复杂网络系统间相似性识别及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将复杂系统描述为由相互作用的个体组成的复杂网络,是理解复杂系统的重要方法。在短短的十年间,复杂网络研究已扩展到信息、控制、物理、生物和社会科学等领域。随着大量系统被描述成复杂网络,以复杂网络系统为对象的网络数据挖掘应运而生,复杂网络系统间的相似性识别问题就是其中一项全新的课题。该课题包括系统间个体相似性识别和系统整体相似性分析两部分内容。其中,个体相似性识别旨在挖掘出关联系统间个体的未知对应关系,它可以归纳为一个通用形式的复杂网络间节点匹配问题,是课题的关键所在。研究复杂网络系统间的相似性识别问题对大规模复杂关联系统的分析与优化设计、多源信息系统集成、跨网络信息搜索、同源蛋白质发现、多语言自动翻译等具有积极的现实意义和理论价值。本文针对复杂网络系统间的相似性识别问题进行了较为系统的研究。全文按建模、求解和应用的主线展开。其中,复杂网络间节点匹配问题的求解部分按节点对应关系(一对一、一对多)和参与匹配的网络数量(两网络、多网络)两个维度上将研究递进展开。本文主要包括如下内容:
     1.给出了两种关联网络模型,即同源演化模型和协同演化模型。两者均具有可调的相似度和网络结构,前者可自然地扩展为多网络关联模型。为了保证网络的连通性,提出了一种网络连通性检测方法,大大减少了计算量。将单网络节点相似度计算推广到多网络,提出了三种网络间节点相似度函数,并给出了相似度函数的区分度定义,用于定量评估相似度函数的表现优劣。这部分研究一方面为本文的网络间相似性识别问题提供了仿真平台和算法设计依据,另一方面,对如何将其它网络数据挖掘算法推广到多网络也具有重要参考意义。
     2.针对“已匹配节点对”的不足和节点相似度函数的局部性限制,提出了一种基于相似度传播的节点匹配算法,适合于求解小规模两网络一对一节点匹配问题,但对“已匹配节点对”的分布情况无特殊要求。所引入的节点相似度传播过程使少量的初始节点相似度能够按网络拓扑结构传播到全局,从而能够充分利用“已匹配节点对”信息,特别是在“已匹配节点对”比例较小的情况下,使得匹配算法仍能获得相对满意的匹配精度。
     3.针对全局节点匹配算法的计算瓶颈提出了一种近似线性的迭代节点匹配算法,适合于求解现实世界大规模两网络一对一节点匹配问题。考虑到该迭代算法一定程度上依赖于“已匹配节点对”的集中分布,提出了一种集中大度值优先策略来优化选择“已匹配节点对”,从而有利于迭代算法前期表现,进而获得较高的匹配精度。实验统计表明,在“已匹配节点对”相对集中的情况下,该迭代节点匹配算法兼具高时效和高精度。
     4.给出了一对多节点匹配问题的数学描述,并提出了两种一对多节点匹配算法,即基于局部映射的匹配算法和基于集成的匹配算法。前者一定程度上能克服一对一迭代节点匹配算法的“短视”缺点,后者类似于Bagging集成技术具有好的抗噪能力并易于分布式并行化计算。为了集成的需要,提出了一种随机一对一节点匹配算法。以一个实际大规模即时通讯系统(阿里旺旺)为数据来源,提取了两个真实的关联网络,并在其之上进行了迭代一对一节点匹配算法和一对多节点匹配算法的实证研究。研究表明,所提的一对多节点匹配算法能有效地将匹配目标定位到一个较小的范围。
     5.给出了多网络节点匹配问题的数学描述,并提出了一种基于团簇提取的多网络节点匹配算法。该算法能同时考虑多个网络的结构信息和所有网络间的“已匹配节点对”信息。以四种不同结构的多网络节点匹配实验为例,对所提算法进行了测试和验证,并与参考算法进行了对比,实验统计结果表明了所提算法的有效性。
     6.从系统相似性的角度出发,分析了系统相似性对复杂关联系统连锁故障效应的影响。分析结果显示,关联系统的相似性有利于避免连锁故障的发生。据此规律,提出了一种基于节点匹配的连锁故障防护方法,该方法在不改变系统结构的约束下,优化关联系统中可调个体间的依赖对应关系,从而提高关联系统的相似性。仿真结果表明,该方法能有效减少连锁故障的发生,增强了系统的健壮性。由于众多关键基础设施(如电力网、通信网)都属于关联系统的范畴,所提算法具有广泛的应用价值。
Describing a complex system as a network consisting of numerous interacting individuals is an important approach to understand of a complex system. Within a single decade, research on complex networks has been expanded to many areas including information, control, phyisics, biology, social science, and so on. As more and more complex systems have been modeled as networks, data mining in complex networks emerges as an important task. One of the very recently proposed subject with high novelty is the identification of similarity between complex network systems that consists of two parts, i.e., individual level and system level similarity. Identification of individual level similarity is the key problem of this research, whose main purpose is to reveal the existent yet unknown correspondences between nodes from different interacted networks. In fact, it can be represented as the node matching problem between complex networks. Identification of similarity between complex network systems has its practical and theoretical significance in broad areas, such as large-scale interacted system analysis and optimization, multi-source information integration, inter-network searching, homogeneous proteins revealing and machine translation, just to name a few. This thesis systematically investigates the identification of similarity between complex network systems. The research of the thesis is organized in the form of problem modeling, algorithm design, and practice. More carefully, the algorithm design part is splited according to two specifications, i.e., node correspondecy constraint (one-to-one, one-to-many) and number of networks matched (parewise, mutiple). The main contents of this thesis are summarized as follows:
     1. Two interacted network models are proposed, i.e., homogeneous-evolution model and coevolution model, both of which can be adjusted regarding to interacting strengthness and network structure, and the former can easily generate multiple interacted networks simutaniously. In order to maintain the connectivity of the generated networks, an efficient method has been introduced. Then, by expanding the definition of similarity between nodes of the same network, three kinds of similarities between nodes from different networks are proposed. Moreover, a measurement of differentiability has been introduced to evaluate the effectiveness of the proposed similarity functions. On one hand, this part of research provides simulation platforms and sheds light on algorithm design for the identification of similarity between complex networks. On the other hand, it is also meaningful for generalizing other data mining techniques that tackle only single network to multiple networks.
