作用,从外加镉浓度为16mg kg~(-1)起,刺激作用减弱,但大多数情况下仍然高于对照。不同土壤的微生物代谢熵在不同的培养时期对镉的响应趋势存在差异,低浓度镉(4-16mgkg~(-1))对三种土壤不同培养时期的微生物代谢熵都有促进作用,长时间镉胁迫下(16周,>16mg kg~(-1)),红黄壤和青紫泥的微生物代谢熵低于对照。镉对三种土壤的微生物商的影响基本类似,低浓度镉影响下(0-16mg kg~(-1)),微生物商随镉浓度的增加而增加,而随着镉胁迫的进一步加强,微生物商呈下降趋势。不同土壤的脲酶活性在不同培养时期对镉胁迫的响应不尽相同。在培养初期(2、4周)低浓度镉(<16mg kg~(-1))对红黄壤和小粉土的脲酶活性有刺激作用,而随着培养时间的延长,高浓度镉对脲酶活性有比较明显的抑制作用。
     5.在青菜-番茄-萝卜轮作系统中,土壤微生物生物量和微生物商受到低浓度镉(<1 mgkg~(-1))的刺激,随着镉浓度的进一步增加而下降,但7.00mg kg~(-1)镉处理时微生物商仍高于对照。在低浓度镉(<1.00mg kg~(-1))影响下,土壤基础呼吸作用和微生物代谢熵略有减弱,随着外加镉浓度的增加,呼吸作用及微生物代谢熵也随之增强。青菜-番茄-萝卜轮作制不同作物对土壤微生物活动也有影响。种植番茄后的土壤基础呼吸速率、微生物代谢熵高于青菜种植后土壤;而萝卜种植后土壤基础呼吸速率及微生物代谢熵下降。而微生物生物量碳和微生物商随种植蔬菜的变化规律和微生物代谢活性不同,番茄种植后土壤微生物生物量碳和微生物商下降,而萝卜种植后则上升。根际土壤的基础呼吸作用、微生物生物量碳、微生物代谢熵及微生物商等都高于非根际土壤。红黄壤的基础呼吸作用和微生物生物量碳高于小粉土,而红黄壤的微生物代谢熵及微生物商则低于小粉土,这说明红黄壤单位微生物的活性以及对有机质的矿化能力比小粉土弱。
     6.青菜-番茄-萝卜轮作系统中,土壤微生物群落结构受到外源镉浓度和蔬菜种类的影响。青菜种植后,土壤微生物群落对碳源的利用能力随镉浓度的增加而下降,而萝卜种植后则随镉浓度的增加而升高。同一镉处理条件下,根际土壤微生物对碳源的利用能力强于非根际土壤。萝卜种植后土壤微生物群落更加趋于稳定,对外界胁迫的适应性增强。微生物群落丰富度及Shannon指数随镉浓度的变化规律不稳定,在不同土壤类型,不同蔬菜种植条件下规律不一致,不能较好地反映不同外加镉处理对土壤微生物群落结构的影响。不同微生物类群的脂肪酸含量对镉胁迫的响应不同。真菌、革兰氏阳性菌以及灌木菌根真菌随土壤镉含量的增加而增加,而细菌、革兰氏阴性菌、放线菌则随土壤镉含量的增加而下降。灌木菌根真菌(AMF)的特征脂肪酸16:1ω5c随着镉浓度的增加而增加,而且根际土壤中的AMF相对含量比非根际土壤高:不同土壤类型的微生物群落功能多样性及组成多样性存在较大的差异。根际土壤和非根际土壤微生物群落组成多样性差异明显,根际土壤受镉胁迫的影响较小,群落结构较为稳定,而非根际土壤的微生物群落结构更容易受到环境胁迫的干扰。萝卜种植后土壤微生物群落结构更趋向于稳态系统,微生物较能适应镉污染环境。
     7.通过生态环境效应法,基于土壤-植物体系和土壤-微生物体系,建立土壤镉污染诊断指标体系。结果表明,基于土壤-微生物体系建立的土壤镉污染临界值远高于基于土壤.植物体系,根据微生物指标建立的镉污染临界值不适于评价土壤镉污染的程度。当蔬菜卫生品质受到影响时,其产量及微生物活性没有受到影响,对于农田土壤镉污染诊断指标体系的建立应重点考虑食品卫生标准临界值。在确定土壤镉污染的农产品安全临界指标时,需要进行细化,考虑蔬菜种类、土壤类型及镉的有效性。本研究中NH_4OAc提取态镉能较好地代表镉在蔬菜中的生物有效性,种植青菜红黄壤和小粉土的NH_4OAc提取态相应临界值分别是0.066和0.116mg kg~(-1);种植番茄红黄壤和小粉土的NH_4OAc提取态相应临界值分别是0.089和0.092mg kg~(-1);而种植萝卜红黄壤和小粉土中的NH_4OAc提取态临界值分别是0.051和0.045mg kg~(-1)。
Three representative soils(Red yellowish soil,silt loamy soil and purplish clayey soil), which are widely distributed in Yangtze River Delta of China,were collected from Deqing County,Xiasha District of Hangzhou City,and Jiaxin county,Zhejiang province.Laboratory experiments were conducted to investigate the chemical and biological characteristics of cadmium(Cd)in soils and microbial response to external Cd loading.Greenhouse experiments with three vegetable crops in rotation were conducted using the two soils,i.e.red yellowish soil(RYS)and silt loamy soil(SLS)to study Cd accumulation in pakchoi(Brassica chinensis L.),tomato(Lycopersicon esculentum)and radish(Raphanus sativus L.).Root morphology and physiological characteristics of pakchoi were also studied using both soil and hydroponic culture.The effects of increasing Cd loadings on microbial biomass,microbial activity,and microbial community structure were examined and the influences of rotation system and root activity on microbe-Cd interactions were evaluated.Based on these experiments,critical Cd concentrations were established for RYS and SLS by using safety food health standards and microbiological indices.The safety food health standards of Cd criteria are compatible with those obtained from soil microbial response and appear more reliable for assessing Cd pollution in soil.The major findings from this study are summarized as follows:
     1.Adsorption of Cd~(2+)(added as Cd(NO_3)_2)in the three soils was well described by a simple Langmuir equation or a Freundlich model.Behavior of Cd~(2+)adsorption-desorption was related to soil properties and the adsorption capacity of Cd~(2+)varied among the three soils in the order:PCS>SLS>RYS.The maximum adsorption values(X_m)of Cd~(2+)obtained from the simple Langmuir model were 6098,4065 and 3534 mg kg~(-1),respectively,for PCS,SLS and RYS.The adsorption of Cd~(2+)caused a significant decrease in equilibrium solution pH.The extent of pH decrease depended on soil types and the amount of adsorbed Cd~(2+).Most of the adsorbed Cd~(2+)couldn't be released from soils.The behavior of Cd~(2+)desorption differed considerably among soil types.After three successive extractions with NaNO_3,only 0 to 15% of the total adsorbed Cd~(2+)in the RYS soil was desorbed and the corresponding values were 0 to 9.1%and 0-6.8%,respectively for the SLS and PCS soil,indicating that PCS has a higher affinity for Cd~(2+)than RYS or SLS.
