基于分布式天线的网络设计及网络协作通信研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式天线系统(Distributed Antenna Systems,DAS)与毫微微蜂窝基站(Femto)是未来无线通信系统中十分重要的组成部分,它们都具有发送功率低、覆盖范围小并且部署成本较低等特点。一方面,它们往往进行高密度部署,能够有效提高通信系统的覆盖区域,消除通信系统的覆盖盲点;另一方面,它们支持的用户数较少,为每个用户分配的资源较多,能够满足用户的高速率通信需求。
     部分频率复用(Fractional Frequency Reuse,FFR)能够有效提高小区边缘用户的接收信号与干扰加噪声比(Signal-to-Interference-plus-Noise Ratio,SINR)以及整个通信系统的频谱效率。此时,传统的宏小区被划分为小区中心区域与小区边缘区域,而所有宏小区的中心区域将使用相同的频带,而在相邻宏小区的边缘区域部署完全正交的频谱资源。此时,小区中心区域的用户离相邻小区的宏基站距离较远,其收到的共信道干扰经过长距离衰减将大大降低,用户的接收SINR能够满足其需求;而小区边缘区域的用户将不再收到来自相邻小区的共信道干扰,其接收SINR获得提高。从频谱效率的角度来看,采用FFR的通信系统的小区边缘区域的频谱效率仍然很低。为了进一步提高小区边缘区域的频谱效率,DAS可以部署在宏小区的边缘区域;另外我们在系统的整个覆盖范围内随机部署Femto基站,用于服务通信系统的室内用户。本文从系统资源分配的角度出发,针对上述的无线通信系统进行研究,并取得了若干具有创新性的研究成果。论文的主要工作和创新点可概括如下:
     1.对于小区边缘区域的终端用户而言,它由距离其最近的分布式天线提供服务;当终端用户处于两个分布式天线中间位置时,它将收到来自于相邻分布式天线的强共信道干扰。为了降低相邻分布式天线之间的共信道干扰,采用多点协作(CoordinatedMulti-Point,CoMP)传输可以有效降低甚至消除多用户之间的共信道干扰。本文采用非支配排序基因算法(Non-dominated Sorting Genetic Algorithm II,NSGA-II)对基于分布式天线系统的FFR通信系统进行了研究,对分布式天线系统的部署位置、宏基站与分布式天线之间的功率分配以及系统的频谱资源分配进行了优化。该算法能够有效提高该通信系统的系统吞吐量,同时能够降低该网络的覆盖盲点。大量的仿真结果表明,无论对于那种频谱分配方案,相对于传统的通信系统而言,基于分布式天线的无线通信系统都能够获得更高的系统吞吐量与较高的覆盖率。如果发送端具有当前所有链路的完美CSI,那么基于CoMP传输的无线通信系统将获得3dB的系统吞吐量增益;然而,当通信系统的实际信道估计误差、信道量化误差等信道误差较大时,其能够达到的系统性能将逐渐降低,甚至比传统的非CoMP传输的系统更差。研究结果表明,实际通信系统采用CoMP传输时其信道状态信息误差必须控制在一定的范围内。
     2.对于基于分布式天线的FFR通信系统而言,CoMP传输要求在发送端具有当前所有链路的信道状态信息(Channel State Information,CSI)。CoMP传输抗共信道干扰的能力取决于发送端的预编码矩阵的准确性,而发送端的预编码矩阵又是当前所有链路CSI的函数。在实际的通信系统中,尤其是针对上、下行采用频分复用(FrequencyDivision Duplex,FDD)的通信系统而言,接收端通过对导频信号进行估计来获得当前链路的CSI估计值,然后对其进行量化处理并反馈回发送端。另一方面,CoMP传输总是假设发送端与接收端能够进行完美的时间与频率同步,并且假设发送端的所有信号同时到达接收端。本论文针对上述问题就信道估计误差、量化误差、反馈时延以及收发端之间的时间频率偏差对多种频率复用技术下CoMP传输的影响进行了研究,同时我们推导出迫零预编码和随机向量量化处理时的协作传输增益的理论值,它有助于基站协作传输的理论分析工作。
     3.为了提高通信系统的频谱效率同时提高系统的用户接收性能,我们考虑在宏小区的边缘区域部署DAS,同时在宏小区内部署Femto基站分别支持系统的边缘用户以及室内用户。本文针对基于DAS与Femto的通信网络进行了研究,推导出了基于DAS与Femto基站的终端用户接收SINR的分布函数,并给出了不同SINR门限下的用户平均中断概率以及系统的空间平均吞吐量。本文的研究结果表明,对于采用统一频率复用(Unity Frequency Reuse,UFR)的系统而言,基于DAS和Femto的双层网络的优化设计与Femto基站的密度无关;当系统的频率分配方案采用FFR时,随着Femto基站密度越来越高,宏小区将细化为以宏基站以及分布式天线为中心的覆盖区域更小的微小区。
     4.当终端用户处于宏小区的边缘区域时,相邻宏基站与多个终端用户形成网络多输入多输出(Network Multiple-Input Multiple-Output,Network-MIMO)系统,基站协作传输可以有效降低多用户之间的共信道干扰。由于实际通信系统中存在的信道估计误差、信道量化误差以及反馈时延,当基站协作传输不能满足用户的需求时,本文提出了基于联合网络单元(Coalition Network Elements,CNE)的两跳传输方案,其中相邻的宏基站在第一跳中对多个终端用户进行基站协作传输,而CNE负责其到终端用户之间的第二跳传输。当基站协作传输采用迫零(Zero-Forcing,ZF)预编码算法且终端用户采用随机向量量化(Random Vector Quantization,RVQ)处理估计到到的信道状态信息时,本文推导出了基站到用户端的协作传输增益,同时本文推导出了所提传输方案中的从CNE到终端用户的第二跳传输的概率,从而给出了终端用户的统计接收SINR。研究结果表明,本文提出的基于CNE的联合两跳传输方案能够有效提高边缘用户的接收SINR,同时该传输方案的系统性能对链路CSI的准确性要求降低,抗CSI的能力增强。大量的实验仿真结果表明本文提出的基于CNE的两跳传输方案可以作为传统的基站协作传输方案的备份,并且当CNE的贪婪因子的最优值为0.45。
Distributed Antenna System (DAS) and Femtocell are important transmitting elementsin future wireless communication systems. Typically, both DAS and Femtocells have smallertransmit power, smaller coverage and lower cost. First, they are capable of supporting highercoverage because of more-density deployment. Then, more resource can be allocated into eachuser supported, since less users are supported within each Femtocell or each distributed antenna,compared with macrocell. As a result, DAS-aided cellular network or DAS-aided macro-femtotwin-layer networks are one of future wireless networks.
