基础设施网络中灾害扩散与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相互关联基础设施网络系统是现代社会赖以生存维系的基石,而近年来以“911”恐怖袭击、卡特里娜飓风为代表的各类人为或自然灾害频繁爆发并在基础设施网络中扩散造成严重影响。以美国总统关键设施保护委员会为代表的众多权威机构提出应大力开展基础设施网络中灾害扩散与控制问题的研究,这既是国家安全的现实需要,也具有重要的实际应用价值。
     本文从单一基础设施网络的研究入手,以基础设施网络关联关系为重点,以华中地区某主要城市中供电、供水网络组成的关联基础设施网络为案例,以2008年我国爆发的冰雪灾害为背景,建立关联基础设施网络模型,分析了蓄意攻击灾害与自然灾害在基础设施网络中的扩散情形,从基础设施网络内部负载调节与外部资源调度的角度设计了各种灾害控制策略,并通过仿真的方法对灾害扩散影响与灾害控制效果进行了讨论。主要内容为:
     (1)以华中地区某主要城市的供水、供电网络为案例,分别从结构和功能两个方面分析了灾害在基础设施网络中的扩散与控制问题。发现该市电网具有较高簇聚系数与较短平均路径,且对蓄意攻击抵抗能力较差对随机攻击抵抗能力较好;该市水网具有较小簇聚系数与较短平均路径,且对随机攻击与蓄意攻击都没有较好的抵抗能力。随后建立了该市供电网络的功能负载模型,针对三种灾害类型设计了三种节点容量的控制策略,通过仿真发现优先攻击大负载节点的灾害扩散影响最为严重,优先增加大负载节点容量的控制策略效果最优。最后提出了一种基于节点负载状况的节点修复策略,并利用仿真验证了该策略的有效性。
     (2)结合单一基础设施网络的运转特性及网络间关联关系的特点提出了一种关联基础设施网络研究模型。与目前研究中采用的Agent、投入产出、系统动力学等模型相比,该模型能更好的从基础设施网络结构及其运转负载的角度分析灾害扩散对基础设施网络性能的影响。在本文后继研究中,通过应用该模型分析蓄意攻击灾害与自然灾害在关联基础设施网络中的扩散与控制问题验证了该模型的有效性。
     (3)提出应对关联基础设施网络中蓄意攻击灾害的关键就是找准网络中的重要节点。围绕这个问题,提出了一种基于基础设施网络损失代价函数的重要节点判别方法,发现基础设施网络关联关系的建立不仅会放大灾害的扩散影响,还会改变基础设施网络内重要节点的排序。基于此,提出了一种基于节点度及网络间关联关系的重要节点搜索方法,通过仿真检验发现该方法能很好地缩小搜索范围。最后从控制节点攻击风险的角度给出了一种节点保护资源的分配策略并分析了该策略的有效性。
     (4)提出了一套分析自然灾害在关联基础设施网络中扩散与控制问题的方法,以华中地区某主要城市2008年遭遇的冰雪灾害为例,验证了该方法的有效性。设计仿真实验模拟了冰雪灾害的扩散过程,发现灾害在网络间的关联扩散给基础设施网络造成了更大的损失。从基础设施网络损失与服务需求满足的角度,对灾害发生后关联基础设施网络的四种负载调整策略进行了仿真分析,发现以本网络损失代价最小为目标的负载调整策略对灾害的控制效果最差,而优先考虑网络关联关系的负载调整策略效果最优。最后从利用外界救灾资源来控制灾害扩散的角度提出了三种救灾资源的分配策略,并通过仿真分析了各种策略的有效性,发现优先修复重要关联节点的策略效果最优。
Interdependent infrastructures are the cornerstone of modern society. In recent years, various types of man-made or natural disasters, such as the "911" terrorist attacks and Hurricane Katrina, frequently break out and spread in infrastructures. Many authoritative agencies, such as President's Commission on Critical Infrastructure Protection (PCCIP), have suggested that the research of disaster spread and control in infrastructures should be vigorously carried out. This is not only the reality need of national security, but also has important practical application value.