     2.The accumulation of Cd in vegetables and the change of extractable Cd in soils after vegetable planted are affected by soil type,vegetable species,and external Cd loadings.For pakchoi and tomato,Cd was mainly accumulated in roots,with a portion of absorbed Cd being transported to the aerial parts and only a small proportion of Cd being accumulated in fruit.Cadmium concentrations in both shoots and roots(pakchoi and tomato)increased with increasing Cd loading levels,but root Cd concentration increased faster than shoot Cd. However,contrasting results were obtained with radish.At the same Cd loading rate,Cd concentrations were higher in shoots than roots.Large differences in tissue Cd concentrations were also observed among the three species.Tomato contained higher Cd in roots and shoots than pakchoi and radish,but Cd concentrations in tomato fruits were low.Analysis of variance revealed that soil type significantly affected Cd concentrations in vegetable tissues. Cadmium concentrations in vegetables grown in RYS were significantly greater than those in SLS at the same Cd loading rate.The results also indicated that ammonium acetate-and water-extractable Cd increased with total soil Cd after regardless of vegetable species planted. Ammonium acetate extracted a larger amount of soil Cd than water.Extractable Cd in soil, especially by water,was infuenced by vegetable species planted.Plant availability of Cd was generally higher in RYS than in SLS.
     3.Shoot growth of vegetables was not inhibited or even stimulated by light Cd pollution (0-7.00 mg kg~(-1)).Increased Cd~(2+)concentration up to 0.25 mg L~(-1)inhibited the growth of pakchoi in hydroponic culture.The root growth of pakchoi was promoted by Cd addition at the concentrations<3.50 mg kg~(-1)in soil culture and 0.05 mg L~(-1)in hydroponic culture.High Cd concentration(>0.05 mg L~(-1))resulted in the inhibition of root development,as evidenced by reduced root total length,root average diameter,and root surface area.The chlorophyll content of pakchoi increased by low Cd addition,but was reduced by increasing Cd concentration up to 0.25 mg L~(-1).Photosynthesis was inhibited at high Cd concentrations (>3.50 mg kg~(-1)in soil or>0.25 mg L~(-1)in culture solution).The activity of peroxidase(POD) increased initially,but decreased with increasing concentration of Cd from 0.50 to 8.00 mg kg~(-1)in soil culture or from 0.05 to 0.50 mg L~(-1)in hydroponic culture.The content of malondialdehyde(MDA)increased when Cd concentration was 0.70 mg kg~(-1)in soil or 0.05 mg L~(-1)in culture solution,whereas the content of dissociative proline(Pro)fluctuated with increasing Cd in soil or culture solution.
     4.The response of microbial biomass to Cd input is related to external Cd loading rate and soil types.RYS and PCS had higher microbial biomass carbon(MBC)than SLS,and the responses of MBC to Cd were different among soil types.Soil microbial biomass in RYS and SLS was enhanced by 4-8 mg Cd kg~(-1)soil,and the stimulating effect was less and less with increasing Cd rate up to16 mg kg~(-1).The MBC in SLS was stimulated by lower Cd loading rate than RYS,as SLS had lower organic matter and clay content,which resulted in higher Cd bioavailability in the SLS.Soil respiration was enhanced at low Cd loading(<8 mg kg~(-1)),but was restrained at higher Cd levels,but still larger than the control,especially in the medium-term of incubation.Although the response of microbial metabolic quotient(MMQ) to Cd was different among soil types or incubation periods,it was generally greater at low Cd loading(4-16 mg kg~(-1))for different incubated time in the three soils.Low concentrations of Cd(0-16 mg kg~(-1))slightly increased microbial quotient,whereas higher concentrations(>16 mg kg~(-1))of Cd~(2+)had inhibitory effects.Urease activities in RYS and SLS were promoted when Cd loading was less than 16 mg kg~(-1)after being incubated for 2 or 4 weeks,while considerable restricting effect was observed when Cd loading was higher than 32 mg kg~(-1) with prolonged incubation time.
     5.In the rotation system of three vegetables,soil microbial biomass and MQ were enhanced at low Cd levels(<1.00 mg kg~(-1)),but was inhibited consistently with increasing Cd rate though the MQ value was still higher than that in control at the Cd rate of 7.00 mg kg~(-1). Soil respiration and microbial metabolism quotient(MMQ)were restrained at low Cd loading (<1 mg kg~(-1)),and enhanced at higher Cd levels.Microbial activities in three soils were affected by pakchoi-tomato-radish rotation system.The values of basal respiration rate and MMQ in tomato-growing soil were higher than those in pakchoi- or radish-growing soils. Microbial biomass and MQ in tomato-growing soils were lower than those in pakchoi- or radish-growing soil.Root activity of vegetables had a positive effect on soil microbes,the values of basal respiration,microbial biomass carbon,MMQ and MQ in rhizospheric soil were all greater than those in bulk soil.The rhizosphere effect varied between RYS and SLS, and among pakchoi,tomato and radish.Basal respiration rate and microbial biomass were greater in RYS than those in SLS,while SLS had higher values of MMQ and MQ.
     6.External Cd loading and vegetable species affected microbial community structure in pakchoi-tomato-radish rotation system.Microbial ability of metabolizing different carbon substrates was decreased with increasing Cd loading rate after pakchoi planted,while increased after radish harvest.With same Cd treatment,the ability of microbes in metabolizing carbon substrate in rhizospheric soil was greater than that in bulk soil.Microbial community structure was apt to be more stable after rotation.The responses of microbial community richness and Shannon index to Cd stress were different among soil types or vegetables,and were not suggested as available index to assess Cd pollution in RYS and SLS. The phospholipids fatty acid(PLFA)in soil microbe was sensitive to increased Cd concentrations.The relative content of general PLFAs in fungi,Gram-positive bacteria or arbuscular mycorrhizal fungi(AMF)was all positively correlated with available Cd in soil, while that in bacteria,actinomycetes or Gram-negative was all negatively correlated with available Cd in soil.Cadmium and root activity increased the amount of AMF.Both microbial functional diversity and PLFAs profiles differed between RYS and SLS soil,and between the rhizosphere and nonrhizosphere environment.Microbial community in rhizospheric soil suffered less Cd stress,and was more stable.
     7.Evaluation indices system for soil Cd pollution was established based on soil-plant system and soil-microbe system.The values of Cd thresholds based on soil-microbe system were much higher than those accoding to soil-plant system,and thus the microbial indices didn't fit to assess Cd pollution in soil.Cadmium thresholds for potential dietary toxicity should be considered in establishing evaluation indices system for soil Cd pollution.The species of vegetables,soil types and Cd availability should be all taken into consideration for establishing Cd thresholds in soil.Ammonium acetate extractable Cd was suggested to assess Cd thresholds for potential dietary toxicity in pakchoi,tomato and radish.The corresponding values were 0.066 and 0.166 mg kg~(-1),0.089 and 0.092 mg kg~(-1),0.051 and 0.045 mg kg~(-1)in RYS and SLS,respectively in pakchoi,tomato and radish-growing soil.
引文
Abdrew P., Jackson, Alloway B.J. Biogeochemistry of trace metals [M]. Part V: The transfer of cadmium from agricultural soil to the human food chain. Adriano D. C, Ed. (Lewis publishers), 1992,115-116.
    Adriano D.C. Trace elements in the terrestrial environment [M]. Springer-verlag, New York, lnc, 1986, 106-155.