     2. A node matching algorithm based on similarity propagation is proposed, which can be used to solve one-to-one node matching problem between small-scale networks and requires no special constrain for distribution of the revealed matching node pairs. The propagation process makes the initial similarity information propagate along the network topology globally, and consequently, information provided by the revealed pairewise matched nodes can be fully exploited. As a result, a relatively acceptable matching precision can be met even there are very limited numbers of revealed pairewise matched nodes.
     3. A novel iterative node matching algorithm with approximately linear complexity is proposed to sovle the one-to-one node matching problem between large-scale networks in real world. At the same time, a degree based revealed pairwise matched nodes selection strategy has been introduced to improve the matching results in the early period of the iteration and therefore improve the overall matching precision of the iterative matching algorithm. It is revealed that, as long as the revealed pairewise matched nodes are relatively centralized, the algorithm performs well both in time and matching precision.
     4. One-to-many node matching problem between networks is formulated, and we propose two one-to-many node matching algorithms based on local mapping and ensembling, respectively. The former overcomes the short sightedness of the one-to-one iterative node matching, and the later bears a close resemblance to Bagging ensemble, which is relatively robust to noise and can be easily parallelized. A pair of real-world interacted networks has been extracted from a large scale Instant Messaging system. With this pair of networks, empirical study of the proposed iterative one-to-one and one-to-many node matching algorithms has been carried out, respectively. It is revealed that the proposed one-to-many algorithm can quickly narrow down the searching range.
     5. The node matching among multiple networks is formulated and we propose an algorithm based on cluster extraction to solve it. The proposed algorithm exploits information provided by all of the networks involved as well as the revealed pairewise matched nodes. Matching experiments carried on four kinds of networks with different structure demonstrates the effectiveness of the proposed algorithm.
     6. Identification of similarity between complex network systems has been successfully applied to the analysis of cascading failure in interdependent systems. It is revealed that the similarity between interdependent systems is helpful to avoid the cascading failure. According to this discovery, a node matching based cascading failure protection method is proposed, which optimizes the correspondences between adjustable nodes while keeping the structure of the interdependent networks unchanged. It is revealed that the node matching based design can significantly improves the resistance to cascading failures in interdependent networks. Due to the reason that many real-world critical infrastructures are indeed interdependent, the proposed optimal design method based on node matching has its practical significance.
引文
[1]R. Albert, A. L. Barabasi, Statistical mechanics of complex networks. Review of Modern Physics,2002,74 (1):47-97.
    [2]S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks:structure and dynamics. Physics Reports,2006,424 (4-5):175-308.
    [3]S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks. Review of Modern Physics,2008,80 (4):1275-1335.
    [4]J. I. Perotti, O. V. Billoni, F. A. Tamarit, D. R. Chialvo, S. A. Cannas, Emergent self-organized complex network topology out of stability constraints. Physical Review Letters,2009,103 (10):108701.
    [5]S. W. Son, B. J. Kim, H. Hong, H. Jeong, Dynamics and directionality in complex networks. Physical Review Letters,2009,103 (22):228702.