     The dissertation, beginning with analysis of single infrastructure network, is focused on the interdependence study of infrastructures. By taking the snow disaster which broke out in infrastructures in a major city in Central China in 2008 as a study case, it establishes the interdependent infrastructure network model and analyses the spread of deliberate attack and natural disaster in infrastructures. Several kinds of disaster control strategies are proposed based upon load adjustment and rescue resource allocation, of which the spread impact and control effect are discussed based upon simulations. The main contents are summarized as follows:
     (1) By taking the interdependent infrastructure network consisting of water supply network and power supply network of a major city in Central China as a study case, the dissertation analyzes the problem of disaster spread and control in infrastructures through both structure and function. It is found that the power supply network has high clustering coefficient and short average path length, and the network exhibits a very high degree of robustness against random attack but a low robustness against deliberate attack. It is also found that the water supply network has low clustering coefficient and short average path length, and the network exhibits a low degree of robustness against random attack and deliberate attack. After that, the function model of power supply network of the city is established and simulated for three kinds of disaster control strategies for three kinds of disasters. The simulation result shows that the disaster diffusion effect is of most severe degree if the attack on the big load node is of high priority, and it is most effective for the disaster control to prioritize increasing the capacity of the node with heavy load. Furthermore, based on the node load, the dissertation proposes a node repair strategy and validates it by simulation.
     (2) The dissertation proposes a model to study interdependent infrastructure networks according to the operation characteristics of single infrastructure and the interdependence among infrastructures. Compared with related researches, such as Agent, Input-Output, System Dynamics model, this model is able to analyze the spread impact of disaster better according to structure and operation characteristics of infrastructures. In the follow-up study, the effectiveness of the model is validated by applying it to analyze the spread and control problem for the impact of deliberate attack and natural disaster upon interdependent infrastructure network.
     (3) It is pointed out in this dissertation that it is crucial to locate the key node of the infrastructure network for dealing with the deliberate attack on it. Based on this assumption, a method of determining important nodes in infrastructure network based on infrastructure loss function is proposed. It is found that the connection established among infrastructure networks will both amplify the disaster spread impact, and alter the order of important nodes within any infrastructure network. To this end, the dissertation proposes a method to search the important nodes based on degree of node and interdependency of network. The simulation shows that it can effectively narrow the search scope. Finally, a resource allocation strategy for controlling the node attack risk is proposed, and its effectiveness is also analyzed.
     (4) The dissertation proposes a method to study the spread and control problems of natural disasters in interdependent infrastructures, and the method is validated by applying it to analyze the snow disaster which broke out in infrastructures of a major city in Central China in 2008.Firstly, by simulating the spread of snow disaster in interdependent infrastructures, it shows that the interdependent spread among infrastructure networks brings greater losses for infrastructure network. Secondly, four kinds of load adjustment strategies are simulated for infrastructure network when disaster breaks out for the sake of infrastructure loss and satisfaction of service demand. The simulation result shows that the strategy which aims at minimizing the loss of single infrastructure is the worst, and the strategy which prioritizes the interdependency of infrastructures is the best. Finally, the dissertation proposes three kinds of rescue resource allocation strategies to prevent disaster from spreading, and analyzes the effectiveness of these strategies through simulations. The simulation result shows that the strategy which prioritizes interdependent nodes yields the best performance.
引文
[1]Fletcher S. Electric power interruptions curtail California oil and gas production. Oil Gas J,2001,13.
    [2]Thompson M. Much of Northern California in the dark:Water pumps stopped.2001, http://www.cnn.com/2001/US/01/17/power.woes.03/index.html.
    [3]Connole P, Calif. power crisis may become national mess. Reuters,2001.
    [4]2003 Blackout in the United States and Canada:Causes and Recommendations. U.S.-Canada Power System Outage Task Force,2004
    [5]President's Commission on Critical Infrastructure Protection, Critical Foundations: Protecting America's Infrastructures,1997,http://www.fas.org/sgp/library/pccip.pdf
    [6]Homeland Security Presidential Directive/HSPD-7:Critical Infrastructure Identification, Prioritization, and Protection. The White House, Washington, DC, 2003.
    [7]The National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The White House, Washington DC,2003
    [8]The National Strategy to Secure Cyberspace. The White House, Washington, DC, 2003
    [9]Interim National Infrastructure Protection Plan. U.S. Department of Homeland Security, Washington DC,2005
    [10]Rinaldi S, Peerenboom J, Kelly T. Identifying, Understanding, and Analyzing Critical Infrastructure Interdependences. IEEE Control Systems Magazine. 2001:11-25.
    [11]Haimes Y. Hierarchical holographic modeling. IEEE Transactions on Systems, Man and Cybernetics,1981,11(9):606-617
    [12]Haimes Y. Total risk management. Risk Analysis,1991,11(2):169-171,
    [13]Haimes Y, Risk Modeling, Assessment and Management. New York:Wiley,2004.