    Akmal M., Xu J.M., Li Z.J., et al. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities [J]. Chemosphere. 2005,60: 508-514.
    Altieri M.A. The ecological role of biodiversity in agroecosystems [J]. Agriculture Ecosystems and Environment. 1999,74:19-31.
    Alvey S., Yang C. H., Buerkert A., et al. Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils [J]. Biology and Fertility of soils. 2003,37:73-82.
    Amar C, Steve M., Paul G., et al. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts [J]. Chemosphere. 2007,66:1415-1423.
    Anderson J.M., Park Y.I., Chow W.S. Photoinactivation and photoprotection of photosystem II in nature [J]. Physiologia Plantarum. 1997,100:214-223.
    Angela P., Vitbria, Peter J.L., et al. Antioxidant enzymes responses to cadmium in radish tissues [J]. Phytochemistry. 2001, 57:701-710.
    Assche F., Clijster H. Efftct of metal on enzyme activity in plants [J]. Plant Cell Environ. 1993,13: 195-206.
    Baath E., Arnebrandt K., Nordgren A. Microbial biomass and ATP in smelter-polluted forest humus [J]. Bulletin of Environmental Contamination and Toxicology. 1991,47:278-282.
    Baath E., Anderson T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J]. Soil Biology and Biochemistry. 2003,35:955-963.
    Baath E., Diaz-Ravina M., Bakken L.R. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil [J]. Microbial Ecology. 2005,0:1-10.
    Baath E., Diaz-ravina M., Frosteoard, et al. Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Bicrobiology. 1998,64: 238-245.
    Baath E. Effects of heavy metals in soil on microbial processes and populations (a review) [J]. Water, Air, Soil Pollution. 1989,47:335-379.
    Babich H., Stotzky G. Effect of cadmium on fungi and on interactions between fungi and bacteria in soil, influence of clay minerals and pH [J]. Applied and Environmental Microbiology. 1977,33: 1059-1066.
    Babich H., Stotzky G. Sensitivity of various bacteria, actinomycetes, and fungi to cadmium and the influence of pH on sensitivity [J]. Applied and Environmental Microbiology. 1977.33:681—695.
    Baird C, Cann M. Environmental chemistry [M]. 3rd ed. New York: WH Freeman. 2005, 652.
    Basta N.T., Tabatabai M.A. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH [J]. Soil Science. 1992, 153: 195-204.
    Bernal M.P., McGrath S.P. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alysswn murale and Raplamns salivus L [M]. Plant soil. 1994,166:83-92. Beveridge T.J., Doyle, R.J. (Eds.). Metal Ions and Bacteria [M]. Wiley, New York, 1989,31-99.
    Blaser P., Zimmermann S., Luster J., et al. Critical examination of trace element enrichments and depletions in soils : As , Cr, Cu , Ni, Pb , and Zn Swiss forest soils [J]. The Science of the Total Environment. 2000, 249:257-280.
    Bolton K.A., Evans L.J. Cadmium adsorption capacity of selected Ontario soils [J]. Canadian Journal of Soil Science. 1996,76:183-189.
    Borneman J., Skroch P.W., O'Sullivan K.M., et al. Molecular microbial diversity of an agricultural soil in Wisconsin [J]. Applied and Environmental Microbiology. 1996,62:1935-1943.
    Bossio D. A., Scow K. M., Gunapala N., et al. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [M]. Microbiology Ecology. 1998,36:1-12.
    Bronwyn D.H., Raymond L.C. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil community [J]. Journal of Microbiological Methods. 1997, 30 91-101.
    Brookes P.C., Heijnen C.E., McGrath S.P., et al. Soil microbial biomass estimates in soils contaminated with metals [J]. Soil Biology and Biochemistry. 1986,18: 383-388.
    Brookes P.C. The use of microbial parameters in monitoring soil pollution by heavy metals [J]. Biology and Fertility of soils. 1995,19: 269-279.
    Carlton-Smith C.H., Davis R.D. Comparative uptake of heavy by forage crops grown on sludge-treated soils [A]. Proc Int Conf, Heidelberg, CEP Consultants Ltd. Heavy Metals in the Environment, Edinburgh, UK.1983,1:393.
    Cataldo D.A., Garland T.R., Wildung R.E. Cadmium uptake kinetics intact soybean plants [J]. Plant Physiology. 1983,73:844-848.
    Cerda A., Martinez V. Nitrogen fertilization under saline conditions in tomato and cucumber plants [J]. Journal of Horticulture Science. 1988,63:451-458.
    Chander K., Goyal S., Mundra M.C., et al. Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics [J]. Biology and Fertility of Soils. 1997,24: 306-310.
    Chan D.Y, Hale B.A. Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation [J]. Journal of Experimental Botany. 2004,55:2571-2579.
    Chang X.C., Juma N.G. Impact of crop rotations on microbial biomass, faunal populations, and plant C and N in a gray Luvisol (Typic Cryoboralf) [J]. Biology and Fertility of Soils. 1996,22: 31-39.
    Chen G Microbial biomass C and P, their turnover rates in red soils with relation to soil fertility Sustainability. Ph. D thesis, College of Resource and Environmental Sciences, Zhejiang University, Hangzhou. 2000.
    Chien H.F., Kao C.H. Accumulation of ammonium in rice leaves in response to excess cadmium [J]. Plant Science. 2000,156: 111-115.
    Chris B, Marc V H, Dirk I. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1992, 43: 83-116.
    Cui Y.J., Zhu Y.G., Zhai R.H., et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China [J]. Environment International. 2004, 30:785-791.
    Cutler J.M., Rains D.W. Characterization of cadmium uptake by plant tissue [J]. Plant Physiology. 1974, 54: 67-71.
    Dalai R.C. Soil microbial biomass: What do the numbers really mean [J]. Australian Journal of Experimental Agriculture. 1998,38:645-665.
    Dar G.H. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities [J]. Bioresource Technology. 1996,56:141-145.
    Dar G.H., Mishra M.M. Influence of cadmium on carbon and nitrogen mineralization in sewage-sludge amended soils [J]. Environmental Pollutiont. 1994,84: 285-290.
    Doelman P., Haanstra L Short-term and long-term effects of heavy metals on urease activity in soils [J]. Biology and Fertility of Soils. 1986,2:213-218.
    Doelman P., Haanstra L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors [J]. Plant Soil. 1984, 79:317-327.
    Doelman P. Resistance of soil microbial communities to heavy metals [M]. In: Jensen V., Kjoller A., Sorensen L.H. (eds) Microbial communities in soil. Elsevier, London. 1985,369-383.
    Doran J.W., Parkin T.B. Defining soil quality for a sustainable environment [M]. Soil Society of America Special Publication. Madison, Wisconsin, 1994, 3-234
    Dudka S. Effect of elevated concentration of Cd and Zn in soil on spring wheat yield and the metal contents of the plants [J]. Water, Air and Soil Pollution. 1994,76:333-341.
    Dusek L. The effect of cadmium on the activity of nitrifying populations in two different grassland soils [J]. Plant Soil. 1995,177:43-53.
    Ekelund F., Olsson S., Johansen A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations [J]. Soil Biology and Biochemistry. 2003,35:1507-1516.
    Eriksson J., Stenberg B., Andersson A., et al. Current status of Swedish arable soils and cereals [M]. SEPA Report. 2000, 50-62.