    [6]H. D. Rozenfeld, C. Song, H. A. Makse, Small-World to fractal transition in complex networks:a renormalization group approach. Physical Review Letters,2010, 104 (2):025701.
    [7]A.-L. Barabasi, Z. N. Oltvai, Network biology:understanding the cell's functional organization. Nature,2004, (5):101-113.
    [8]D. Merico, D. Gfeller, G. D. Bader, How to visually interpret biological data using networks. Nature,2009,27 (10):921-924.
    [9]T. Yamada, P. Bork, Evolution of biomolecular networks-lessons from metabolic and protein interactions. Nature,2009,10 (11):791-803.
    [10]V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, A. V. Apkarian, Scale-free brain functional networks. Physical Review Letters,2005,94 (1):018102.
    [11]P. S. Dodds, R. Muhamad, D. J. Watts, An experimental study of search in global social networks. Science,2003,301 (5634):827-829.
    [12]G. Palla, A. L. Barabasi, T. Vicsek, Quantifying social group evolution. Nature,2007,446 (7136):664-667.
    [13]J. Kleinberg, The convergence of social and technological networks. Communications of the ACM,2008,51 (11):66-72.
    [14]J. Bohannon, Counterterrorism's new tool:'Metanetwork' analysis. Science, 2009,325 (5939):409-411.
    [15]陈关荣,复杂网络及其新近研究进展简介.力学进展,2008,38(6):653-663.
    [16]王磊,复杂动态网络系统的同步控制研究.浙江大学博士学位论文,2009.
    [17]L. Cui, S. Kumara, R. Albert, Complex Networks:An Engineering View. IEEE Circuits and Systems Magazine,2010,10 (3):10-25.
    [18]汪小帆,李翔,陈关荣,复杂网络理论及其应用.北京:清华大学出版社,2006.
    [19]郭雷,许晓鸣,复杂网络.上海:上海科技教育出版社,2006.
    [20]何大韧,刘宗华,汪秉宏,复杂系统与复杂网络.北京:高等教育出版社,2008.
    [21]Z. Y. Chen, X. F. Wang, Effects of network structure and routing strategy on network capacity. Physical Review E,2006,73 (3):036107.
    [22]Z. X. Wu, G. Peng, W. M. Wong, K. H. Yeung, Improved routing strategies for data traffic in scale-free networks. Journal of Statistical Mechanics:Theory and Experiment,2008,2008:P11002.
    [23]X. F. Wang, G Chen, Pinning control of scale-free dynamical networks. Physica A:Statistical Mechanics and its Applications,2002,310 (3-4):521-531.
    [24]W. Yu, G Chen, J. Lu, On pinning synchronization of complex dynamical networks. Automatica,2009,45 (2):429-435.
    [25]W. Lu, X. Li, Z. Rong, Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica,2010,46 (1):116-121.
    [26]宣琦,基于复杂网络理论的复杂调度问题求解方法研究.浙江大学博士学位论文,2008.
    [27]R. Albert, H. Jeong, A. L. Barabasi, Error and attack tolerance of complex networks. Nature,2000,406 (6794):378-382.
    [28]俞峰,复杂动态随机网络最短路径问题研究.浙江大学博士学位论文,2009.
    [29]T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Bipartite network projection and personal recommendation. Physical Review E,2007,76 (4):046115.
    [30]T. Zhou, Personal recommendation in user-object networks. Social Informatics and Telecommunications Engineering,LNCS,2009,4:247-253.
    [31]J. Han, M. Kamber, Data mining:Concepts and techniques. CA, USA: Academic Press,2006.
    [32]L. Getoor, C. P. Diehl, Link mining:A survey. ACM SIGKDD Explorations Newsletter,2005,7 (2):3-12.
    [33]T. Nepusz, Data mining in complex networks:Missing link prediction and fuzzy communities. Budapest University of Technology and Economics Ph.D Thesis, 2008.
    [34]M. Girvan, M. E. J. Newman, Community structure in social and biological networks. Proceedings of the National Academy of Sciences,2002,99 (12):7821-7826.
    [35]S. Fortunato, Community detection in graphs. Physics Reports,2010,486 (3-5):75-174.
    [36]D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks. Journal of the American Society for Information Science,2007,58 (7): 1019-1031.
    [37]A. Clauset, C. Moore, M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks. Nature,2008,453:98-101
    [38]M. Kurant, P. Thiran, Layered complex networks. Physical Review Letters, 2006,93 (13):138701.
    [39]V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, R. Setola, Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures,2008,4 (1/2):63-79.
    [40]Q. Xuan, F. Du, T. J. Wu, Empirical analysis of Internet telephone network: From user ID to phone. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2009,19 (2):023101.
    [41]S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin, Catastrophic cascade of failures in interdependent networks. Nature,2010,464:1025-1028.