     A more sophisticated technique of exploiting the available frequency band is constitutedby the Fractional Frequency Reuse (FFR), which improves the area spectral efficiency of clas-sic Frequency Reuse (FR), while maintaining a high Signal-to-Interference-and-Noise Ratio(SINR) in the cell-edge area. To elaborate a little further, the philosophy of FFR is that eachcell is divided into a Cell-Centre Region (CCR) having access to the cell-centre’s frequencyband and the Cell-Edge Region (CER) having access to the cell-edge’s frequency band.In which case, the users within the CER no longer suffer from strong Co-Channel Interfer-ence (CCI) from adjacent cells. In order to meet the traffic demands of indoor mobile users,Femtocells have been invoked as a cost-effective way of balancing the traffic of the entire cel-lular system. Femtocells may be overlaid onto macrocells, forming a hierarchical twin-layernetwork structure. This paper investigates the DAS-aided cellular network relying on FFR aswell as DAS-aided macro-femto twin-layer network. Our main works and achievements aresummarized as follows:
     1. DAS-aided Unity Frequency Reuse (UFR) as well as FFR transmission scenarios areinvestigated in this paper employing the classic multi-objective of Non-dominated Sorting Ge-netic Algorithm II (NSGA-II) for maximising the cell-throughput and the coverage. Morespecifically, Coordinated-Multi-Point (CoMP) cooperation is invoked amongst the distributedantennas and the Base Station (BS) in support of the Mobile Stations (MSs) roaming at the cell-edge, while considering a range of practical impairments. Although CoMP-aided transmissionsare capable of achieving a higher throughput and coverage with the aid of idealised perfect CSIat the transmitters’ side, the practical CSI impairments dramatically degrade the performance,which hence became worse than that of Non-CoMP transmissions.
     2. CoMP transmission aided DAS are proposed for increasing the received SINR in thecell-edge area of a cellular system employing FFR in the presence of realistic imperfect Chan-nel State Information (CSI) as well as synchronisation errors between the transmitters and re-ceivers. Our simulation results demonstrate that the CoMP-aided DAS scenario is capable ofincreasing the attainable SINR by up to3dB in the presence of a wide range of realistic imper-fections. Our numerical results demonstrated that the CoMP transmission scenario achieved a5dB SINR improvement than that of Non-CoMP transmission, even when only6quantisationbits involved in quantisation feedback process. Synchronisation studies showed that the Non-CoMP and UFR transmission scenarios are more invulnerable to the synchronisation errors.
     3. DAS and femtocells are capable of improving the attainable performance in the cell-edge area and in indoor residential areas, respectively. In order to achieve a high spectralefficiency, both the distributed antenna and Femtocells may have to reuse the spectrum of themacrocellular network. As a result, the performance of both outdoor macrocell users and in-door femtocell users suffers from CCI. Hence in this paper, heterogenous cellular networks areinvestigated, where the DAS-aided macrocells and femtocells co-exist within the same area.Both the outage probability and the spatially averaged throughput are derived and the networkis optimised either for minimising the outage probability or for maximising the macrocell’sthroughput. Our analysis demonstrates that surprisingly, the Unity Frequency Reuse (UFR)based macrocellular system can be optimised in isolation, without considering the impact offemtocells. We found that the macrocells relying on FFR tend to migrate to several small cells,illuminated by the distributed antennas, when the density of femtocells becomes high.
     4. Remote Coalition Network Elements (CNE) are proposed for BS cooperation, wherethe CNEs carry traffic in the second hop for the primary BS in support of its cell-edge MSs byexploiting the unused frequency bands of the main BS network, while considering a range ofpractical impairments. We derive the coalition probability of the CNEs by taking into accountboth the specific system load as well as the CNE’s greediness factor. Our simulation resultsdemonstrate that the proposed solution is capable of substantially increasing the attainableSINR in a wide range of scenarios and it is also robust to diverse practical imperfections. Ina nutshell, the advocated scheme may be found especially beneficial as a fall-back solution,when the conventional BS-Cooperation malfunctions, or when it is prone to CSI signallingimperfections. Our simulation results show that the maximal sum-profit is achieved, when thegreedy factor is around=0.45and a coalition is established with MSs roaming in the range of <0.25
引文
[1] A. Goldsmith. Wireless communications [M]. Cambridge: Cambridge University Press,2005
    [2] T. S. Rappaport, A. Annamalai, R. M. Buehrer, et al. Wireless communications: past events and afuture perspective [J]. IEEE Communications Magazine,2002,40(5):148–161
    [3] A. F. Molisch. Wireless communications [M]. Piscataway: Wiley-IEEE Press,2011
    [4] E. Biglieri. MIMO wireless communications [M]. Cambridge: Cambridge University Press,2007
    [5]王文博.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2007
    [6] S. Rollins, R. Knutson, H. Vo, et al. Autonomous mobile periscope system (AMPS)[C]. Proceedingsof1998International Symposium on Underwater Technology. IEEE,1998.423–427
    [7] L. Taylor, S. Bernstein. TACS–a demand assignment system for FLEETSAT [J]. IEEE Transactionson Communications,1979,27(10):1484–1496
    [8] L. Harte, I. Ebrary. CDMA IS-95for cellular and PCS [M]. New York: McGraw-Hill,1999
    [9] D. N. Knisely, S. Kumar, S. Laha, et al. Evolution of wireless data services: IS-95to CDNA2000[J]. IEEE Communications Magazine,1998,36(10):140–149
    [10] J. Scourias. Overview of GSM: the global system for mobile communications [J]. University ofWaterloo,1996.