    Ernst W.H.O., Nielssen H.J.M. Life-cycle phases of zinc and cadmium resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils [J]. Enviromental Pollution. 2000, 107: 329-338.
    Ewers U. Standards, guidelines and legislative regulations concerning metals and their compounds [M]. In: E. Merian Ed., Metals and their Compound in the Environment. VCH, Weinheim. 1991, 687-711.
    Florin P.J., VanBeusichem M.L. Uptake and distribution of cadmium in maize inbred lines [J]. Plant Soil. 1993,150:25-32.
    Fritze H., Perkiomaki J., Saarela U., et al. Effect of Cd-containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology. 2000, 32: 43-51.
    Frostegard A ., Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil [J]. Biology Fertilizer of Soils. 1996,22:59-65.
    Frostegard A., Tunlid A., Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals [J]. Applied and Environmental Microbiology. 1993,59:3605-3617.
    Garland J.L. Analytical approaches to the characterisation of samples of microbial communities using patterns of potential C source utilisation tests [J]. Soil Biology and Biochemistry. 1996,28: 213-221.
    Ghosha A.K., Bhattacharyyaa P. Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India [J], Environment International 2004 30: 491-499.
    Giller K.N., Witter E., Steve P., et al. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review [J]. Soil Biology and Biochemistry. 1998, 30: 1389-1414.
    Girvan M.S., Bullimore J., Pretty J.N. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils [J]. Applied and Environmental Microbiology. 2003,69: 1800-1809.
    Grayston S. J., Wang S., Campbell C. D., et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry. 1998,30:369-378.
    Groffman P.M., Eagan P., Sullivan W.M., et al. Grass species and soil type effects on microbial biomass and activity [J]. Plant Soil. 1996, 183: 61-67.
    Guckert J.B., Antworth C.P, Nichols P.D., et al. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments [J]. FEMS Microbiology Ecology. 1985,31:147-158.
    Guo D.F. Environmental sources of Pb and Cd and their toxicity to man and animal [J]. Advances in Environmental Science. 1994,2: 71-76.
    Gu J.G., Zhou Q.X. Cleaning up through phytoremediation: a review of Cd contaminated soils [J]. Ecology Science. 2002, 21: 352-356.
    Harter R.D.R., Naidu R. Role of metal-organic complexation in metal sorption by soils [J]. Advances in Agronomy. 1995,55:219-264.
    Harwod J.L., Russel N. J. Lipids in plants and microbes [M]. London: Allen and Unwin, 1984.
    Hattori H. Influence of cadmium on decomposition of sewage-sludge and microbial activities in soils [J]. Soil Science and Plant Nutrition. 1989,35:289-299.
    He Z.L., Yang X.E., Baligar V.C., et al. Microbiological and Biochemical Indexing Systems for Assessing Quality of Acid Soils [J]. Advances in Agronomy. 2003,78:89-138.
    Hooda P.S., Alloway B.J. Cadmium and lead sorption behavior of selected English and Indian soils [J]. Geoderma. 1998,84:121-134.
    Huang C.P, Yang Y.L. Adsorption characters of Cu on humus-kaolin complexes [J]. Water Research. 1995, 29: 2455-2460.
    Ibekwe A.M., Kennedy A.C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils [J]. Plant Soil. 1999,206:151-161.
    Ibekwe A. M., Kennedy A.C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions [J]. FEMS Microbiology Ecology. 1998,26:151-163.
    Insam H. Effects of heavy metal stress on the metabolic quotient of the soil microflora [J]. Soil Biology and Biochemistry. 1996, 28: 691-694.
    Insam H., Hutchinson T.C., Reber H.H. Effects of heavy metal stress on the metabolic quotient of the soil microflora [J]. Soil Biology. Biochemistry. 1996, 28: 691-694.
    Islam K.R., Weil R.R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservative management [J].Journal of Soil and Water Conservation. 2000, 55: 69-78.
    Jones K.C., Symon C.J., Johnston A.E. Retrospective analysis of an archived soil collection. II. Cadmium [J]. Science Total Environment. 1987, 67: 75-89.
    Kabata-Pendias A. Behavioural properties of trace metals in soils [J]. Applied Geochemistry. 1993,2: 3-9.
    Kahle H. Response of root of trees to heavy metals [J]. Environmental and Experimental Botany. 1993, 33: 99-119.
    Kaiser E.A., Martens R., Heinemeyer O. Temporal changes in soil microbial biomass carbon in an arable soil: consequences for soil sampling [J]. Plant Soil. 1995,170: 287-295.
    Kandeler E., Kampichler C., Horak O. Influence of heavy metals on the functional diversity of soil microbial communities [J]. Biology and Fertility of Soils. 1996,23:299-306.
    Kavita S, Titambhara G, Kumar, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation activities or antioxidant enzymes in growing rice seedings [J]. Plant Science. 2001,161: 1135-1141.
    Kawada T., Suzuki S. A review on the cadmium content of rice, daily cadmium intake, and accumulation in the kidneys [J]. Journal of Occupational Health. 1998,40: 264-269.
    Kelly J.J., Haggblom M., Tate R.L. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study [J]. Soil Biology and Biochemistry. 1999, 31:1455-1465.
    Kelly J.J., Haggblom M.M., Tate R.L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles [J]. Biology and Fertility of Soils. 2003,38:65-71.
    Kelly J.J., Haggblom M., Tate R.L. Effect of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities [J]. Soil Biology Biochemistry. 1999,31:1467-1470.
    Ken E.G., Ernst W., Steve P.M. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review [J]. Soil Biology and Biochemistry. 1998,30:1389-1414.
    Kennedy C.D., Gonsalves F.A.N. The action of divalent zinc, cadmium, mercury, copper and lead on the transport potential and H~+ efflux of excised roots [J]. Journal of Experimental Botany. 1987, 38: 800-817.
    Khan D.H., Frankland B. Cellulolytic activity and root biomass production in some metal-contaminated soils [J]. Environmental Pollution. 1984, 33: 63-74.
    Khan K.S., Xie Z.M., Huang, C.Y. Effect of anions on toxicity of cadmium applied to microbial biomass in red soil [J]. Pedosphere. 1997, 7: 231-235.
    Klose S., Moore J.M., Tabatabai M.A. Arylsulfatase activity of microbial biomass in soils as affected by cropping systems [J]. Biology Fertility of Soils. 1999, 29: 46-54.
    Klose S., Tabatabai M.A. Urease activity of microbial biomass in soils as affected by cropping systems [J]. Biology Fertility of Soils. 2000, 31: 191-199.
    Knight B.P., McGrath S.P., Chaudri A.M. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc [J]. Applied and Environmental Microbiology. 1997,63: 39-43.
    Konopka A., Zakharova T., Bischoff M., et al. Microbial biomass and activity in lead-contaminated soil [J]. Application Environment Microbiology. 1999, 65: 2256-2259.
    Kozdroj J. Microbial response to single or successive soil contamination with Cd or Cu [J]. Soil Biology and Biochemistry. 1995, 27: 1459-1465.
    Lagriffoul A., Mocquot B., Mench M., et al. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants [J] Plant Soil 1998, 200: 241-250
    Laurent M., Vogt G., Blanc M., et al. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and trifolium repens as revealed by PCR restriction analysis of 16S rDNA [J]. Plant and soil. 1998, 198:219-224.