    [42]E. A. Leicht, R. M. D. Souza, Percolation on interacting networks. arXiv, 2009,
    [43]V. Rosato, S. Bologna, S. Meloni, E. Pascucci, Interdependency effects measured on complex interdependent networks. Complexity in Engineering 2010, Rome:IEEE,2010,27-32.
    [44]Q. Xuan, T. J. Wu, Node matching between complex networks. Physical Review E,2009,80 (2):026103.
    [45]F. Giunchiglia, P. Shvaiko, Semantic matching. The Knowledge Engineering Review,2003,18 (3):265-280.
    [46]N. Choi, I.-Y. Song, H. Han, A survey on ontology mapping. ACMSIGMOD Record,2006,35(3):34-41.
    [47]D. J. Watts, P. S. Dodds, M. E. J. Newman, Identity and search in social networks Science,2002,296 (5571):1302-1305.
    [48]C.-C. Chen, C.-Y. Lin, Y.-S. Lo, J.-M. Yang, PPISearch:a web server for searching homologous protein-protein interactions across multiple species. Nucleic Acids Research,2009,37:W369-W375.
    [49]梁治,蛋白质相互作用网络的比较生物学分析及其应用.中国科学与技术大学博士学位论文,2006.
    [50]D. R. Amancio, L. Antiqueira, T. A. S. Pardo, L. F. Costa, O. N. Oliveira, M. G. V. Nunes, Complex networks analysis of manual and machine translations. International Journal of Modern Physics C,2008,19 (4):583-598.
    [51]B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. Stockwell, T. Ideker, Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences,2003,100 (20): 11394-11399.
    [52]J. Berg, M. Lassig, Local graph alignment and motif search in biological networks. Proceedings of the National Academy of Sciences,2004,101 (41): 14689-14694.
    [53]M. Zhang, Methods and implementations of road-network matching. Technische Universitat Munchen PhD Thesis,2009.
    [54]L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (10):1367-1372.
    [55]R. Holzer, B. Malin, L. Sweeney, Email alias detection using social network analysis. Proceedings of the 3rd international workshop on Link discovery, Chicago, Illinois:ACM,2005,52-57.
    [56]T. M. Elsayed, Identity resolution in email collections. University of Maryland Ph.D Thesis,2009.
    [57]H. Pasula, B. Marthi, B. Milch, S. Russell, Ⅰ. Shpitser, Identity uncertainty and citation matching. Advances in Neural Information Processing Systems, Cambridge, MA:MIT Press,2002,
    [58]J. Xu, M. Chau, G. A. Wang, J. Li, Complex problem solving:identity matching based on social contextual information. Journal of the Association for Information Systems,2007,8 (10):525-545.
    [59]Y. Keselman, A. Shokoufandeh, M. F. Demirci, S. Dickinson, Many-to-many graph matching via metric embedding. Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin:IEEE,2003,
    [60]M. F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, S. Dickinson, Object recognition as many-to-many feature matching. International Journal of Computer Vision,2006,69 (2):203-222.
    [61]J. Dean, S. Ghemawat, MapReduce:simplified data processing on large clusters. Communications of the ACM,2008,51 (1):107-113.
    [62]S. Kang, D. A. Bader, Large Scale Complex Network Analysis using the Hybrid Combination of a MapReduce cluster and a Highly Multithreaded System. MTAAP 2010 Workshop on Multithreaded Architectures and Applications, Atlanta: IEEE Computer Society Press,2010,
    [63]D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks. Nature,1998,393 (6684):409-410.
    [64]A.-L. Barabasi, R. Albert, Emergence of scaling in random networks. Science,1999,286 (5439):509-512.
    [65]A. L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free random networks. Physica A,1999,272 (1-2):173-187.
    [66]J.-P. Onnela, J. Saramaki, J. Kertesz, K. Kaski, Intensity and coherence of motifs in weighted complex networks. Physical Review E,2005,71 (6):065103(R).
    [67]M. Barthelemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Characterization and modeling of weighted networks. Physica A:Statistical Mechanics and its Applications,2004,346 (1-2):34-43.
    [68]S. E. Ahnert, T. M. A. Fink, Clustering signatures classify directed networks. Physical Review E,2008,78 (3):036112.
    [69]M. Marchiori, V. Latora, Harmony in the small-world. Physica A:Statistical Mechanics and its Applications,2000,285 (3-4):539-546.
    [70]L. C. Freeman, A Set of measures of Centrality Based upon Betweenness. Sociometry,1977,40:35-41.
    [71]M. Barthelemy, Betweenness centrality in large complex networks. The European Physical Journal B,2004,38:163-168.
    [72]M. E. J. Newman, Assortative mixing in networks. Physical Review Letters, 2002,89 (20):208701.