    [14]Haimes Y, Horowitz B. Adaptive two-player hierarchical holographic modeling game for counterterrorism intelligence analysis. Journal of Homeland Security and Emergency Management,2004,1(3):302-305.
    [15]Haimes Y, Santos J, Crowther K. Risk analysis in interdependent infrastructures IFIP International Federation for Information Processing. Critical Infrastructure Protection,2004,253:297-310.
    [16]Bush B, Guere P. Interdependent Energy Infrastructure Simulation System Los Alamos National Laboratory. NISAC Capabilities Demonstrations.
    [17]Grant H, GREG A. Modeling cities. Public works management & policy,2000,4(3): 198-212
    [18]Eubank G, Guclu H, Kumar A. Modeling disease outbreaks in realistic urban social networks. Nature,2004,429:180-184.
    [19]Houck D, Kim E, O'Reilly G. A Network Survivability Model for Critical National Infrastructures. Bell Labs Tech. J.,2004,8 (4):153-172.
    [20]Shahidehpour M, FU Y, Wiedman T. Impact of Natural Gas Infrastructure on Electric Power Systems. Proceedings of the IEEE,2005,93(5):1042-1056
    [21]Wang S, Shahidehpour M, Kirschen D.Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation. IEEE Trans. Power Syst.,1995,10(3):1294-1301
    [22]Schneider K, Liu C.C, Paul P. Assessment of Interactions Between Power and Telecommunications Infrastructures. IEEE transactions on power systems,2006, 21(3):1123-1130
    [23]Liu Q, Hwang J N, Liu C C.Communication infrastructure for wide area protection of power systems. in Proc.1st Int. Conf. Critical Infrastructures, Beijing, China, 2002
    [24]Hauser C, Bakken D, Bose A. A failure to communicate:Next generation communication requirements, technologies, and architecture for the electric power grid. IEEE Power Energy Mag.,2005,3(2):47-55
    [25]O'Reilly G, Uzunalioglu H, Conrad S. Inter-Infrastructure Simulations Across Telecom, Power, and Emergency Services. Proc.5th Internet Workshop on Design of Reliable Commun, Ischia, It,2005
    [26]Conrad S, LeClaire R, O'Reilly G. Critical National Infrastructure Reliability Modeling and Analysis. Bell Labs Technical Journal,2004,11 (3),57-71
    [27]Brown T, Beyeler W, Barton D. Assessing Infrastructure Interdependencies:The Challenge of Risk Analysis for Complex Adaptive Systems. Int. J. Critical Infrastructures,2004, 1(1):1-5
    [28]Beyeler W, Conrad S, Corbet T. Inter-Infrastructure Modeling-Ports and Telecommunications. Bell Labs Technical Journal,2004,9 (2):91-105
    [29]Tomita Y, Fukui C, Kudo H. Cooperative Protection System with an Agent Model. IEEE Transactions on Power Delivery,1998,13(4):1060-1066
    [30]Wildberger A. Modeling with Independent Intelligent Agents for Distributed Control of the Electric Power Grid. Proceedings of the American Power Conference, 1997.
    [31]Wildberger A. Modeling the Infrastructure Industries as Complex Adaptive Systems. Proceedings of Simulation International San Diego CA,1998:168-173.
    [32]Amin M. Toward Secure and Resilient Interdependent Infrastructures. Journal of Infrastructure Systems,2002,8 (3):67-75.
    [33]Basu N, Pryor R, Quint T. Aspen:A Microsimulation Model of the Economy, Sandia National Laboratories,1996.
    [34]胡晓峰.国家关键基础设施建模仿真研究的进展.系统科学与系统工程学科发展战略研讨会,武汉,2007
    [35]Barton D, Eidson E, Schoenwald D. Aspen-EE:An Agent-Based Model of Infrastructure Interdependency, NM Sandia National Laboratories,1998.
    [36]Schoenwald D, Barton D, M Ehlen. An Agent-Based Simulation Laboratory for Economics and Infrastructure Interdependency. Proceeding of the 2004 American Control Conference Boston, Massachusetts,2004
    [37]Tsoukalas L, Uluyol O. Anticipatory Agents for the Deregulated Electric Power System. Proceedings of the Workshop on Agent Simulation:Applications, Models, and Tools, University of Chicago,1999:114-123
    [38]Thomas R, Mount T, Zimmerman R. Testing the Effects of Price Responsive Demand on Uniform Price and Soft-Cap Electricity Auctions. Proceedings of the 35th Hawaii International Conference on Systems Sciences,2002.