    Lebeau T., Bagot D., Jezequel K., et al. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture [J]. The Science of the Total Environment. 2002, 291: 73-83.
    Lee I.S., Kim O.K., Chang Y.Y., et al. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range [J]. Journal of Bioscience and Bioengineering. 2002,94:406-411.
    Liao M., Huang C.Y. Effect of pH on transfer of Cd through soil to water [J]. Acta Environmental Science. 1999,19: 81-86.
    Lighthart B., Baham J., Volk V.V. Microbial respiration and chemical speciation in metal-amended soils [J]. Journal of Environmental Quality. 1983, 12: 543-548.
    Li K.Q., Liu J.G., Lu X.L. Uptake and distribution of cadmium in different rice cultivars [J]. Agro-Environmental Science. 2003, 22: 529-532.
    Lisa J., Constantinos X., Nikos M., et al. Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus [J]. Applied Geochemistry. 2005,20:101-107.
    Li S.T., Liu R.L., Wang M, et al. Phytoavailability of cadmium to cherry-red radish in soils applied composted chicken or pig manure [J]. Geoderma. 2006,136:260-271.
    Liu D., Jiang W., Gao X. Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic [J]. Biologia Plantarum. 2003,47: 79-83.
    Liu W.J., Zhang X.K. Effect of ferric hydroxide on root surface and iron—deficient root excretion in rice on Cd uptake [J]. Acta Pedologica Sinica. 1999,36:463-468.
    Li Y.M., Channey R.L., Schneiter A.A., et al. Genotypic variation in cadmium concentration in sunflower germplasm under varying soil conditions [J]. Crop Science. 1995, 35: 137-141.
    Li Z.J., Xu J.M., Tang C.X., et al. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils [J]. Chemosphere. 2006,62:1374-1380.
    Lombi E., Zhao F.J. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense [J]. New phytolagist. 2000,145: 11-20.
    Lovell R.D., Jarvis S.C., Bardgett R.D. Soil microbial biomass and activity in long-term grassland: effects of management changes [J]. Soil Biology and Biochemistry. 1995,27:969-975.
    Lu Y.H., Watanabe A., Kimura M. Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm [J]. Biology and Fertility of Soils. 2002, 36: 136-142.
    Lynch J. Root architecture and plant productivity [J]. Plant Physiology. 1995, 109: 7-13.
    Majer B.J., Tscherko D., Paschke A. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation [J]. Mutation Research. 2002, 515: 111-124.
    Marc A., Nascarellaa, John G., et al. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig [J]. Environmental Pollution. 2003,124:257-262.
    Maria A.I., Hiabrizio P., Lucia F. Antioxidant response to cadmium in Phragmites australis plants [J]. Plant Physiology Biochemistry. 2002,40:977-982.
    Marschner P., Yang C. H., Lieberei R., et al. Soil and plant specific effects on bacterial community composition in the rhizosphere [J]. Soil Biology and Biochemistry. 2001,33:1437-1445.
    McKenna I.M., Chaney R.L., Williams F.M. The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach [J]. Environment Pollution 1993,79: 113-120.
    Mench M.J. Cadmium availability to plants in relation to major long-term changes in agronomy systems [J]. Agriculture, Ecosystems and Environment. 1998,67:175-187.
    Miller M., Dick R.P. Thermal stability and activities of soil enzymes as influenced by crop rotations [J]. Soil Biology and Biochemistry. 1995,27:1161-1166.
    Moore J.M., Klose S., Tabatabai M.A.. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fertil Soils (2000) 31:200-210
    Moreno J.L., Garcia C, Landi L. The ecological dose value (ED)_(50) for assessing Cd toxicity on ATP content and DHA and urease activities of soil [J]. Soil Biology and Biochemistry. 2001,33: 483-489.
    Moreno J.L., Hernandez T., Garcia C. Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil [J]. Biology Fertility of Soils. 1999,28: 230-237.
    Moreno J.L., Hernandez T., Perez A., et al. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose [J]. Applied Soil Ecology. 2002, 21:149-158.
    Munoz O.M., Bastias M.J., Araya M. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study [J]. Food and Chemical Toxicology. 2005,43: 1647-1655.
    Muyzer G, Waal E. C, Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis of polymerase chain reaction amplified gene encoding for 16S rRNA [J]. Applied and Environmental Microbiology. 1993, 59: 695-700.
    Naidu R., Kookana R.S., Rogers, S. Bioavailability of metals in the soil-plant environment and its potential role in risk assessment. In: Naidu, R., Gupta, V.V.S.R., Rogers, S. Bioavailability, Toxicity, and Risk Relationships in Ecosystems. Science Publishers, Inc., Enfield, New Hampshire. 2003,46-81.
    Naidu R., Kookana R.S., Sumner M.E. Cadmium sorption and transport in variable charge soils: a review [J]. Journal of Environment Quality. 1997, 26: 602-617.
    Nannipieri P., Ascher J., Ceccherini M. T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science. 2003, 54: 655-670.
    Necker U., Kunze C. Stickstoffmineralisation durch Pilze und Bakterien in schwermetallbelastetem Boden in Brutversuch [J]. Angewandte Botanik. 1986, 60: 81-93.
    Niklinska M., Laskowski R., Maryanski M. Effect of heavy metals and storage time on two types of forest litter, basal respiration rate and exchangeable metals [J]. Ecotoxicology and Environmental Safety. 1998, 41: 8-18.
    Nriagu J.O. Cadmium in the Environment [M]. Part I: Ecological Cycling. Nriagu J.E., Ed. (New York: Wiley Interscience). 1980: 10-12.
    Nyitrai P. Development of functional thylakoid membranes: Regulation by light and hormones [M]. In: Pessarakli M (ed) Handbook of Photosynthesis, Marcel Dekker Inc, New York Basel Hong Kong 1996 391-406.
    Obbard J.P. Ecotoxicological assessment of heavy metals in sewage sludge amended soils [J]. Applied Geochemistry. 2001,16: 1405-1411.
    Ohlingerhy R. Soil Respiration by Titration [VI]. In: Schinner, F., Ohlingerhy, R., Kandeler, E., Margesin, R. (Eds.), Methods in Soil Biology. Springer-Verlag Berlin Heidelberg. 1995,95-98.
    Oliver D.P., Schultz J.E., Tiller K.G. The effect of crop rotations and tillage practices on Cd concentrations in wheat grain [J]. Australian Journal of Soil Resource. 1993,44: 1221-1234.
    Olsson P.A., Tingstrup I., Jakobsen I., et al. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field [J]. Soil Biology and Biochemistry. 1999,31:1879-1887.
    Omay A.B., Rice C.W., Maddux L.D., et al. Changes in soil microbial and chemical properties under long-term crop rotation and fertilization [J]. Soil Science Society of America Journal. 1997,61 : 1672-1678.
    Pennanen T., Frostegard A., Fritze H., et al. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests [J]. Applied Environmental Microbiology. 1996.62:420-428.
    Pereira G.H.G, Molina S.M.G. Activity of antioxidant enzymes in response to cadmium in Crotalaria [J]. Plant and Soil. 2002,239:123-132.