    [73]H.-J. Kim, J. M. Kim, Cyclic topology in complex networks. Physical Review E,2005,72 (3):036109.
    [74]E. Ravasz, A.-L. Barabasi, Hierarchical organization in complex networks. Physical Review E,2003,67 (2):026112.
    [75]L. d. F. Costa, F. A. Rodrigues, G. Travieso, P. R. V. Boas, Characterization of complex networks:A survey of measurements. Advances in Physics,2007,56 (1): 167-242.
    [76]J. M. Hofman, Large-Scale Social Media Analytics with Hadoop. The 4th International Conference on Weblogs and Social Media Washington, DC:IEEE,2010, 301-310.
    [77]T. White, Hadoop:The Definitive Guide. Cambridge, Massachusetts: O'Reilly Media,2009.
    [78]Q. Xuan, Y. Li, T.-J. Wu, Growth model for complex networks with hierarchical and modular structures. Physical Review E,2006,73 (3):036105.
    [79]Q. Xuan, Y. J. Li, T. J. Wu, A local-world network model based on inter-node correlation degree. Physica A:Statistical Mechanics and its Applications, 2007,378 (2):561-572.
    [80]A.-L. Barabasi, Linked:The new science of networks. MA, USA:Perseus Publishing,2002.
    [81]P. Erdos, A. Renyi, On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences,1960,17-60.
    [82]S. Milgram, The Small World Problem. Psychology Today,1967,1 (1): 61-67.
    [83]M. E. J. Newman, D. J. Watts, Renormalization group analysis of the small-world network model. Physical Letters A,1999,263:341-346.
    [84]M. E. J. Newman, D. J. Watts, Scaling and percolation in the small-world network model. Physical Review E,1999,60:7332-7342.
    [85]M. Barthelemy, L. A. N. amaral, Small-world networks:Evidence for a crossover picture. Physical Review Letters,1999,82:3180-3183.
    [86]A. Barrat, M. Weigt, On the properties of small-world networks. The European Physical Journal B,2000,13:547-560.
    [87]J. Kleinberg, Navigation in a small world. Nature,2000,406:845-845.
    [88]M. E. J. Newman, Mixing pattern in networks. Physical Review E,2003,67: 026126.
    [89]M. E. J. Newman, Modularity and community structure in networks. Proceedings of the National Academy of Sciences,2006,103 (23):8577-8582.
    [90]M. Rosvall, C. T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences,2008, 105 (4):1118-1123.
    [91]I. X. Y. Leung, P. Hui, P. Lio, J. Crowcroft, Towards real-time community detection in large networks. Physical Review E,2009,79 (6):066107.
    [92]Y.-Y. Ahn, J. P. Bagrow, S. Lehmann, Link communities reveal multiscale complexity in networks. Nature,2010,
    [93]杨博,刘大有,J. Liu,金弟,马海宾,复杂网络聚类方法.软件学报,2009,20(1):54-66.
    [94]S. A. Macskassy, F. Provost, Classification in networked data:A toolkit and a univariate case study. The Journal of Machine Learning Research,2007,8:935-983.
    [95]T. Zhou, L. Lu, Y.-C. Zhang, Predicting missing links via local information. European Physical Journal B,2009,71 (4):623-630.
    [96]P. Domingos, M. Richardson, Mining the network value of customers. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California:ACM,2001,57-66.
    [97]P. Domingos, Mining social networks for viral marketing. IEEE Intelligent Systems,2005,20 (1):
    [98]S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems,1998,30 (7):107-117.
    [99]L. Lu, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex networks. Physical Review E,2009,80 (4):046122.
    [100]D. M. Boyd, N. B. Ellison, Social network sites:Definition, history, and scholarship. Journal of Computer-Mediated Communication,2007,13 (1):210-230.
    [101]E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Barabasi, Hierarchical organization of modularity in metabolic networks Science,2002,297 (5586):1551-1555.
    [102]G Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005,435: 814-818.
    [103]J. Reichardt, S. Bornholdt, Detecting fuzzy community structures in complex networks with a Potts model. Physical Review E,2004,93 (21):218701.
    [104]A. Capocci, V. D. P. Servedio, G. Caldarelli, F. Colaiori, Detecting communities in large networks Physica A:Statistical Mechanics and its Applications, 2005,352 (2-4):669-676.
    [105]M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices. Physical Review E,2006,74 (3):036104.
    [106]M. Latapy, P. Pons, Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications,2006,10 (2):191-218.
    [107]L. Danon, A. Diaz-Guilera, A. Arenas, The effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics, 2006,11010.
    [108]M. E. J. Newman, Fast algorithm for detecting community structure in networks. Physical Review E,2004,69 (6):066133.