    [11] S. Kumar. Mobile communications: global trends in the21st century [J]. International Journal ofMobile Communications,2004,2(1):67–86
    [12] G. Hooper, A. Sicher. Advanced TDMA digital AMPS mobile data and messaging capabilities [C].Proceedings of IEEE1996First Annual Conference on Emerging Technologies and Applications inCommunications,1996.162–165
    [13] K. J. Molnar, G. E. Bottomley. D-AMPS performance in PCS bands with array processing [C].Proceedings of1996IEEE46th Vehicular Technology Conference on’Mobile Technology for theHuman Race’,1996.1496–1500
    [14] B. Hagerman, T. Ostman, K. J. Molnar, et al. Field test performance results for D-AMPS in PCSbands with array processing [C]. Proceedings of1997IEEE47th Vehicular Technology Conference,1997.1582–1586
    [15]赵荣黎.3G移动通信及2G到3G的演进[J].移动通信,2001,25(12)
    [16]尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望[J].电子学报,1999,27(11):3–8
    [17]李少谦.第三代移动通信的兴起与进展[J].世界科技研究与发展,1999,21(004):47–51
    [18] K. Kang, J. Yoo, Y. Lee. A network architecture for IMT-2000switching system [C]. Proceedings of1997IEEE International Conference on Personal Wireless Communications,1997.257–260
    [19] E. Dahlman, B. Gudmundson, M. Nilsson, et al. UMTS/IMT-2000based on wideband CDMA [J].IEEE Communications Magazine,1998,36(9):70–80
    [20] M. M. Buddhikot, G. Chandranmenon, S. Han, et al. Design and implementation of aWLAN/CDMA2000interworking architecture [J]. IEEE Communications Magazine,2003,41(11):90–100
    [21] D. N. Knisely, S. Kumar, S. Laha, et al. Evolution of wireless data services: IS-95to CDMA2000[J]. IEEE Communications Magazine,1998,36(10):140–149
    [22] P. Agashe, R. Rezaiifar, P. Bender. CDMA2000high rate broadcast packet data air interface design[J]. IEEE Communications Magazine,2004,42(2):83–89
    [23]李世鹤,杨运年. TD-SCDMA第三代移动通信系统[M].北京:人民邮电出版社,2009
    [24] B. Li, D. Xie, S. Cheng, et al. Recent advances on TD-SCDMA in China [J]. IEEE CommunicationsMagazine,2005,43(1):30–37
    [25] H. H. Chen, C. X. Fan, W. W. Lu. China’s perspectives on3G mobile communications and beyond:TD-SCDMA technology [J]. IEEE Wireless Communications,2002,9(2):48–59
    [26] S. Y. Hui, K. H. Yeung. Challenges in the migration to4G mobile systems [J]. IEEE CommunicationsMagazine,2003,41(12):54–59
    [27]郑宝玉,丁家昕.第三代移动通信系统的现状及关键技术[J].通信世界,2008,(5)
    [28] S. Hara, R. Prasad. Multicarrier techniques for4G mobile communications [M]. London: ArtechHouse Publishers,2003
    [29] T. B. Zahariadis. Migration toward4G wireless communications [J]. IEEE Wireless Communica-tions,2004,11(3):6–7
    [30] H. H. Chen, M. Guizani, W. Mohr. Evolution toward4G wireless networking [J]. IEEE Network,2007,21(1):4–5
    [31]陈明,尤肖虎. B3G移动通信系统的研究框架[J].中兴通讯技术,2006,12(2):27–31
    [32] W. Mohr. The WINNER (Wireless World Initiative New Radio) project–development of a radiointerface for systems beyond3G [J]. International Journal of Wireless Information Networks,2007,14(2):67–78
    [33] E. M. Diaz, P. Gelpi, J. von Hafen, et al. The WINNER project: research for new radio interfacesfor better mobile services [J]. IEICE Transactions on Fundamentals of Electronics, Communicationsand Computer Sciences,2004,87(10):2592–2598
    [34] S. J. Vaughan-Nichols. Achieving wireless broadband with WiMAX [J]. IEEE Computer,2004,37(6):10–13
    [35] Z. Abichar, Y. Peng, J. M. Chang. WiMAX: The emergence of wireless broadband [J]. IT profes-sional,2006,8(4):44–48
    [36] K. Lu, Y. Qian, H. H. Chen. Wireless broadband access: WiMAX and beyond-a secure and service-oriented network control framework for WiMAX networks [J]. IEEE Communications Magazine,2007,45(5):124–130
    [37] H. Ekstrom, A. Furuskar, J. Karlsson, et al. Technical solutions for the3G long-term evolution [J].IEEE Communications Magazine,2006,44(3):38–45
    [38] X. H. You, G. Chen, M. Chen, et al. The FUTURE project in China [J]. IEEE CommunicationsMagazine,2005,43(1):70–75
    [39]尤肖虎. FuTURE B3G研究开发及关键技术进展[J].移动通信,2006,30(6):18–22
    [40] J. Zhu, T. Jin, G. Feng. Overview of the ubiquitous wireless mobile networks and systems [C].Proceedings of Wireless Communications, Networking and Mobile Computing,2008. WiCOM’08.4th International Conference on,2008.1–4
    [41] D. Niyato, X. Lu, P. Wang. Adaptive power management for wireless base stations in a smart gridenvironment [J]. IEEE Wireless Communications,2012,19(6):44–51
    [42] K. Kang, J. Ryu, S. Choi, et al. Toward energy-efficient error control in3G broadcast video [J]. IEEEWireless Communications,2012,19(6):60–67
    [43] H. Sun, A. Nallanathan, B. Tan, et al. Relaying technologies for smart grid communications [J].IEEE Wireless Communications,2012,19(6):52–59
    [44] A. Barbuzzi, P. H. J. Perala, G. Boggia, et al.3GPP radio resource control in practice [J]. IEEEWireless Communications,2012,19(6):76–83
    [45] A. Ghosh, N. Mangalvedhe, R. Ratasuk, et al. Heterogeneous cellular networks: from theory topractice [J]. IEEE Communications Magazine,2012,50(6):54–64
    [46] R. Q. Hu, Y. Qian, S. Kota, et al. Hetnets-a new paradigm for increasing cellular capacity andcoverage [Guest Editorial][J]. IEEE Wireless Communications,2011,18(3):8–9
    [47] A. Damnjanovic, J. Montojo, Y. Wei, et al. A survey on3GPP heterogeneous networks [J]. IEEEWireless Communications,2011,18(3):10–21
    [48] Shu-ping Yeh, S. Talwar, Geng Wu, et al. Capacity and coverage enhancement in heterogeneousnetworks [J]. IEEE Wireless Communications,2011,18(3):32–38
    [49] C. Liu, Z. Pan, N. Liu, et al. A novel energy saving strategy for LTE HetNet [C]. Proceedings ofWireless Communications and Signal Processing (WCSP),2011International Conference on,2011.1–4
    [50] M. Usman, A. Vastberg, T. Edler. Energy efficient high capacity HETNET by offloading high QoSusers through femto [C]. Proceedings of Networks (ICON),201117th IEEE International Conferenceon,2011.19–24
    [51] J. Hoadley, P. Maveddat. Enabling small cell deployment with HetNet [J]. IEEE Wireless Commu-nications,2012,19(2):4–5