    Perucci P, Dumontet S, BufoS A, et al. Effects of organic amendment and herbicide treatment on soil microbial biomass [J]. Biology and Fertility of Soils. 2000,32:17-23.
    Peter M. Chapman. Ecological risk assessment (ERA) and hormesis [J]. The Science of the Total Environment. 2002,288: 131-140.
    Peter N., Karoly B., Laszlo G., et al. Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings [J]. Journal of Plant and Physiology. 2003, 160: 1175-1183.
    Queirolo F., Stegen S., Restovic M., et al. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile [J]. The Science the Total Environment. 2000,255: 75-84.
    Palmborg C., Nordgren A. Partitioning the variation of microbial measurements in forest soil into heavy metal and substrate quality dependent parts by use of near infrared spectroscopy and multivariate statistics [J]. Soil Biology and Biochemistry. 1996,28: 711-720.
    Ramos L, Hernandez L.M., Gonzalez M.J., et al. Sequential fractionation of copper, cadmium and zinc in soils from or near Donana National Park [J]. Journal of Environmental Quality. 1994, 23: 50-57.
    Rasmussen L.D., Sorensen S.J. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil [J]. FEMS Microbiology Ecology. 2001,36: 1-9.
    Renella G., Mench M. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils [J]. Soil Biology and Biochemistry. 2004, 36: 443-451.
    Renella G., Ortigoza A.L.R., Landi L, et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50) [J]. Soil Biology and Biochemistry. 2003, 35: 1203-1210.
    Ritchie N. J., Schutter M. E., Dick R.P., et al. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil [J]. Applied Environmental Microbiology. 2000,66: 1668-1675.
    Robinson C.A., Cruse R.M., Ghaffarzadeh M. Cropping systems and nitrogen effects on mollisol organic carbon [J]. Soil Science Society of America Journal. 1996, 60: 264-269.
    Satarug S., Baker J.R., Urbenjapol S., et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population [J]. Toxicology Letters. 2003,137:65-83.
    Schutter M.E., Sandeno J.M., Dick R.P. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems [J]. Biology Fertility of Soils. 2001,34: 397-410.
    Senwo Z.N., Tabatabai M.A. Amino acid composition of soil organic matter [J]. Biology Fertility of Soils. 1998,26:235-242.
    Shahida H., Anjum N.S. Growth stimulation of triticum aestivum seedlings under Cr-stresses by non-rhizospheric pseudomonad strains [J]. Environmental Pollution. 1997, 97: 265-273.
    Shannon C.E., Weaver W. The mathematical theory of communication [M]. Champaign, Illinois: University of Illinois Press. 1949.
    Sharpley A.N., Menzel R.G. The impact of soil and fertilizer on the environment [J]. Advances in Agronomy. 1987,41:297-320.
    Shi G.X., Du K.H., Xie K.B., et al. Ultrastructural study of leaf cell damaged from Hg~(2+) and Cd~(2+) pollution in Hydrilla verticillata [J]. Acta Botanica Sinica. 2000,42: 373-378.
    Shimazaki K., Sakaki T., Kondo N., et al. Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO_2-fumigated leaves of spinach [J]. Plant Cell and Physiology. 1980,21: 1193-1204.
    Siciliano S.D., Theoret C.M., Freitas J.R., et al. Differences in the microbial communities associated with the roots of different cultivars of canola and wheat [J]. Canadian Journal of Microbiology. 1998,44:844-851.
    Song F., Guo Y.W., Liu X.Y., et al. Pollution of cadmium, zinc and lead in brown earth [J]. Acta Science Circumstance. 1996,16: 431-436.
    Sparling G.P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter [J]. Australian Journal of Soil Research. 1992, 30: 195-207.
    Stobart A.K., Griffiths W.T., Ameen-Bukhari I., et al. The effect of Cd on the biosynthesis of chlorophyll in leaves of barley [J]. Plant Physiology. 1985,63:293-298.
    Tabatabai M.A., Fu M.H., Basta N.T. Effects of cropping systems on nitrification in soils [J]. Communications in Soil Science and Plant Analysis. 1992, 23: 1885-1891.
    Talanova V.V., Titov A.F., Boeva N.P. Effect of increasing concentration of heavy metals on the growth of barley and wheat seedlings [J]. Russian Journal of Plant Physiology. 2001, 48: 119-123.
    Taylor M.D., Theng B.K..G. Sorption of cadmium by complexes of kaolinite with humid acid. Communications in Siol Science and Plant Analysis. 1995, 26: 765-776.
    Temminghhoff E.J.M., VanderZee S.E.A., DeHaan F.A.M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter [J]. Environmental Science Technology. 1997,31: 1109-1115.
    Theron J., Cloete T. E. Molecular techniques for determining microbial diversity and community structure in natural environments [J]. Critical Reviews in Microbiology. 2000, 26: 37-57.
    Thornton 1. Bioavailability of trace elements in the food chain. In: Wenzel W W, Adriano D C, Alloway B (Eds.). Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements [C], 11-15th July, Vienna,Austria. 1999,22:1689-1694.
    Tjell J.C., Christensen T.H., Bro-Rasmussen F. Cadmium in soil and terrestrial biota, with emphasis on the Danish situation [J]. Ecotoxicology Environmental Safety. 1983, 7:122-140.
    Tudoreanu L, Phillips C.J.C. Modeling cadmium uptake and accumulation in plants [J]. Advances in Agronomy. 2004,84:121-157.
    Tunlid A., White D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil [M]. In: Stotzky G, Bollag JM (eds). Soil biochemistry. Dekker, New York, 1992,229-262.
    Turpeinen R., Kairesalo T., Haggblom M.M. Microbial community structure and activity in arsenic-, chromium-, and copper- contaminated soils [J]. FEMS Microbiology Ecology. 2004, 47: 39-50.
    Tyler G.B., Pahlsson A.M., Giles J., et al. Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates: a review [J]. Water, Air and Soil Pollution. 1989,47: 189-215.
    Valeria L, Carlos G., Teresa H. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil [J]. Chemosphere. 2007,66:1863-1871.
    Valsecchi G., Gigliotti C, Farini A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biology and Fertility of Soils. 1995,20:253-259.
    Vandermeer J., Perfecto I. Breakfast of biodiversity: the truth about rainforest destruction [M]. Food first books. Oakland. 1995,185.
    VanRanst E., Verloo M., Demeyer A., et al. Manual for the soil chemistry and fertility laboratory [M]. Ghent University. Faculty Agricultural and Applied Biological Sciences. 1999,243.
    Varvel G.E. Rotation and nitrogen fertilization effects on changes in soil carbon and nitrogen [J]. Agronomy Journal. 1994,86:319-325.
    Vaughan D., Malcolm R.E. Soil organic matter and biological activity [M]. Nijhoff Junk, Dordrecht. 1985.
    Vestal J.R., White D.C. Lipid analysis in microbial ecology, quantitative approaches to the study of microbial communities [J]. Bioscience. 1989, 39: 535-541.
    Vig K., Megharaj M., Sethunathan N., et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review [J]. Advances in Environmental Research. 2003,8:121-135.
    Wagner G.J. Accumulation of cadmium in crop plants and its consequences to human health [J]. Advances in Agronomy. 1993,51: 173-212.
    Wang A.Y., John C, David E., et al Changes in metabolic and structural diversity of a soil bacterial community in response to cadmium toxicity [J]. Biology and Fertility of Soils. 2004, 39: 452-456.