    [39]Veselka T, Boyd G, Conzelmann G. Simulating the Behavior of Electricity Markets with an Agent-Based Methodology:The Electricity Market Complex Adaptive System (EMCAS) Model.22nd International Association for Energy Economics International Conference, Vancouver, BC, Canada,2002.
    [40]North M, Thimmapuram P, Macal C. EMCAS:An Agent-Based Tool for Modeling Electricity Markets. Proceedings of the Agent 2003 Conference on Challenges in Social Simulation, Argonne National Laboratory/The University of Chicago, Chicago,2003.
    [41]Macal C, Boyd G, Cirillo R. Modeling the Restructured Illinois Electricity Market as a Complex Adaptive System.24th Annual North American Conference of the USAEE/IAEE:Energy, Environment and Economics,2004.
    [42]Peerenboom J, Fisher R, Whitfield R. Recovering from Disruptions of Interdependent Critical Infrastructures.CRIS/DRM/ⅢT/NSF Workshop, Alexandria, 2001:10-11,.
    [43]North M. SMART Ⅱ+:The Spot Market Agent Research Tool Version 2.0 Plus Natural Gas. Proceedings of the Computational Analysis of Social and Organizational Science Conference,2000:161-162
    [44]Thomas H, North M, Macal C. From Physics to Finances:Complex Adaptive Systems Representation of Infrastructure Interdependencies. Naval Surface Warfare Center Technical Digest,2003:58-67
    [45]Leontief W. Input-output economics. New York:Oxford Univ. Press,1986
    [46]Leontief W. Studies in the structure of the American economy. New York:Oxford Univ. Press,1953
    [47]Leontief W. Input-output economics. New York:Oxford Univ. Press,1966
    [48]Oosterhaven J. Leontief versus Ghoshian price and quantity models. Southern Economic Journal,1996,62(3):750-759.
    [49]Haimes Y, Jiang P. Leontief-based model of risk in complex interconnected infrastructures. J. Infrastructure. Syst.,2001:7(1),1-12.
    [50]Benchmark input-output accounts of the United States, Bureau of Economic Analysis, Washington D.C. United States Department of Commerce.1992
    [51]Leung M, Haimes Y, Santos J. Supply and Output-Side Extensions to the Inoperability Input-Output Model for Interdependent Infrastructures J. Infrastructure. Syst.,2007,13(4):299-310.
    [52]Haimes Y, Horowitz B, Lambert J. Inoperability input-output model IIM for interdependent infrastructure sectors. Ⅱ:Case study. J. Infrastructure. Syst.,2005,11(2):80-92
    [53]Haimes Y, Horowitz B, Lambert J. Inoperability input-output model for interdependent infrastructure sectors. Ⅰ:Theory and methodology. J. Infrastructure. Syst.,2005,11(2):67-79.
    [54]Jiang P, Haimes Y. Risk management for Leontief based interdependent systems. Risk Anal,2004,24(5):1215-1229.
    [55]Jiang P, Input-output inoperability risk model and beyond:a holistic approach. Ph.D. dissertation, Systems and Information Engineering Dept., Univ. of Virginia, Charlottesville,2003
    [56]Santos J. Interdependency analysis:Extensions to demand reduction inoperability input-output modeling and portfolio selection. PhD dissertation, Dept. of Systems and Information Engineering, Univ. of Virginia, Charlottesville,2003.
    [57]Santos J, Haimes Y. Modeling the demand reduction input-output (I-O) inoperability due to terrorism of interconnected infrastructures. Risk Anal, 2004,24(6):1437-1451.
    [58]Santos J. Inoperability input-output modeling of disruptions to interdependent economic systems. J. Syst. Eng.,2006,9(1),20-34
    [59]Dudenhoeffer D, Permann M, Manic M. CIMS:A Framework for Infrastructure Interdependency Modeling and Analysis. Proceedings of the 2006 Winter Simulation Conference,2006
    [60]Lee E, Mitchell J, Wallace W. Assessing Vulnerability of Proposed Designs for Interdependent Infrastructure Systems. Proceedings of the 37th Hawaii International Conference on System Sciences,2004
    [61]Mendonca D, Wallace W. Impacts of the 2001 World Trade Center Attack on New York City Critical Infrastructures. Journal of infrastructure systems,2006,12(4): 260-270
    [62]Wallace W, Mendonca D, Lee E. Managing disruptions to critical infrastructure interdependencies in the context of the 2001 World Trade Center attack. Natural Hazards Research and Applications Information Center,2005,165-198.