    [52] N. Miyazaki, X. Wang, S. Konishi. A study on homogeneous and heterogeneous-based addition-al network deployments with application of coordinated multi-point operation [C]. Proceedings ofPersonal Indoor and Mobile Radio Communications (PIMRC),2012IEEE23rd International Sym-posium on,2012.130–135
    [53] Dongwoon Bai, Cheolhee Park, Jungwon Lee, et al. LTE-advanced modem design: challenges andperspectives [J]. IEEE Communications Magazine,2012,50(2):178–186
    [54] H. Shimodaira, G. K. Tran, S. Tajima, et al. Optimization of picocell locations and its parametersin heterogeneous networks with hotspots [C]. Proceedings of Personal Indoor and Mobile RadioCommunications (PIMRC),2012IEEE23rd International Symposium on,2012.124–129
    [55] S. Landstrom, H. Murai, A. Simonsson. Deployment aspects of LTE pico nodes [C]. Proceedings ofCommunications Workshops (ICC),2011IEEE International Conference on,2011.1–5
    [56] A. A. M. Saleh, A. Rustako, R. Roman. Distributed antennas for indoor radio communications [J].IEEE Transactions on Communications,1987,35(12):1245–1251
    [57] K. J. Kerpez, L. Ariyavisitakul. A radio access system with distributed antennas [J]. Proceedings ofIEEE Global Telecommun. Conf.1994, Globecom’94,1994.27–30
    [58] K. J. Kerpez. A radio access system with distributed antennas [J]. IEEE Transactions on VehicularTechnology,1996,45(2):265–275
    [59] H. H. Xia, A. B. Herrera, S. Kim, et al. A CDMA-distributed antenna system for in-building personalcommunications services [J]. IEEE Journal on Selected Areas in Communications,1996,14(4):644–650
    [60] I. Rivas, L. B. Lopes. Reverse-link power control in CDMA distributed antenna systems [C]. Proceed-ings of IEEE Personal Indoor and Mobile Radio Communications (PIMRC),1997,1997.1074–1078
    [61] A. Obaid, H. Yanikomeroglu. Reverse-link power control in CDMA distributed antenna systems [C].Proceedings of IEEE Wireless Communications and Networking Conference, WCNC2000,2000.608–612
    [62] L. Dai, S. Zhou, Y. Yao. Capacity analysis in CDMA distributed antenna systems [J]. IEEE Transac-tions on Wireless Communications,2005,4(6):2613–2620
    [63] Haoming Li, J. Hajipour, A. Attar, et al. Efficient HetNet implementation using broadband wirelessaccess with fiber-connected massively distributed antennas architecture [C]. IEEE Wireless Commu-nications,2011,18(3):72–78
    [64] M. Kurras, K. Borner, L. Thiele, et al. Achievable system performance gains using distributed anten-na deployments [C]. Proceedings of Personal Indoor and Mobile Radio Communications (PIMRC),2012IEEE23rd International Symposium on,2012.143–148
    [65] M. V. Clark, T. M. Willis III, L. J. Greenstein, et al. Distributed versus centralized antenna arraysin broadband wireless networks [C]. Proceedings of IEEE53rd Vehicular Technology Conference,VTC-2001Spring,2001.33–37
    [66] A. Attar, H. Li, V. C. M. Leung. Green last mile: how fiber-connected massively distributed antennasystems can save energy [J]. IEEE Wireless Communications,2011,18(5):66–74
    [67] Zhu H. Performance comparison between distributed antenna and microcellular systems [J]. IEEEJournal on Selected Areas in Communications,2011,29(6):1151–1163
    [68] X. Chen, X. Xu, X. Tao. Energy efficient power allocation in generalized distributed antenna system[J]. IEEE Communications Letters,2012,16(7):1022–1025
    [69] Wonil Roh, A. Paulraj. Outage performance of the distributed antenna systems in a composite fadingchannel [C]. Proceedings of Vehicular Technology Conference,2002. Proceedings. VTC2002-Fall.2002IEEE56th,2002.1520–1524vol.3
    [70] H. Kim, S. Lee, K-J Lee, et al. Transmission schemes based on sum rate analysis in distributedantenna systems [J]. IEEE Transactions on Wireless Communications,2012,11(3):1201–1209
    [71] Zhuang H, Dai L, Xiao L, et al. Spectral efficiency of distributed antenna system with random antennalayout [J]. Electronics Letters,2003,39(6):495–496
    [72] Sang-Rim Lee, Sung-Hyun Moon, Jin-Sung Kim, et al. Capacity analysis of distributed antennasystems in a composite fading channel [J]. IEEE Transactions on Wireless Communications,2012,11(3):1076–1086
    [73] C. Briso-Rodriguez, J. M. Cruz, J. I. Alonso. Measurements and modeling of distributed antennasystems in railway tunnels [J]. IEEE Transactions on Vehicular Technology,2007,56(5):2870–2879
    [74] E. D. Castaneda-Trujillo, R. Samano-Robles, A. Gameiro. Frequency-reuse planning of the down-link of distributed antenna systems with maximum-ratio-combining (MRC) receivers [J]. IEEE (Re-vista IEEE America Latina) Latin America Transactions,2012,10(3):1703–1709
    [75] Zhu H. On frequency reuse in cooperative distributed antenna systems [J]. IEEE CommunicationsMagazine,2012,50(4):85–89
    [76] Guan K, Zhong Z, J. I. Alonso, et al. Measurement of distributed antenna systems at2.4GHzin a realistic subway tunnel environment [J]. IEEE Transactions on Vehicular Technology,2012,61(2):834–837
    [77] X. Wang, P. Zhu, M. Chen. Antenna location design for generalized distributed antenna systems [J].IEEE Communications Letters,2009,13(5):315–317
    [78] Z. Zhang, Z. Ye, W. Jiang. Optimal antenna placement in distributed antenna systems [J]. Journal ofSystems Engineering and Electronics,2012,23(4):467–472
    [79] Eunsung Park, Sang-Rim Lee, Inkyu Lee. Antenna placement optimization for distributed antennasystems [J]. IEEE Transactions on Wireless Communications,2012,11(7):2468–2477
    [80] L-L Yang, W. Fang. Performance of distributed-antenna DS-CDMA systems over composite lognor-mal shadowing and nakagami-m fading channels [J]. IEEE Transactions on Vehicular Technology,2009,58(6):2872–2883
    [81] Wan Choi, J. G. Andrews. Downlink performance and capacity of distributed antenna systems in amulticell environment [J]. IEEE Transactions on Wireless Communications,2007,6(1):69–73
    [82] JongHyun Park, E. Song, W. Sung. Capacity analysis for distributed antenna systems using cooper-ative transmission schemes in fading channels [J]. IEEE Transactions on Wireless Communications,2009,8(2):586–592