    Wang F.E., Chen Y.X., Tian G.M., et al. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China [J]. Nutrient Cycling in Agroecosystems. 2004,68: 181-189.
    Wang K.R. Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils [J]. Acta Biotechnology. 2002, 22: 189-198.
    Wang M.Q., Wang Z.T., Ran L. Study on food contaminants monitoring in China during 2000-2001 [J]. Journal of Hygiene Research. 2003, 32: 322-326.
    Wang M., Zou J.H., Duan X.C., et al. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.) [J]. Bioresource Technology. 2007, 98: 82-88.
    Wang X.P., Shan X.Q., Zhang S.Z., et al. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions [J]. Chemosphere. 2004, 55: 811-822.
    Wilke B.M. Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol [J]. Biology Fertility of Soils. 1989, 7:254-258.
    Wilkinson S.G. Gram-negative bacteria [M]. In: Ratledge, C., Wilkinson, S.G. (Eds.). Microbial Lipids. Academic Press, London. 1988,299-488.
    Witter E., Martensson A.M., Garcia F.V. Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manure [J]. Soil Biology and Biochemistry. 1993,25: 659-669.
    Wu J., Joergensen R.G. Measurement of soil microbial biomass C by fumigation-extraction: An automated procedure [J]. Soil Biology Biochemistry. 1990,22: 1167-1169.
    Yang Y.G., Liu C.Q., Xu L., et al. Effects of Heavy Metal Contamination on Microbial Biomass and Community Structure in Soils [J]. Chinese Journal of Geochemistry. 2004,3: 319-328.
    Yao H., He Z., Wilson M. J., et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use [J]. Microbial Ecology. 2000,40:223-237.
    Yao H., Xu J., Huang C. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils [J]. Geoderma. 2003,115: 139-148.
    Yeates G.W. Impact of pasture contamination by copper, chromium, arsenic timber on soil biological activity [J]. Biology and Fertility of Soil. 1994, 18:200-208.
    Yeonok K., Masakazu H., Tom K. Response of an Active-Oxygen scavenging system to cadmium in cadmium tolerant cell of carrot [J]. Plant Biotechnology. 2001, 18:39-43.
    Yu H., Wang J.L., Fang W., et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice [J]. Science of the Total Environment. 2006,370:302-309.
    Zak J. C, Willig M. R., Moorhead D. L., et al. Functional diversity of microbial communities: a quantitative approach [J]. Soil Biology and Biochemistry. 1994,26:1101-1108.
    Zelles L., Rackwitz R., Bai Q. Y., et al. Discrimination of microbial diversity by fatty acid profiles of phospholipids and lipopolysaccharides in differently cultivated soils [J]. Plant Soil. 1995,70:115-120.
    Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review [J]. Biology and Fertility of Soils. 1999,29: 111-129.
    Zhang Z., Watanabe T., Shimbo S. Lead and cadmium contents in cereals and pulses in Northeastern China [J]. The Science of the Total Environment. 1998, 220: 137-145.
    Zhao F.J., Harmon R.E., Lombi E., et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens [J]. Journal of Experimental Botany. 2002, 53: 535-543.
    Zhou D.M. Cadmium content and distribution in Chinese soils and staple crops as affected by environmental pollution[A]. The 23rd NIAES Symposium; Promising Agricultural Practices and Technologies for Reducing Heavy Metals Contamination in Relevant Staple Crops-with a special Emphasis on Cadmium Contamination. 2003.17-20.
    Zhou D.M., Wang Y.J., Cang L., et al. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics [J]. Chemosphere. 2004, 57:1237-1244.
    蔡保松,镉对小麦生长发育的影响及其基因型间差异[J].西北农林科技大学学报 , 2003,31:62-66.
    曹越,申铁莲,李建新,浅析土壤环境中的镉的影响[J].环境科学与管理,2005,30:66-73.
    蔡一新,林舁清,金玉玲,福州市市售食物铅砷镉污染状况分析[J].实用预防医学,2003,10:678-679.
    陈承利,重金属Cd、Pb、Hg污染对土壤微生物及其活性影响研究[M],硕士学位论文,浙江大学,2006.
    陈国潮,何振立,黄昌勇,红壤微生物生物量碳周转及其研究[J].土壤学报,2002,39:152-160.
    陈怀满,土壤-植物系统中的重金属污染[M],北京:科学出版社,1996,344.
    陈建斌,有机物料对土壤的外源铜和镉形态变化的不同影响[J].农业环境保护,2002,21:450-452.
    陈世宝,华珞,白玲玉,有机质在土壤重金属污染治理中的应用[J].农业环境与发展,1997,14:26-29.
    戴军,刘腾辉,广州菜地生态环境的污染特征[J].土壤通报,1995,26:102-104.
    丁爱芳,潘根兴,南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析[J].生态环境,2003,12:409-411.
    段敏,马往校,李岚,陕西省部分城市蔬菜中重金属污染研究[J].西北农业大学学报,2000,28:89-93.
    冯恭衍,张炬,吴建平,宝山区菜区土壤重金属污染的环境质量评价[J].上海农学院学报,1993,11:35-42.
    方晓航,曾晓雯,于方明等,Cd胁迫对白菜生理特征及元素吸收的影响研究[J].农业环境科学学报,2006,25:25-29.
    高志岭,刘建玲,廖文华,磷肥施用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24:90-99.
    关松荫,土壤酶及其研究法[M].北京:农业出版社,1986,274-339.
    郭笃发,环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2:71-76.
    龚平,孙铁珩,李培军,重金属对土壤微生物的生态效应[J].应用生态学报,1997,8:218-224.
    和文祥,黄英锋,朱铭莪,汞和镉对土壤脲酶活性影响[J].土壤学报,2002,39:412-420.
    和文祥,闵红,王娟等,2,4-D对土壤酶活性的影响[J].农业环境科学学报,2006,25:224-228.
    何振立,土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29:61-69.
    何振立,周启星,谢正苗,污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    胡宁静,李泽琴,黄朋等,我国部分市郊农田的重金属污染与防治途径[J].矿物岩石地球化学通报,2003,22:251-254.
    寇长林,巨晓棠,高强等,两种农作体系施肥对土壤质量的影响[J].生态学报,2004,24:2548-2556.
    廖敏,黄昌勇,存在有机酸时pH对镉毒害土壤微生物生物量的影响[J].农业环境保护,2000,19:236-238.
    廖自基,微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993,299-302.
    李博丈,刘树庆,潮褐土镉、锌、铅复合污染与土壤酶活性的关系[J].吉林农业科学,2000,25:38-41.
    李合生,植物生理生化实验原理和技术[M],北京:高等教育出版社,2000.
    李花粉,根际重金属污染[J].中国农业科技导报,2000,2:54-59.
    李森林,王焕,凤眼莲中Zn对cd的拮抗作用[J].环境科学学报,1990,10:249-254.
    李学德,花日茂等,合肥市蔬菜中铬、铅、镉和铜污染现状评价[J].安徽农业大学学报,2004,31:143-147.
    李元,镉、铁及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12:147-153.
    李振高,潘映华,李良谟,不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学,1993,30:1-8.
    李子芳,刘惠芬,熊肖霞等,镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24:17-20.