    [109]K. Wakita, T. Tsurumi, Finding community structure in a megascale social networking service. Proceedings of the IADIS International Conference on WWW/Internet,2007,153-162.
    [110]吕琳媛,复杂网络链路预测的研究现状及展望.科学网2010,
    [111]L. Lu, T. Zhou, Link prediction in weighted networks:The role of weak ties Europhysics Letters,2010,89 (1):18001.
    [112]D. B. West, Introduction to graph theory. Beijing:China Machine Press, 2004.
    [113]A. H. Timmer, J. A. G. Jess, Exact scheduling strategies based on bipartite graph matching. Proceedings of the 1995 European conference on Design and Test Washington, DC:IEEE Computer Society,1995,
    [114]N. McKeown, The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions on Networking 19997(2):188-201.
    [115]J. Edmonds, Paths, trees, and flowers. Canadian Journal of Mathematics, 1965,17:449-467.
    [116]J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing,1973,2 (4):225-231.
    [117]H. W. Kuhn, B. M. College, The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,1955,2 (1):83-97.
    [118]J. Munkres, Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics,1957,5 (1):32-38.
    [119]D. Avis, A survey of heuristics for the weighted matching problem. Networks,1983,13 (4):475-493.
    [120]J. Hoepman, Simple distributed weighted matchings. arXiv.Cs/0410047V1, 2004,
    [121]F. Manne, R. H. Bisseling, A parallel approximation algorithm for the weighted maximum matching problem. Parallel Processing and Applied Mathematics LNCS,2008,4967:708-717.
    [122]B. Kalyanasundaram, K. Pruhs, On-line weighted matching. Proceedings of the second annual ACM-SIAM symposium on Discrete algorithms, San Francisco, California, United States:Society for Industrial and Applied Mathematics,1991,
    [123]马建,腾弘飞,孙治国,杨宏宇,图形匹配问题.计算机科学,2001,29(4):61-64.
    [124]邹潇湘,图同构中的一类顶点细分方法.软件学报,2007,18(2):213-219.
    [125]D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern recognition. Journal of Pattern Recognition and Artificial Intelligence, 2004,18 (3):265-298.
    [126]J. R. Ullman, An algorithm for subgraph isomorphism. Journal of the Association for Computing Machinery,1976,23:31-42.
    [127]L. P. Cordella, P. Foggia, C. Sansone, M. Vento, Fast graph matching for detecting CAD image components.15th International Conference on Pattern Recognition,2000,1034-1037.
    [128]J. Larrosa, G. Valiente, Constraint satisfaction algorithms for graph pattern matching. Mathematical Structures in Computer Science,2002,12:403-422.
    [129]B. D. McKay, Practical graph isomorphism. Congressus Numerantium, 1981,30:45-87.
    [130]T. Gruber, Ontolingua:A translation approach to portable ontology specifications. Knowledge Acquisition,1993,5 (2):199-200.
    [131]J. M. Ruiz-Sanchez, R. Valencia-Garcia, J. T. Fernandez-Breis, R. Martinez-Bejar, P. Compton, An approach for incremental knowledge acquisition from text. Expert Systems with Applications,2003,25 (1):77-86.
    [132]S.-H. Liao, Expert system methodologies and applications—a decade review from 1995 to 2004. Expert Systems with Applications,2005,28 (1):93-103.
    [133]V. C. Storey, D. Dey, H. Ullrich, S. Sundaresan, An ontology-based expert system for database design. Data & Knowledge Engineering,1998,28 (1):31-46.
    [134]J. Morbach, A. Yang, W. Marquardt, OntoCAPE-A large-scale ontology for chemical process engineering. Engineering Applications of Artificial Intelligence, 2007,20:147-161.
    [135]O. O. Ugwu, C. J. Anumba, A. Thorpe, Ontological foundations for agent support in constructability assessment of steel structures—a case study. Automation in Construction,2005,14 (1):99-114.
    [136]A. Maedche, S. Staab, Measuring similarity between ontologies Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management, Berlin:Springer Verlag,2002,
    [137]A. Doan, J. Madhavan, P. Domingos, A. Halevy, Learning to map between ontologies on the semantic web. Proceedings of the 11th international conference on World Wide Web, Hawaii, USA:ACM,2002,662-673.
    [138]M. S. Lacher, G. Groh, Facilitating the exchange of explicit knowledge through ontology mappings. Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, Florida, USA:AAAI,2001, 305-309.
    [139]M. Ehrig, Y. Sure, Ontology mapping-an integrated approach Lecture Notes in Computer Science,2004,30653:76-91.
    [140]S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding:A versatile graph matching algorithm and its application to schema matching. Proceedings of the 18th International Conference on Data Engineering, San Jose, California:IEEE Press, 2002,117-128.
