双辊连铸机液压AGC系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板厚和板形精度是板带材的两大质量指标,随着轧制理论、控制理论的发展,以及它们在轧制过程中的应用,使得板带产品的厚度精度与板形指标有了很大的提高。板厚自动控制是板带轧制领域的两大关键技术之一,它直接关系到产品的质量和经济效益。双辊连铸薄带钢技术作为钢铁生产中短流程、低能耗的一项新技术,代表了今后钢铁工业的发展方向,因此,对其厚控系统进行理论分析和应用研究具有重要的现实意义。
    本文在总结概括厚度自动控制技术基本现状和发展趋势的基础上,以实际技术应用为导向,对轧机厚度自动控制的基本原理进行了细致的研究,讨论了厚度自动控制的工艺基础理论,包括轧机的弹性方程、轧件的塑性方程、弹塑曲线图(P-H图)和厚差方程等。在此基础上讨论了AGC的基本方式:厚度AGC、压力AGC、前馈AGC、张力AGC、秒流量AGC,分析讨论了它们的特点及其各自适用范围,指出应根据轧机型式、产品精度要求,选择其中几种控制方式,构成轧机综合厚度自动控制系统。进一步研究了常用的几种压力AGC的控制模型:BISRA模型、解耦设定模型、厚度计模型、动态设定模型以及PID厚度计模型。通过对这些模型的分析,得到了它们各自的特点和动态响应特性,为选用AGC控制方式提供了理论基础。
    根据以上的研究分析,结合设计要求和实际情况,把厚度自动控制理论应用于连铸机上,设计了双辊连铸机的液压AGC系统,包括液压系统和控制系统。液压系统采用阀控缸形式的电液位置伺服系统,用以准确、快速的控制压下位移,达到控制空载辊缝大小的目的,它是整个厚度自动控制系统的基础。控制系统采用两级计算机控制结构,即过程计算机系统(上位机)和基础自动化系统(下位机),两级系统分别完成各自的功能。控制策略采用压力和监控AGC结合的控制方式,以保证板厚精度。最后,根据液压AGC系统的构成,采用面向对象的建模方法,运用经典建模理论,建立了电液伺服控制系统的数学模型和方框图,并对其进行了动态特性分析。
The thickness accuracy and shape accuracy of steel strip are two key quality performances of steel strip. They are greatly improved due to the progress and application of roll theory and control theory. Automatic Gauge Control (AGC) is one of the two key technologies in the rolling field and directly affects the quality of strip products. Twin-roll steel strip casting is a new steel-strip production method of representing the steel industry tendency. Thus, research on AGC system has important theoretical and practical significance.
    The basic theory about AGC used in rolling mill is scrupulously studied in the paper, based on an overview of the present status and perspectives of AGC technologies. The paper also discusses the basic theory about rolling process, including elastic equation of rolling mill, plastic equation of rolled piece, elastic-plastic curve figure and gauge aviation equation etc. The modes of AGC are studied in detail, such as thickness AGC, pressure AGC, front feedback AGC, tensional AGC, monitor AGC, mass flow AGC. After analyzing features and fields of application, the paper point out that one or more modes should be used in the AGC system, considering the type of the rolling mill and accuracy requirements of products. Moreover, it analyzes the controlling modes of pressure AGC, which frequently used on rolling mill, including BISRA mode, decoupling set mode, gauge meter mode, dynamic set mode and PID gauge meter mode, gains the characteristics and dynamic behaviors of them, which provides fundamental basis for the design of AGC system.
    The hydraulic AGC system of the twin-roll caster has been designed, based on the studies and analyses mentioned above. It contains two parties: a hydraulic system and an electric control system. An electro-hydraulic position servo control system is used in the hydraulic system, which can press down the roller quickly and accurately to control the roll gap. The hydraulic system is the body of the wholly AGC system. According to the present status of the modern industry in and the characteristics of AGC system, the electric control system adopts two-level computer control structure: process automatic system and basic automatic system. The control strategy combines pressure AGC and monitor AGC. In the end, using the classical model building theory, the mathematic model has been established. Based on the model, the paper analyzes the dynamic behavior of the electro-hydraulic servo system.