    [83] Wang Y, Feng W, Xiao L, et al. Coordinated multi-cell transmission for distributed antenna systemswith partial CSIT [J]. IEEE Communications Letters,2012,16(7):1044–1047
    [84] Chen X, Zhang Z, Chen H H. On distributed antenna systems with limited feedback precoding:opportunities and challenges [J]. IEEE Wireless Communications,2010,17(2):80–88
    [85] T. Koike-Akino, A. F. Molisch, C. Duan, et al. Capacity, MSE and secrecy analysis of linear blockprecoding for distributed antenna systems in multi-user frequency-selective fading channels [J]. IEEETransactions on Communications,2011,59(3):888–900
    [86] Chen X, Zhang Z. Exploiting channel angular domain information for precoder design in distributedantenna systems [J]. IEEE Transactions on Signal Processing,2010,58(11):5791–5801
    [87] J. Zhang, J. Andrews. Distributed antenna systems with randomness [J]. IEEE Transactions onWireless Communications,2008,7(9):3636–3646
    [88] V. Chandrasekhar, J. G. Andrews. Femtocell networks: a survey [J]. IEEE Communications Maga-zine,2008,46(9):59–67
    [89] H. Jo, P. Xia, J. G. Andrews. Downlink femtocell networks: open or closed?[J]. Proceedings ofProc. IEEE ICC,2011.1–5
    [90] Lin P, Zhang J, Chen Y, et al. Macro-femto heterogeneous network deployment and management:from business models to technical solutions [J]. IEEE Wireless Communications,2011,18(3):64–70
    [91] Shu-ping Yeh, S. Talwar, Seong-Choon Lee, et al. WiMAX femtocells: a perspective on networkarchitecture, capacity, and coverage [J]. IEEE Communications Magazine,2008,46(10):58–65
    [92] D. Calin, H. Claussen, H. Uzunalioglu. On femto deployment architectures and macrocell offloadingbenefits in joint macro-femto deployments [J]. IEEE Communications Magazine,2010,48(1):26–32
    [93] R. Madan, J. Borran, A. Sampath, et al. Cell association and interference coordination in hetero-geneous LTE-A cellular networks [J]. IEEE Journal on Selected Areas in Communications,2010,28(9):1479–1489
    [94] K. Yeung, S. Nanda. Channel management in microcell/macrocell cellular radio systems [J]. IEEETransactions on Vehicular Technology,1996,45(4):601–612
    [95] V. Chandrasekhar, J. G. Andrews. Uplink capacity and interference avoidance for two-tier femtocellnetworks [J]. IEEE Transactions on Wireless Communications,2009,8:3498–3509
    [96] Z. Zhao, F. Zheng, A. Wilzeck, et al. Femtocell spectrum access underlaid in fractional frequencyreused marcocell [C]. Proceedings of Proc, IEEE ICC Workshop,2011.1–6
    [97] J. Ling, D. Chizhik, R. Valenzuela. On resource allocation in dense femto-deployments [C]. Proceed-ings of IEEE International Conference on Microwaves, Communications, Antennas and ElectronicsSystems, COMCAS2009.,2009.1–6
    [98] V. Chandrasekhar, J. G. Andrews. Uplink capacity and interference avoidance for two-tier cellularnetworks [C]. Proceedings of IEEE Global Telecommunications Conference,2007. GLOBECOM’07,2007.3322–3326
    [99] V. Chandrasekhar, J. Andrews. Uplink capacity and interference avoidance for two-tier femtocellnetworks [J]. IEEE Transactions on Wireless Communications,2009,8(7):3498–3509
    [100] Zhu Xiao, Peng Wang, Xu Zhang, et al. Incentive mechanism for uplink interference avoidance intwo-tier macro-femto networks [C]. Proceedings of IEEE75th Vehicular Technology Conference(2012VTC Spring),2012.1–6
    [101] S. Kishore, L. J. Greenstein, H. V. Poor, et al. Uplink user capacity in a multicell CDMA system withhotspot microcells [J]. IEEE Transactions on Wireless Communications,2006,5(6):1333–1342
    [102] Oh D C, Lee Y H. Cognitive radio based resource allocation in femto-cells [J]. Journal of Commu-nications and Networks,2012,14(3):252–256
    [103] Yongsheng Shi, A. B. MacKenzie. Distributed algorithms for resource allocation in cellular net-works with coexisting femto-and macrocells [C]. Proceedings of IEEE Global TelecommunicationsConference (GLOBECOM2011),2011.1–6
    [104] M. Peng, X. Zhang, W. Wang. Performance of orthogonal and co-channel resource assignments forfemto-cells in long term evolution systems [C]. IET Communications,2011,5(7):996–1005
    [105] R. Di Taranto, C. Rosenberg. Throughput-based incentives for residential femtocells [C]. Proceed-ings of IEEE22nd International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC2011),,2011.11–15
    [106] J-B Vezin,, L. Giupponi, A. Tyrrell, et al. A femtocell business model: The BeFEMTO view [C].Proceedings of Future Network Mobile Summit (FutureNetw),2011,2011.1–8
    [107] V. Chandrasekhar, M. Kountouris, J. G. Andrews. Coverage in multi-antenna two-tier networks [J].IEEE Transactions on Wireless Communications,2009,8(10):5314–5327
    [108] X. Chu, J. Y. Wu, H. Wang. Outage probability analysis for collocated spectrum-sharing macrocelland femtocells [C]. Proceedings of Proc. IEEE ICC,2011.1–5
    [109] J. Yun, K. G. Shin. Adaptive interferencem management of OFDMA femtocells for co-channeldeployment [J]. IEEE Journal on Selected Areas in Communications,2011,29(6):1225–1241
    [110] Z. Bharucha, H. Haas, G. Auer, et al. Femto-cell resource partitioning [C]. Proceedings of GLOBE-COM Workshops,2009IEEE,2009.1–6
    [111] M.Costa. Writing on dirty paper (Corresp.)[J]. IEEE Transactions on Information Theory,1983,29(3):439–441
    [112] M. Joham, W. Utschick, J. A. Nossek. Linear transmit processing in MIMO communications systems[J]. IEEE Transactions on Signal Processing,2005,53(8):2700–2712
    [113] Q. H. Spencer, A. L. Swindlehurst, M. Haardt. Zero-forcing methods for downlink spatial multiplex-ing in multiuser MIMO channels [J]. IEEE Transactions on Signal Processing,2004,52(2):461–471
    [114] L-L Yang. A zero-forcing multiuser transmitter preprocessing scheme for downlink communications[J]. IEEE Transactions on Communications,2008,56(6):862–865
    [115] M. Sadek, A. Tarighat, A. H. Sayed. A leakage-based precoding scheme for downlink multi-userMIMO channels [J]. IEEE Transactions on Wireless Communications,2007,6(5):1711–1721
    [116] M. Huang, S. Zhou, J. Wang. Analysis of Tomlinson-Harashima precoding in multiuser MIMOsystems with imperfect channel state information [J]. IEEE Transactions on Vehicular Technology,2008,57(5):2856–2867