    [141]J. Madhavan, P. A. Bernstein, E. Rahm, Generic schema matching with cupid.27th VLDB Conference,2001,49-58.
    [142]N. F. Noy, M. A. Musen, PROMPT:algorithm and tool for automated ontology merging and alignment. Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence AAAI Press,2000,450-455.
    [143]A. Doan, J. Madhavan, P. Domingos, A. Halevy, Learning to map between ontologies on the semantic web. Proceedings of the 11th international conference on World Wide Web, Hawaii, USA:ACM,2002,
    [144]Y. Kalfoglou, M. Schorlemmer, Ontology mapping:the state of the art. The Knowledge Engineering Review,2003,18 (1):1-31.
    [145]T. Devogele, C. Parent, S. Spaccapietra, On spatial database integration. International Journal of Geographical Information Science,1998,12 (4):335-352.
    [146]张桥平,李德仁,龚健雅,地图合并技术.测绘通报,2001,7:6-8.
    [147]唐文静,海陆地理空间矢量数据融合技术研究.哈尔滨工程大学博士学位论文,2009.
    [148]A. Saalfeld, Conflation automated map compilation. International Journal of Geographical Information Science,1988,2 (3):217-228.
    [149]V. Walter, D. Fritsch, Matching spatial data sets:a statistical approach. International Journal of Geographical Information Science,1999,13 (5):445-473.
    [150]D. Xiong, A three-stage computational approach to network matching. Transportation Research Part C,2000,8 (1):71-89.
    [151]陈玉敏,龚健雅,史文中,多尺度道路网的距离匹配算法研究.测绘学报,2007,36(1):84-90.
    [152]R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network Motifs:simple building blocks of complex networks. Science,2002,298 (5594):824-827.
    [153]S. Mangan, U. Alon, Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences,2003,100 (21): 11980-11985.
    [154]S. Wernicke, F. Rasche, FANMOD:A Tool for Fast Network Motif Detection. Bioinformatics,2006,22 (9):1152-1153.
    [155]J. Flannick, Algorithms for biological network alignment Stanford University Ph.D. Thesis,2009.
    [156]O. Kuchaiev, N. Przulj, Global Network Alignment. Nature Precedings, 2010,
    [157]B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, T. Ideker, PathBLAST:a tool for alignment of protein interaction networks. Nucleic Acids Research,2004,32 (2):83-88.
    [158]R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp, T. Ideker, Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences,2005,102 (6):1974-1979
    [159]M. Koyuturk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, A. Grama, Pairwise alignment of protein interaction networks. Journal of Computational Biology,2006,13 (2):182-199.
    [160]J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, S. Batzoglou, Graemlin:General and robust alignment of multiple large interaction networks. Genome Research,2006,16:1169-1181.
    [161]M. Kalaev, V. Bafna, R. Sharan, Fast and accurate alignment of multiple protein networks. Journal of Computational Biology,2009,16 (8):989-999.
    [162]R. Singh, J. Xu, B. Berger, Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences,2008,105 (35):12763-12768.
    [163]J. Flannick, A. Novak, C. B. Do, B. S. Srinivasan, S. Batzoglou, Automatic parameter learning for multiple network alignment. Proceedings of the 12th annual international conference on Research in computational molecular biology Singapore: Springer-Verlag,2008,214-231.
    [164]M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, Y. Wang, Algorithms for large, sparse network alignment problems.2009 Ninth IEEE International Conference on Data Mining, Miami, Florida:IEEE Press,2009,
    [165]O. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, N. Przulj, Topological network alignment uncovers biological function and phylogeny. Journal of The Royal Society Interface,2010,1-13.
    [166]T. Milenkovic, W. L. Ng, W. Hayes, N. Przulj, Optimal network alignment with graphlet degree vectors. Cancer Inform,2010,30 (9):121-137.
    [167]F. Lorrain, H. C. White, Structural equivalence of individuals in networks. Journal of Mathematical Sociology,1971,1:49-80.
    [168]P. N. Tan, M. Steinbach, V. Kumar, Introduction to data mining. New York, USA:Addison-Wesley,2005.
    [169]G. Salton, Introduction to modern information retrieval. Auckland: MuGraw-Hill,1983.
    [170]T. Sorensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biologiske Skrifter,1948,5:1-34.
    [171]E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A. L. Barabasi, Hierarchical organization of modularity in metabolic networks. Science,2002,297 (5586):1551-1555.
    [172]E. A. Leicht, P. Holme, M. E. J. Newman, Vertex similarity in networks. Physical Review E,2006,73 (3):026120.
    [173]L. A. Adamic, E. Adar, Friends and neighbors on the Web. Social Networks, 2003,25 (3):211-230
    [174]M. E. J. Newman, The structure of scientifc collaboration networks. Proceedings of the National Academy of Sciences,2001,98:404-409.