引文
[1] 恽鸣.工业金属薄板的双辊连续铸轧——技术现状与商业前景.材料导报.1996.增刊
    [2] 吕光荣. 双辊薄带连铸几项关键技术及其解决方案.上海宝钢工程设计.2002.3
    [3] 朱万军等.薄带钢连铸技术的发展.本溪冶金高等专科学校学报.2001.6
    [4] 杨明波,潘复生. 双辊薄带连铸工艺的研究现状与展望.铸造技术.2001.5
    [5] (日)安部可治.轧制控制技术的最新动向.国外钢铁,1988.12
    [6] Lawrence W.Dun,Buffalo,N.Y.. Cold mill automation. Iron and Steel Engineering, 1975(2):42~46
    [7] 本村贡.轧制展望与研究.塑性加工,1975.17.pp174~179
    [8] Paul Huzyak, Terry L.Gerber.Design and Application of Hydraulic gap Control System.Iron and Steel Engineer,1984.8.pp13~20
    [9] 李凤翔.冷轧薄板技术新发展.鞍钢技术,1985.12.pp1~8
    [10] 王一译.冷轧机新型控制系统.国外电气自动化,1991.12.pp11~19
    [11] 魏衡江.轧钢过程自动化技术的新进展.冶金自动化,1996.20
    [12] 刘军.现代冷轧带钢生产技术进展概述.鞍钢技术,2000.5.pp13~18
    [13] 孟繁德.液压四辊冷轧机AGC系统的改造.上海金属,1995.02
    [14] 周石光.中厚板轧机压下控制技术的应用.钢铁研究学报.2000.1
    [15] 张树堂.面向21世纪的我国轧钢技术.中国冶金.2000.2
    [16] 周旭东.人工神经网络板形板厚综合控制.轧钢,1995.2.pp16~19
    [17] 梁启宏等.专家系统与随机过程在中板轧机上的应用.轧钢,1996.01
    [18] Aistleitner K, Mattersdoer L G. Neural network for identification of roll eccentricity in rolling mills. Journal of Materials Processing Technology.1996
    [19] Nicklaus F Portmann, Dieter Linhoff. Application of neural networks in rolling mill automation. Iron and Steel Engineer.1995.2.pp33~36
    [20] Yong Zai lv. Meeting the challenge of intelligent system technologies in the iron and steel industry. Iron and Steel Engineer.1996.9.pp139~149
    [21] 黄荣.四辊可逆轧机张力控制系统的研究.东北大学硕士论文.1998
    [22] 唐谋凤.现代带钢冷连轧机的自动化.冶金工业出版社.1995.8
    [23] 方一鸣,焦晓红.自校正PID控制在冷轧带钢厚控系统中的应用.冶金自动化.1999.pp30~33
    Lian Jia chuang et al. The Study of a New Method in Composite Adjusting of Shape and
    
    [24] Gauge in Strip Rolling. Proc. Conf. on Modernization of Steel Rolling.1989.9
    [25] David Hartman. Meeting the challenges of intelligent system for Dofasco's tandem cold mill. Iron and Steel Engineer.1996.6
    [26] 孙一康.带钢热连轧计算机控制.机械工业出版社.1997
    [27] 张进之.板带轧制技术创新工程概况.冶金设备.1991.1
    [28] 冯光纯.板带钢生产工艺学.重庆大学出版社.1990
    [29] 宋佩莼,韦光.板带钢生产工艺学.西安交通大学出版社.1989
    [30] Ginzburg V. B. High-Quality Steel Rolling: Theory and Practice.冶金出版社.2000.9
    [31] 王国栋,李建平等. 压力闭环下的轧机变刚度控制.控制与决策.2002.1
    [32] Andreas Kugi. Active Compensation of Roll Eccentricity in Rolling Mills. IEEE Transaction on Industry Applications.2000.2
    [33] R. Hill. Relations Between Roll Force, Torque and the Applied Tensions in Strip Rolling. Journal of the Iron and Steel Institute.1950pp135~140