    [117] S. Lin, W. L. Ho Winston, Ying-chang Liang. Block diagonal geometric mean decomposition (BD-GMD) for MIMO broadcast channels [J]. IEEE Transactions on Wireless Communications,2008,7(7):2778–2789
    [118] Seijoon Shim, Jin Kwak, R. Heath, et al. Block diagonalization for multi-user MIMO with other-cellinterference [J]. IEEE Transactions on Wireless Communications,2008,7(7):2671–2681
    [119] A. Goldsmith, S. A. Jafar, N. Jindal, et al. Capacity limits of MIMO channels [J]. IEEE Journal onSelected Areas in Communications,2003,21(5):684–702
    [120] T. Yoo, N. Jindal, A. Goldsmith. Multi-antenna downlink channels with limited feedback and userselection [J]. IEEE Journal on Selected Areas in Communications,2007,25(7):1478–1491
    [121] J. Zhang, M. Kountouris, J. G. Andrews, et al. Multi-mode transmission for the MIMO broadcastchannel with imperfect channel state information [J]. IEEE Transactions on Communications,2011,59(3):803–814
    [122] N. Jindal. MIMO broadcast channels with finite rate feedback [J]. IEEE Transactions on InformationTheory,2006,52(11):5045–5060
    [123] D. J. Love, andV. K. N. Lau R, D. Gesbert, et al. An overview of limited feedback in wirelesscommunication systems [J]. IEEE Journal on Selected Areas in Communications,2008,26(8):1341–1365
    [124] C. K. Au-Yeung, D. J. Love. On the performance of random vector quantization limited feed-back beamforming in a MISO system [J]. IEEE Transactions on Wireless Communications,2007,6(2):458–462
    [125] W. Santipach, M. L. Honig. Capacity of a multiple-antenna fading channel with a quantized precod-ing matrix [J]. IEEE Transactions on Information Theory,2009,55(3):1218–1234
    [126] E. Bjornson, R. Zakhour, D. Gesbert, et al. Cooperative multicell precoding: rate region character-ization and distributed strategies with instantaneous and statistical CSI [J]. IEEE Transactions onSignal Processing,2010,58(8):4298–4310
    [127] R. Zhang, L. Hanzo. Cooperative downlink multicell preprocessing relying on reduced-rate back-hauldata exchange [J]. IEEE Transactions on Vehicular Technology,2011,60(2):539–545
    [128] H. Zhang, Huaiyu Dai. Cochannel interference mitigation and cooperative processing in downlinkmulticell multiuser MIMO networks [J]. EURASIP Journal on Wireless Communications and Net-working,2004,2004(2):222–235
    [129] N. Jindal, J. G. Andrews, S. Weber. Multi-antenna communication in Ad Hoc networks: achievingMIMO gains with SIMO transmission [J]. IEEE Transactions on Communications,2011,59(2):529–540
    [130] T. Hwang, C. Yang, G. Wu, et al. OFDM and its wireless applications: a survey [J]. IEEE Transac-tions on Vehicular Technology,2009,58(4):1673–1694
    [131] L. Hanzo. OFDM and MC-CDMA for broadband multi-user communications, WLANs, and broad-casting [M]. Piscataway: Wiley-IEEE Press,2003
    [132] J. Terry, J. Heiskala. OFDM wireless LANs: a theoretical and practical guide [M]. Indianapoli:Sams publishing,2002
    [133] Y. Sun, L. Tong. Channel equalization for wireless OFDM systems with ICI and ISI [C]. Proceedingsof1999IEEE International Conference on Communications, ICC’99,1999.182–186
    [134] J. Chuang, N. Sollenberger. Beyond3G: Wideband wireless data access based on OFDM and dy-namic packet assignment [J]. IEEE Communications Magazine,2000,38(7):78–87
    [135] V. Mignone, A. Morello. CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers[J]. IEEE Transactions on Communications,1996,44(9):1144–1151
    [136] L. Hanzo, Y. Akhtman, L. Wang, et al. MIMO-OFDM for LTE, WIFI and WIMAX: coherent versusnon-coherent and cooperative turbo-transceivers [M]. Piscataway: Wiley-IEEE Press,2010
    [137] M. Jiang, L. Hanzo. Multiuser MIMO-OFDM for next-generation wireless systems [J]. Proceedingsof the IEEE,2007,95(7):1430–1469
    [138]陈旭彬,杨大成.多用户MIMO:下一代移动通信关键技术[J].移动通信,2007,31(10):101–104
    [139] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, et al. Broadband MIMO-OFDM wireless communica-tions [J]. Proceedings of the IEEE,2004,92(2):271–294
    [140] A. J. Paulraj, D. A. Gore, R. U. Nabar, et al. An overview of MIMO communications-a key to gigabitwireless [J]. Proceedings of the IEEE,2004,92(2):198–218
    [141] L. Zheng, D. N. C. Tse. Diversity and multiplexing: A fundamental tradeoff in multiple-antennachannels [J]. IEEE Transactions on Information Theory,2003,49(5):1073–1096
    [142] L. Garcia-Ordo′n ez, J. R. Fonollosa. Diversity and multiplexing tradeoff of spatial multiplexing MI-MO systems with CSI [J]. IEEE Transactions on Information Theory,2008,54(7):2959–2975
    [143] I. H. Lee, D. Kim. Achieving maximum spatial diversity with decouple-and-forward relaying in dual-hop OSTBC transmissions [J]. IEEE Transactions on Wireless Communications,2010,9(3):921–925
    [144] Hoeg, W., Lauterbach, T. Digital Audio Broadcasting [M]. Piscataway: Wiley-IEEE Press,2003
    [145] Gesbert, D., Shafi, M., Shiu, D., Smith, P. J., Naguib, A. From theory to practice: an overview ofMIMO space-time coded wireless systems [J]. IEEE Journal on Selected Areas in Communications,2003,21(3):281–302
    [146] J. G. Andrews. Interference cancellation for cellular systems: a contemporary overview [J]. IEEEWireless Communications Magazine,2005,12(2):19–29
    [147] R. Zhang, L. Hanzo. Wireless cellular networks [J]. IEEE Vehicular Technology Magazine,2010,5(4):31–39
    [148] T. Novlan, J. G. Andrews, Illsoo Sohn, et al. Comparison of fractional frequency reuse approachesin the OFDMA cellular downlink [C]. Proceedings of IEEE Global Telecommunications Conference(GLOBECOM2010),2010.1–5
    [149] G. Boudreau, J. Panicker, N. Guo, et al. Interference coordination and cancellation for4G networks[J]. IEEE Communications Magazine,2009,47(4):74–81
    [150] L. Chen, D. Yuan. Generalized frequency reuse schemes for OFDMA networks: optimization andcomparison [C]. Proceedings of Proc. IEEE VTC,2008.1–5