    [63]Lee E, Mitchell E, Wallace W. Restoration of Services in Interdependent Infrastructure Systems:A Network Flows Approach. IEEE Transactions on Systems, Man, and Cybernetics—PART C:Applications and Reviews,2007,7(6):1303-1317.
    [64]Leonardo D, James C, Barry J. Seismic response of critical interdependent networks. Earthquake Engineering and Structural Dynamics.2007,36:285-306
    [65]Leonardo D, James I, Barry J. Interdependent Response of Networked Systems. Journal of Infrastructure Systems,2007,13(3):185-194
    [66]Leonardo D.Interdependent Response of Networked Systems to Natural Hazards and Intentional Disruptions. Degree Doctor of Philosophy in the School of Civil and Environmental Engineering, Georgia Institute of Technology,2005
    [67]Nozick L, Turnquist M, Jones D. Assessing the Performance of Interdependent Infrastructures and Optimizing Investment. Proceedings of the 37th Hawaii International Conference on Systems Sciences,2004.
    [68]Xu N, Nozick L, Turnquist M. Optimizing Investment for Recovery in Interdependent Infrastructures. Proceedings of the 40th Hawaii International Conference on Systems Sciences,2007.
    [69]Wolthusen S. Modeling critical infrastructure requirements Proceedings of the 2004 IEEE Workshop on Information Assurance United States Military Academy, West Point,2004
    [70]Svendsen N, Wolthusen S.Multigraph dependency models for heterogeneous critical infrastructures. Proceedings of the First Annual IFIP WG International Conference on Critical Infrastructure Protection. Hanover, NH, USA:Springer-Verlag; 2007.
    [71]Svendsen N, Wolthusen S. Analysis and Statistical Properties of Critical Infrastructure Interdependency Multiflow Models. Proceedings of the 2007 IEEE Workshop on Information Assurance United States Military Academy, West Point, 2007
    [72]Wolthusen S. GIS-based Command and Control Infrastructure for Critical Infrastructure Protection. Proceedings of the 2005 First IEEE International Workshop on Critical Infrastructure Protection, IEEE Computer Society Preee,2005
    [73]Li W, Cai X. Statistical analysis of airport network of China. Phys Rev E,2004,69: 46-106.
    [74]Angeloudis P, Fisk D. Large subway systems as complex networks. Physic A,2006, 367:553-558
    [75]Sen P, Dasgupta P, Chatterjee A, et al. Small-world properties of the Indian railway network. Phys. Rev. E.,2003,67:036106
    [76]Jiang B, Claramunt C. Topological analysis of urban street networks. Environment and Planning,2004,31(1):151—162.
    [77]Sienkiewicz J, Holyst J A, Statistical analysis of public transport networks in Poland. Phys. Rev. E.,.2005,72(4):046127—046127.
    [78]赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究.复杂系统与复杂性科学,2005,2(2):45-48.
    [79]Schmitz W. Analysis and assessment for critical infrastructure protection (ACIP). Final report IST-2001-37257 deliverable D7.5. In:ACIP consortium, Ottobrunn, Germany,2003.
    [80]Barabasi A. Virtual Round Table on Ten Leading Questions for Network Research. European Physical Journal B,2004,38 (2):143-145.
    [81]Holme P, Kim B. Growing scale-free networks with tunable clustering. Phys. Rev. E,2002,65:026107
    [82]Holme P, Kim B, Yoon C. et al.(2002) Attack vulnerability of complex networks. Phys. Rev. E,65(5),056109.
    [83]Watts D. Small worlds:The dynamics of networks between order and randomness, Princeton:Princeton University Press,1999
    [84]Dorogovtsev S. Clustering of correlated networks. Phys. Rev. E.,2004,69:027104
    [85]Burke R. Semantic ratings and heuristic similarity for collaborative filtering. AAAI Technical Report WS-00-04,2000
    [86]Alexander B, Graeme H. Evaluating wordnet-based measures of semantic distance. Computational Linguistics,2006,32(1):13-47.
    [87]Erdos P, Renyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 1960,5:17-61
    [88]Solomonoff R. Connectivity of random nets. Bulletin of Math Biophys.1951, 13:107-117
    [89]Bollobas B. Random Graphs, New York:Academic Press,2001.