    刘文菊,张福锁,根分泌物对根际难溶性镉的活性作用及对水稻吸收,运输镉的影响[J].生态学报,2000,20:448-451.
    刘云惠,土壤中铅镉的作物效应研究[J].河北农业大学学报,1999,22:24-28.
    刘霞,河北主要土壤中Cd、Pb形态与油菜有效性的关系[J].生态学报,2002,22:1688-1694.
    刘霞,刘树庆,王胜爱,河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003,40:393-400.
    刘莹,盖均镒,吕彗能,作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4:265-269.
    刘云国,李欣,徐敏,土壤重金属镉污染的植物修复与土壤酶活性[J].湖南大学学报:自然科学版,2002.29:108-113.
    刘志媛,朱祝军,钱亚榕等,等渗Ca(NO3)2和NaCl对番茄幼苗生长的影响[J]周艺学报,2001,28:31-35.
    罗立新等,镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18:72-75.
    罗晓梅,张义蓉,成都地区蔬菜中重金属污染分析与评价[J].四川环境,2003,22:49-51.
    鲁如坤主编,土壤农业化学与分析方法[M].北京:科学出版社,2000
    陆屹,2003年上海市部分食品中铅、镉污染情况分析[J].上海预防医学杂志,2004,16:486-487.
    马往校,段敏等,西安市郊区蔬菜中重金属污染分析与评价[J].农业环境保护,2000,19:96-98.
    沈彤,刘明月,贾来等,长沙地区蔬菜重金属污染初探[J].湖南农业大学学报(自然科学版),2005,31:87-90.
    沈幸飞,杨成,俞寒升等,镉胁迫对花叶芥菜生理抗性的影响[J].湖北农业科学,2006,45:177-179.
    史锟,徐虹,田艳芬,酸和有机质对土壤镉影响的研究[J].垦殖与稻作,2003,2:30-33.
    宋玉芳,许华夏,任丽萍等,土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J].农业环境科学学报,2003,22:13-15.
    孙铁珩,李培军,周启星,土壤污染形成机理与修复技术[M].北京:科学出版社,2005,9.
    孙铁珩,周启星,李培军,污染生态学[M].北京:科学出版社,2001.
    覃志英,唐振柱等,广西2002-2003年部分食品镉含量监测及分析[J].微量元素与健康研究,2006,23:26-28.
    唐书源,张鹏程等,重庆蔬菜的安全质量研究[J].云南地理环境研究,2003,15:66-71.
    滕应,骆永明,赵祥伟等,重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J].土壤学报,2004,41:343-347.
    土壤环境容量协作组,中国主要类型土壤Cd、Pb、Cu和As主要生态学指标和临界含量[J].环境科学,1999,12:29-34.
    王果,谷勋刚,高树芳,三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报,1999,36:179-188.
    王凯荣,龚惠群,王久荣,栽培植物的耐镉性与镉污染土壤的农业利用[J].农业环境保护,2000,19:196-199.
    王晶,张旭东,李彬,腐殖酸对土壤中Cd形态的影响及利用研究[J].土壤通报,2002,33:185-187.
    王建林等,根际营养环境与持续农业[J],植物生理通讯,1993,29:329-336,370.
    王维君,邵宗臣,何群,红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32:167-177.
    魏复盛,陈静生等,中国土境背景值研究[J].环境科学,1991,12:12-19.
    伍钧,漆辉,郭佳,黄壤对铬(Ⅳ)吸附特性的研究[J].农业环境科学学报,2003,22:333-336.
    夏瑶,娄运生,杨超光等,几种水稻土对磷的吸附与解吸特性研究[J]冲国农业科学,2002,35:1369-1374.
    谢晓梅,翁棣,有机酸对镉在土壤矿物上吸附特征的影响[J].浙江大学学报:农业与生命科学版,2003,29:210-214.
    席劲瑛,胡洪营,钱易,Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43:138-141.
    徐照丽,吴启堂,依艳丽,不同品种菜心对镉抗性的研究[J].生态学报,2002,22:571-576.
    杨志军,土壤与农作物重金属含量相关性的初步研究[J].淮阴工学院学报,2003,12:85-88.
    杨志新,重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21:60-63.
    余责芬,蒋新,吴泓涛,镉铅在粘土上的吸附及受腐殖酸的影响[J].环境科学,2002,23:109-112.
    余剑东,倪吾钟,杨肖娥,土壤重金属污染评价指标的研究进展[J].广东微量元素科学,2002,9:11-17.
    俞莎,沈向红等,浙江省部分食品中铅镉污染水平研究[J].中国卫生检验杂志,2006,16:328-330.
    严重玲,李瑞智,钟章成,模拟酸雨对绿豆、玉米生理生态特性的影响[J].应用生态学报,1996,增刊:124-131.
    杨春祥,李宪利,高东升,史作安,低温胁迫对油桃花器官膜脂过氧化和保护酶活性的影响[J].果树学报,2005,22:69-71.
    伊君,高如泰,刘文菊等,土壤酶活性与土壤Cd污染评价指标[J].农业环境保护,1999,18:130-132.
    姚槐应,红壤质量及肥力演变的微生物学特征[M],浙江大学博士学位论文,1999,33-34.
    姚槐应,黄昌勇主编,土壤微生物生态学及其实验技术[M],北京:科学出版社,2006,5-6.
    易泽夫,荣湘民,彭建伟,张玉平,微生物变量作为土壤质量评价指标的探讨[J].湖南农业科学,2006,6:64-64,69.
    张从,夏立江,污染土壤生物修复技术[M].北京:中国环境科学出版社,2000,47-56.
    张会民,吕家珑,徐明岗等,土壤镉吸附的研究进展[J].中国土壤与肥料,2006,6:7-11.
    张秋芳,王果,杨佩艺,有机物料对土壤镉形态及其生物有效性的影响[J].应用生态学报,2002,13:1659-1662.
    张桃英,黎芳,赵连佳,北京市海淀区食品中铅砷镉污染状况调查[J].中国卫生检验杂志,2006,16:330-331.
    张亚丽,沈其荣,姜洋,有机物料对镉污染土壤的改良效应[J].土壤学报,2001,38:212-218.
    张彦,张惠文,苏振成等,长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响[J].2007,18:1491-1497.
    张勇,董大龙,辽宁省部分县土壤及玉米中重金属污染状况评价[J].辽宁农业职业技术学院学报,2001,3:14-17
    张增强,张一平,朱兆华,镉在土壤中吸持的动力学特征研究[J].环境科学学报,2000,20:370-375
    中国环境监测总站,中国土壤元素背景值[M],北京:中国环境科学出版社,1990
    中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南[M].北京:科学出版社,1999.
    赵振纪,黄细花,刘永厚等,铜对土壤-植物系统的影响及其临界值指标的研究[J].环境与开发,1993,8:4-9
    周礼恺,土壤酶学[M],北京:科学出版社,1987.
    周礼恺,土壤中的重金属污染与土壤酶活性[J].环境科学学报,1985,5:176-184.
    周启星,高拯民,土壤-水稻系统Cd-Zn的复合污染及其衡量指标的研究[J].土壤学报,1995,32:430-436
    周启星,黄国宏,环境地球化学与全球环境变化[M],北京:科学出版社,2001
    周启星,宋玉芳,污染土壤修复原理与方法[M],北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700