    [151] T. D. Novlan, R. K. Ganti, A. Ghosh, et al. Analytical evaluation of fractional frequency reuse forOFDMA cellular networks [J]. IEEE Transactions on Wireless Communications,2011,10(12):4294–4305
    [152] H. Lei, L. Zhang, X. Zhang, et al. A novel multi-cell OFDMA system structure using fractionalfrequency reuse [C]. Proceedings of Proc. IEEE PIMRC,2007.1–5
    [153] H. Fujii, H. Yoshino. Theoretical capacity and outage rate of OFDMA cellular system with fractionalfrequency reuse [C]. Proceedings of Proc. IEEE VTC,2008.1676–1680
    [154] Z. Xu, G. Y. Li, C. Yang. Optimal threshold design for FFR schemes in multi-cell OFDMA networks
    [C]. Proceedings of Proc. IEEE ICC,2011.1–5
    [155] M. Assaad. Optimal fractional frequency reuse FFR in multicellular OFDMA system [J]. Proceedingsof Proc. IEEE VTC,2008.1–5
    [156] A. Alsawah, I. Fijalkow. Optimal frequency-reuse partitioning for ubiquitous coverage in cellularsystems [C]. Proceedings of Proc. European Signal Processing Conference,2008.1–5
    [157] S. H. Ali, V. C. M. Leung. Dynamic frequency allocation in fractional frequency reused OFDMAnetworks [J]. IEEE Transactions on Wireless Communications,2009,8(8):4286–4295
    [158] K. Deb, A. Pratap, S. Agarwal, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182–197
    [159] P. A. Hoeher, S. Badri-Hoeher, Xu W, et al. Single-antenna co-channel interference cancellation forTDMA cellular radio systems [J]. IEEE Wireless Communications Magazine,2005,12(2):30–37
    [160] R. Steele, L. Hanzo. Mobile radio communications [M]. New York, USA: IEEE Press-John Wiley,1999
    [161] T. S. Rappaport. Wireless communications: principles and practice [M]. Englewood Cliffs, NJ, USA:Prentice-Hall,1996
    [162] X. C. Chen, W. Fang, L-L Yang. Performance of multiple-input multiple-output wireless commu-nications systems using distributed antennas [C]. Proceedings of2005IEEE Vehicular TechnologyConference (VTC Spring),2005.1–5
    [163] W. Fang, L-L Yang, L. Hanzo. Performance of relay-aided DS-CDMA downlink systems commu-nicating over nakagami-m fading channels [C]. Proceedings of2008IEEE Vehicular TechnologyConference (VTC Fall),2008.1–5
    [164] X. You, D. Wang, P. Zhu, et al. Cell edge performance of cellular mobile systems [J]. IEEE Journalon Selected Areas in Communications,2011,29(6):1139–1150
    [165] Jonghyun Park, Euiseok Song, Wonjin Sung. Capacity analysis for distributed antenna systems usingcooperative transmission schemes in fading channels [J]. IEEE Transactions on Wireless Communi-cations,2009,8(2):586–592
    [166] X. Xu, R. Zhang, S. Ghafoor, et al. Imperfect digital-fiber-optic-link-based cooperative distributedantennas with fractional frequency reuse in multicell multiuser networks [J]. IEEE Transactions onVehicular Technology,2011,60(9):4439–4449
    [167] X. Xu, R. Zhang, L. Hanzo. Digital RoF aided cooperative distributed antennas with FFR in multicellmultiuser networks [C]. Proceedings of2011IEEE Vehicular Technology Conference (VTC Fall),2011.1–5
    [168] S. Shamai, B. M. Zaidel. Enhancing the cellular downlink capacity via co-processing at the transmit-ting end [C]. Proceedings of Vehicular Technology Conference,2001. VTC2001Spring. IEEE VTS53rd,2001.1745–1749
    [169] Wan Choi, J. G. Andrews. Downlink performance and capacity of distributed antenna systems in amulticell environment [J]. IEEE Transactions on Wireless Communications,2007,6(1):69–73
    [170] Marvin K. Simon, Mohamed-Slim Alouini. Digital communication over fading channels: a unifiedapproach to performance analysis [M]. Wiley-IEEE Press,2000
    [171] Abramowitz Milton, Stegun Irene A. Handbook of mathematical functions with formulas, graphs,and mathematical tables [M]. USA: New York: Dover Publications,1972
    [172] I. S. Gradshteyn, I. M. Ryzhik. Table of integrals, series and products, seventh edition [M]. AcademicPress,2007
    [173] N. B. Mehta, J. Wu, A. F. Molisch, et al. Approximating a sum of random variables with a lognormal[J]. IEEE Transactions on Wireless Communications,2007,6(7):2690–2699
    [174] M. K. Karakayali, G. J. Foschini, R. A. Valenzuela. Network coordination for spectrally efficientcommunications in cellular systems [J]. IEEE Wireless Communications Magazine,2006,13(4):56–61
    [175] D. Gesbert, M. Kountouris, R. W. Heath, et al. Shifting the MIMO paradigm [J]. IEEE SignalProcessing Magazine,2007,24(5):36–46
    [176] L. K. Ben, W. Zhang. Cooperative communications for cognitive radio networks [J]. Proceedings ofthe IEEE,2009,97(5):878–893
    [177] Christoph Windpassinger, F. H. F. Robert, T. Vencel, et al. Precoding in multiantenna and multiusercommunications [J]. IEEE Transactions on Wireless Communications,2004,3(4):1305–1316
    [178] Ghosh A, Ratasuk R, Mondal B, et al. LTE-advanced: next-generation wireless broadband technolo-gy [Invited Paper][J]. IEEE Wireless Communications Magazine,2010,17(3):10–22
    [179] D. Gesbert, S. Hanly, H. Huang, et al. Multi-cell MIMO cooperative networks: a new look atinterference [J]. IEEE Journal on Selected Areas in Communications,2010,28(9):1380–1408
    [180] K. Yao. On the direct calculation of MMSE of linear realizable estimator by Toeplitz form method(Corresp.)[J]. IEEE Transactions on Information Theory,1971,17(1):95–97
    [181] B. R. Vojcic, W. M. Jang. Transmitter precoding in synchronous multiuser communications [J]. IEEETransactions on Communications,1998,46(10):1346–1355
    [182] E. Larsson, E. Jorswieck. Competition versus cooperation on the MISO interference channel [J].IEEE Journal on Selected Areas in Communications,2008,26(7):1059–1069
    [183] R. Zhang, L. Hanzo. Joint and distributed linear precoding for centralised and decentralised multicellprocessing [C]. Proceedings of Proc. of72nd IEEE Vehicular Technology Conference,(VTC2010-Fall), Ottawa, Canada,2010.1–5
    [184] Kobayashi M, Caire G. Joint beamforming and scheduling for a multi-antenna downlink with imper-fect transmitter channel knowledge [J]. IEEE Journal on Selected Areas in Communications,2007,25(7):1468–1477