    [175]S. Zhou, R. J. Mondragon, The rich-club phenomenon in the Internet topology. IEEE communications letters,2004,8 (3):180-182.
    [176]L. Katz, A new status index derived from sociometric analysis. Psychometrika,1953,18 (1):39-43.
    [177]G Jeh, J. Widom, SimRank:A measure of structural-context similarity. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York:Association of Computing Machinery,2002, 538-543.
    [178]A. Clauset, C. Moore, M. E. J. Newman, Structural inference of hierarchies in networks. Proceedings of the 23rd International Conference on Machine Learning (ICML),2006,
    [179]D. Heckerman, Bayesian networks for data Mining. Data mining and knowledge discovery,1997,1 (1):79-119.
    [180]L. Getoor, N. Friedman, D. Koller, B. Taskar, Probabilistic models of relational structure. Proceedings of ICML,2001,
    [181]H. Rue, L. Held, Gaussian Markov random fields:theory and applications. CRC Press,2005.
    [182]S. Mossa, M. Barthelemy, H. E. Stanley, L. A. N. Amaral, Truncation of power law behavior in "scale-free" network models due to information filtering. Physical Review Letters,2002,88 (13):138701.
    [183]X. Li, G. Chen, A local-world evolving network model. Physica A: Statistical Mechanics and its Applications,2003,328 (1-2):274-286.
    [184]J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, A. L. Barabasi, Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences,2007,104 (18): 7332-7336.
    [185]R. Guimera, L. Danon, A. D. Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions. Physical Review E,2003,68 (6):065103.
    [186]J. Leskovec, E. Horvitz, Planetary-scale views on an instant-messaging network. Proceeding of the 17th international conference on World Wide Web, Beijing, China:ACM 2008,915-924.
    [187]J. Leskovec, Dynamics of large networks. Carnegie Mellon University Ph.D Thesis,2008.
    [188]N. F. A. Hasan, L. A. Adamic, Expressing social relationships on the blog through links and comments. ICWSM'2007 Boulder, Colorado, USA:2007,
    [189]胡海波,徐玲,王科,汪小帆,大型在线社会网络结构分析.上海交通大学学报,2009,43(4):587-595.
    [190]A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, California, USA:ACM 2007,29-42.
    [191]L. Lovasz, M. D. Plummer, Matching theory. Amsterdam, Netherlands: Elsevier Science Publishers,1986.
    [192]G. H. Golub, C. F. V. Loan, Matrix computations. Baltimore, Maryland: Johns Hopkins University Press,2006.
    [193]D. Knuth, The art of computer programming vol.3:Sorting and Searching. Reading, MA:Addison-Wesley,1975.
    [194]R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence, San Francisco, CA, USA:Morgan Kaufmann,1995,1137-1143.
    [195]Y. Xiao, M. Xiong, W. Wang, H. Wang, Emergence of symmetry in complex networks. Physical Review E,2008,77 (6):066108.
    [196]T. G. Dietterich, Ensemble methods in machine learning. First International Workshop, Multiple Classifier Systems 2000, Cagliari, Italy:Springer, 2000,1-15.
    [197]R. Meir, G. Ratsch, An introduction to boosting and leveraging. Advanced lectures on machine learning, LNCS,2003,2600/2003 118-183.
    [198]L. Breiman, Random Forests. Machine learning,2001,45 (1):5-32.
    [199]L. Breiman, Bagging predictors. Machine learning,1996,24 (2):123-140.
    [200]R. Andersen, F. Chung, K. Lang, Local graph partitioning using PageRank vectors, the 47th Annual IEEE Symposiumon Foundations of Computer Science, Berkeley, CA 2006,
    [201]欧阳敏,复杂系统崩溃过程的分析与控制.华中科技大学博士学位论文,2009.
    [202]A. Vespignani, The fragility of interdependency. Nature,2010,464: 984-985.
    [203]甘德强,胡江溢,韩祯祥,2003年国际若干停电事故思考.电力系统自动化,2004,28(3):1-5.[204] I. Dobson, B. Carreras, V. Lynch, D. Newman, An Initial Model for Complex Dynamics in Electric Power System Blackouts.34th Annual Hawaii International Conference on System Sciences, Maui, Hawaii:IEEE,2003,2017-2023.
    [205]曹一家,电力系统大停电的自组织临界现象.电网技术,2005,29(15):1-5.
    [206]S. M. Rinaldi, J. P. Peerenboom, T. K. Kelly, Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine,2002,21 (6):11-25.
    [207]毛子骏,费奇,欧阳敏,洪流,关联基础设施网络模型研究综述.计算机科学,2009,36(3):5-8.
    [208]毛子骏,基础设施网络中灾害扩散与控制研究.华中科技大学博士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700