    [34] W. L. Roberts. Flat Processing of steel. Marcel Dekker, inc.. New york.1988
    [35] 金学俊.液压AGC在板带轧机上的应用.液压气动与密封.2000.04
    [36] 钱建清.万能轧机AGC技术分析.钢铁技术.2002.3
    [37] 张进之.热连轧厚度自动控制系统的分析与发展.世界钢铁.2002.2
    [38] 钟洪,郭贵云.全连续冷连轧机的高精度厚度自动控制系统.钢铁技术.2002.2
    [39] 王雨佳,王洪瑞.AGC技术评述.一重技术.2001.2
    [40] 张景胜,陈举庆等. 中板轧机液压AGC系统分析.一重技术.2001.3
    [41] 赵守庭,苗雁华.中厚板轧机压下自动控制系统.电气传动自动化1998.4
    [42] F. Vollmer and J. Wallace. Advanced Continuous Gauging Techniques for Cold Strip Rolling Mills. Light Metal Age.1975.08.pp.16~19
    [43] M. Kenyon. Australian Developments in Steel Product Measurement and Inspection. Iron and steel Engineer.1985.06
    [44] J. E. McCaughan. Continuously Calibrated X-ray Gage for Cold Rolling Applications. Iron and Steel Engineer.1990.03
    [45] J. Liedtke and M. Fellenberg. Modernization of a Universal Cold Rolling Mill Line. Metallurgical Plant and Technology. 1983.05
    [46] 龚红根.中厚板轧机一体化厚控技术的应用.江西冶金.1998.01
    [47] 张崇亮.液压厚控系统在热轧二辊轧机上的应用.冶金自动化.1998.01
    [48] 赵毅德.中厚板轧机液压AGC的工作原理. 甘肃冶金.1997.3
    [49] 张勇强. 秒流量AGC在可逆式冷轧机上的应用.轧钢.1996.03
    [50] 王君,王国栋. 各种压力AGC模型的分析与评价. 轧钢.2001.05
    
    
    [51] 王君,王国栋. 压力AGC模型综述. 钢铁研究.2001.01
    [52] J. F. Clarke,et al. Automatic Gauge Control of a 110 in Plate Mill. AISE Year Book.1983
    [53] D. W. Denkle. Hydraulic Position Controlled Mill and Automatic Gauge Control. Metals Society. Cardiff, Wales. 1978
    [54] S. Hishikawa et al. New Control Techniques for Cold Rolling Mill-Applications to Aluminum Rolling. Hitachi Review.1990.04
    [55] Yoshikazu Mori, Toshio Ishibashi. Modernization of gage control system at Sumitomo Wakayama 5-stand cold mill. Iron and Steel engineer.1999.08
    [56] Kazuma Gumi. New gage control system for tandem mill. Iron and Steel Engineer.1994.12
    [57] 王君,牛文勇.压力自动厚度控制(AGC)模型研究与改进. 东北大学学报:自科版.2001.03
    [58] 邱利琼.轧机液压AGC系统的动态仿真.重庆大学学报:自科版.2001.02
    [59] 王贤琳,杜胜.品四辊冷轧板带轧机液压AGC系统数学模型. 武汉科技大学学报:自然科学版.2001.03
    [60] 高英杰,赵静一.板带轧机液压AGC系统的动态模拟.中国机械工程.1998.09
    [61] V. B. Gizburg. Dynamic Characteristics of Automatic Gauge Contol System with Hydraulic Actuators. AISE Year Book. 1984
    [62] T. F. Bogart Jr. Control System Teory, Laplace Transforms, and control Theory for Technology. John Wiley and Sons. New York. 1982
    [63] R. M. Guo. Evaluation of Dynamic Characteristics of HAGC system. Iron and Steel Engineer. 1991.07

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700