    [185] Wibowo Hardjawana, Branka Vucetic, Yonghui Li. Multi-user cooperative base station systems withjoint precoding and beamforming [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(6):1079–1093
    [186] T. K. Y. Lo. Maximum ratio transmission. IEEE Transactions on Communications,1999,47(10):1458–1461
    [187]李丽荣,郑金华.基于Pareto Front的多目标遗传算法[J].湘潭大学自然科学学报,2004,26(1):39–48
    [188] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning [M]. AddisonWesley Publishing Company,1989
    [189] V. Chandrasekhar, J. G. Andrews. Femtocell networks: a survey [J]. IEEE Communications Maga-zine,2008,46:59–67
    [190] G. Jeney. Practical limits of femtocells in a realistic environment [C]. Proceedings of Proc. IEEEVTC,2011.1–5
    [191] V. Chandrasekhar, J. G. Andrews. Spectrum allocation in tiered cellular networks [J]. IEEE Trans-actions on Information Theory,2009,57(10):3059–3068
    [192] L. Ho, I. Ashraf, H. Claussen. Evolving femtocell coverage optimization algorithms using geneticprogramming [C]. Proceedings of Proc. IEEE PIMRC,2009.2132–2136
    [193] D. L. Perez, A. Ladanyi, A. Juttner, et al. OFDMA femtocells: a self-organizing approach forfrequency assignment [C]. Proceedings of Proc. IEEE PIMRC,2009.2202–2207
    [194] M. Haenggi, J. G. Andrews, F. Baccelli, et al. Stochastic geometry and random graphs for theanalysis and design of wireless networks [J]. IEEE Journal on Selected Areas in Communications,2009,27(7):1029–1046
    [195] K. Gulati, B. L. Evans, J. G. Andrews, et al. Statistics of co-channel interference in a field of pois-son and poisson-poisson clustered interferers [J]. IEEE Transactions on Signal Processing,2010,58(12):6207–6222
    [196] F. Baccelli, B. Blaszczyszyn, P. Muhlethaler. Stochastic analysis of spatial and opportunistic aloha[J]. IEEE Journal on Selected Areas in Communications,2009,27(7):1105–1119
    [197] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning [M]. AddisonWesley Publishing Company,1989
    [198] K Zheng, B. Fan, J. Liu, et al. Interference coordination for OFDM-based multihop LTE-advancednetworks [J]. IEEE Wireless Communications Magazine,2011,18(1):54–63
    [199] A. Papadogiannis, Hans J. Bang, D. Gesbert, et al. Efficient selective feedback design for multicellcooperative networks [J]. IEEE Transactions on Vehicular Technology,2011,60(1):196–205
    [200] Lin S, Costello D, Miller M. Automatic-repeat-request error-control schemes [J]. IEEE Communi-cations Magazine,1984,22(12):5–17
    [201] Sydir J, Taori R. An evolved cellular system architecture incorporating relay stations [J]. IEEECommunications Magazine,2009,47(6):115–121
    [202] Ralf Pabst, H. W. Bernhard, D. C. Schultz, et al. Relay-based deployment concepts for wireless andmobile broadband radio [J]. IEEE Communications Magazine,2004,42(9):80–89
    [203] Q. Zhang, J. Jia, J. Zhang. Cooperative relay to improve diversity in cognitive radio networks [J].IEEE Communications Magazine,2009,47(2):111–117
    [204] L. Hanzo, O. Alamri, M. El-Hajjar, et al. Near-capacity multi-functional MIMO systems [M]. Wiley-IEEE Press,2009
    [205] L. Hanzo, J. Blogh, S. Ni.3G, HSDPA, HSUPA and intelligent FDD versus TDD networking: smartantennas and adaptive modulation [M]. New York, USA: IEEE Press-John Wiley,2008
    [206] A. A. Daoud, M. Alanyali, D. Starobinski. Pricing strategies for spectrum lease in secondary markets[J]. IEEE/ACM Transactions on Networking,2010,18(2):462–475
    [207] S. K. Jayaweera, G. Vazquez-Vilar, C. Mosquera. Dynamic spectrum leasing: a new paradigm forspectrum sharing in cognitive radio networks [J]. IEEE Transactions on Vehicular Technology,2010,59(5):2328–2339
    [208] M. J. Osborne, A. Rubinstein. A course in game theory [M]. MIT Press,1994
    [209] David Tse, P. Viswanath. Fundamental of wireless communicationss [M]. Cambridge, UK: Cam-bridge University Press,2005
    [210] Y. Yi, J. Zhang, Q. Zhang, et al. Spectrum leasing to multiple cooperating secondary cellular networks
    [C]. Proceedings of Proc. of IEEE (ICC’2011), Kyoto, Japan,2011.1–5
    [211] W. H. Press, S. A. Teukolsky, W. T. Vetterling, et al. Numerical recipes: the art of scientific comput-ing,3rd edition [M]. New York, USA: Cambridge University Press,2007
    [212] Yi Jiang, W. Hager William, Jian Li. The geometric mean decomposition [J]. Linear Algebra and itsApplications,2005,396(0):373–384
    [213] V. Kotzsch, G. Fettweis. On synchronization requirements and performance limitations for CoMPsystems in large cells [J]. Proceedings of Multi-carrier systems solutions (MC-SS),20118th Interna-tional Workshop on,2011.1–5
    [214] V. Kotzsch, C. Jandura, W. Rave, et al. On timing constraints and OFDM parameter design for coop-erating basestations [C]. Proceedings of Smart Antennas (WSA),2010International ITG Workshopon,2010.169–176
    [215] V. Jungnickel, T. Wirth, M. Schellmann, et al. Synchronization of cooperative base stations [C].Proceedings of Wireless Communication Systems.2008. ISWCS’08. IEEE International Symposiumon,2008.329–334
    [216] Y. Mostofi, D. C. Cox. Mathematical analysis of the impact of timing synchronization errors on theperformance of an OFDM system [J]. IEEE Transactions on Communications,2006,54(2):226–230
    [217] O. Souihli, T. Ohtsuki. Network MIMO in the presence of transmit desynchronization [C]. Proceed-ings of2010IEEE International Conference on Communications (ICC),2010.1–6
    [218] Z. Wang, G. B. Giannakis. Wireless multicarrier communications [J]. IEEE Signal Processing Mag-azine,2000,17(3):29–48
    [219] V. Kotzsch, G. Fettweis. Interference analysis in time and frequency asynchronous network MIMOOFDM systems [C]. Proceedings of2010IEEE Wireless Communications and Networking Confer-ence (WCNC),2010.1–6
    [220] M. M. Wang, L. Xiao, T. Brown, et al. Optimal symbol timing for OFDM wireless communications[J]. IEEE Transactions on Wireless Communications,2009,8(10):5328–5337
    [221] M. Speth, S. A. Fechtel, G. Fock, et al. Optimum receiver design for wireless broad-band systemsusing OFDM-Part I [J]. IEEE Transactions on Communications,1999,47(11):1668–1677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700