    [90]Newman M, Watts D. Renormalization group analysis of the small-world network model. Phys. Lett. A,1999,263:341-346
    [91]Watts D, Strogatz S. Collective dynamics of'small-world' networks. Nature, 1998,393(6684):440-442
    [92]Barrat A, Weigt M. On the properties of small world networks. Eur Phys. J. B,2000,13:547-560
    [93]Newman M, Moore C, Watts D. Mean field solution of the small-world network model. Phys. Rev. Lett.,2000,84:3201-3204
    [94]Newman M. The structure and function of complex networks. SIAM Review, 2003,45:167-256
    [95]Albert R, Jeong H, Barabasi A, Diameter of the world-wide web. Nature,1999, 401:130-131
    [96]Bollobas B, Riordan O. Mathematical results on scale-free random graphs. From the genome to the Internet, Berlin:wiley,2003,1-34
    [97]Cohen R, Havlin S,. Scale-free networks are ultrasmall. Phys. Rev. Lett.,2003, 86:3682-3685
    [98]Fronczak A, Fronczak P, Holyst A. Mean-field theory for clustering coefficients in Barabasi-Albert networks, Phys. Rev. E,2003,68:04126(1-4)
    [99]Barabasi A., Albert R, Jeong H. Mean-field theory for scale-free random networks, Physica A,1999,272:173-187
    [100]Dorogovtsev S, Mendes J, Samukhin A. Structure of growing networks with preferential linking. Phys. Rev. Lett.,2000,85:4633-4636.
    [101]Krapivsky P, Redner S, Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett.,2000,85:4629-4632.
    [102]刘宏鲲,周涛.中国城市航空网络的实证研究与分析.物理学报,2007,56(1):106-112
    [103]赵伟,何红生,林中材.中国铁路客运网网络性质的研究.物理学报,2006,55(8):3906-3911
    [104]常鸣,马寿峰.我国大城市公交网络结构的实证研究.系统工程学报,2007,22(4):412-418
    [105]张勇,杨晓光.城市路网的复杂网络特性及可靠性仿真分析.系统仿真学报. 2008,120(2):464-46.
    [106]Huberman B. Adamic L. Growth dynamics of the World-Wide Web. Nature,1999, 399:130-133
    [107]Schmitz W, Neubecker K. Architecture of an Integrated Model Hierarchy, ACIP Technical Report IST-2001-37257:32. http://www.iabg. de/acip/doc/wp6/D62_architecture.pdf
    [108]Crucitti R, Latora V, Marchiori M. A topological analysis of the Italian electric power grid. Physica A,2004,338 (1):92-97.
    [109]武汉城市总体规划(2006—2020).武汉市城市规划设计研究院
    [110]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析.电力系统自动化,2004,28(15):21-24.
    [111]Albert R, Jeong H, Barabasi A. Error and attack tolerance of complex networks. Nature,2000,406:378-382.
    [112]Motter A, Nishikawa T, Lai Y. Cascade-based attacks on complex networks. Phys. Rev. E,2002,66:065102
    [113]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Phys. Rev. E.,2004.69:045104
    [114]Motter A. Cascade Control and Defense in Complex Networks. Phys. Rev. Lett., 2004,93:098701(1-4)
    [115]Dobson I, Carreras B A, Newman D E. An initial model for complex dynamics in electric power system blackouts. Proceedings of the 34th Annual Hawaii International Conference on System Sciences,2001.
    [116]Bier w, Abhichandani V. Optimal allocation of resources for defense of simple series and parallel systems from determined adversaries. Decision Analysis Society, 2003,5(2):59-76
    [117]WOO G.Quantitative terrorism risk assessment. Journal of Risk Finance,2002,4 (1):7-14
    [118]Keet M. Terrorism and game theory.Ireland:University of Limerick,2003
    [119]Major A. Advanced techniques for modeling terrorism risk.Journal of Risk Finance,2002,4(1):15-24
    [120]武汉二月气象信息.天气在线网:http://www.t7online.com/
    [121]武汉市1月、2月每日气象信息.八查网全球历时天气查询站:http://www. 008cha.com/Html/form/baixingshenghuo/48210317889.html
    [122]Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines. IEEE Transactions on Power Delivery,2005, 20(2):1080-1087.
    [123]赵彦,姜虹羽,刘燕.南方冰雪灾害中输电电网破坏的原因及对策研究.防灾科技学院学报,2008,10(2):32-34
    [124]Buzna L, Peters K, Ammoser H, et al. Efficient response to cascading disaster spreading. Phys. Rev. E.,2007,75:056107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700