γ-聚谷氨酸的发酵生产及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-聚谷氨酸(γ-PGA)是一种水溶性的、可生物降解、可食用且对人和环境无毒的生物高分子物质,可由微生物聚合得到。这些特性使得γ-聚谷氨酸及其衍生物在食品、化妆品、医药、农业和水处理等领域有广阔的应用前景。
     为提高微生物发酵生产γ-聚谷氨酸的产量,本研究采用Bacillus subtilis NOBEL-007发酵制备γ-聚谷氨酸,并通过单因子试验及正交试验分析,得到枯草芽孢杆菌发酵生产γ-聚谷氨酸的最佳营养条件和培养条件。结果表明最佳营养条件为:葡萄糖40g/L,酵母膏5g/L,谷氨酸钠30g/L,NH_4Cl 3g/L,K_2HPO_4 2g/L,MgSO_4 0.25g/L;最佳培养条件为:培养温度37℃,摇床转速200r/min,装液量40mL(250mL三角瓶),接种量为2%,培养48h,pH值7.0,此时γ-聚谷氨酸的产量最高,达到20.15g/L。
     为了确定Bacillus subtilis NOBEL-007发酵产品的结构组成,采用纸层析、FT-IR和NMR等多种测试手段对Bacillus subtilis NOBEL-007代谢产物γ-PGA结构进行了初步表征分析。纯化样品经水解后,纸层析谱图出现一个峰,与谷氨酸相同,说明其仅由谷氨酸聚合而成,红外光谱图的特征吸收峰与标准品一致,表明两者具有相同的化学结构,初步确定试验精制产品为γ-PGA。γ-PGA的核磁共振谱图进一步说明γ-PGA由谷氨酸组成。
     为深入了解分批发酵过程中Bacillus subtilis NOBEL-007的生长特性和提高γ-PGA的生产水平,在5L发酵罐上研究了pH、温度、搅拌转速、通气量等对菌体生长和γ-PGA产量的影响,研究表明最适条件为:pH7.0,温度37℃,搅拌转速和通气量分别是200r/min和l.0vvm。在优化后的培养条件下,γ-PGA的产量达到22.16g/L。
     根据分批发酵的实验数据,对Bacillus subtilis NOBEL-007合成γ-聚谷氨酸的发酵动力学特性进行了研究,通过Logistic方程,提出了发酵过程中菌体生长、γ-聚谷氨酸合成、基质消耗的动力学模型。应用MATLAB数值应用软件对实验数据进行处理,得到了Bacillus subtilis NOBEL-007分批发酵合成γ-聚谷氨酸的动力学模型参数。模型可表述为:菌体生长动力学模型:γ-PGA生成动力学模型:葡萄糖消耗动力学模型:
     对实验数据与模型进行比较,结果表明模型与实验数据能较好地拟合,相对误差较小,能很好地反映Bacillus subtilis NOBEL-007生产γ-PGA的分批发酵过程的动力学特征,为实验数据的模拟放大,以及从分批发酵过度到补料发酵乃至连续发酵提供了理论基础。
     研究了Bacillus subtilis NOBEL-007制备的生物絮凝剂γ-聚谷氨酸(γ-PGA)的絮凝活性。γ-PGA对高岭土、活性炭等悬浮液均有较高的絮凝活性,絮凝活性稳定,热稳定性好,当温度高于70℃时絮凝活性开始下降。采用10mg/L的γ-PGA溶液对活性炭的絮凝活性可达到90%以上,Mg~(2+)、Ca~(2+)、Na~+、Fe~(3+)等金属离子能不同程度增强γ-PGA的絮凝活性,其中Ca~(2+)的助凝效果最佳,而Al~(3+)、Fe~(2+)则起削减作用。使用Ca~(2+)作助凝离子可降低γ-PGA的用量,但Ca~(2+)浓度过高会明显降低γ-PGA的絮凝活性。Ca~(2+)浓度为10mM及介质溶液维持pH中性都有利于提高γ-PGA的絮凝活性。另外,还研究了γ-PGA的絮凝活性分布,实验证明絮凝活性主要分布于发酵原液及上清液中,而菌体细胞的絮凝活性一直很低。通过发酵过程中γ-PGA含量与培养液絮凝活性的关系中可得出,γ-PGA是产生絮凝现象的关键所在。
γ-Poly glutamic acid (γ-PGA) which can be produced by microbial, is a kind of biodegradable high molecular polymer.γ-Polyglutamic acid(γ-PGA) is a biopolymeric product exhibiting water solubility, biodegradation, edibility and non-toxicity to human and environment, making its wide application in many fields as food, cosmetics, medicine, agriculture and water treatment in the past decades.
     In this work, in order to improve production ofγ-polyglutamic acid, it was produced by Bacillus subtilis NOBEL-007, and the optimization of conditions of fermentation process were investigated. The production ofγ-PGA and biomass were greatly influenced by the composition of medium and culture conditions according to the results attained in flask liquid fermentation experiments, which were conducted to investigate the optimal process parameter forγ-PGA production. The highestγ-PGA yield was achieved in the conditions that describe as following: glucose 40g/L, yeast extract paste 5g/L, L-sodium glutamate 30g/L, NH_4Cl 3g/L, K_2HPO_4 2g/L, MgSO_4 0.25 g/L; inoculum level 2%, volume level 40mL (250mL flask), temperature 37℃, rotate speed 200r/min, nitial pH 7.0 and culture time 48 h, then the yield ofγ-PGA reached 20.15 g/L.
     The characterization ofγ-PGA from B.subtilis NOBEL-007 was investigated by the paper chromatography, FT-IR and NMR. The paper chromatograph obtained from hydrolysate of tested polymer was only one peak and was coincident with the chromatograph of glutamic acid. It indicated the polymer was composed of glutamic acid. The FT-IR chromatograph of the polymer showed no difference from that ofγ-PGA standard sample. It indicated the polymer was likely to beγ-PGA. NMR chromatograph further proved that the polymer consisted of glutamic acid.
     In order to further kown the character of Bacillus subtilis NOBEL-007 and improveγ-PGA production in batch fermentation, the effects of different fermenatation conditions, such as pH, temperature, rotate speed and aeration rate was investigated with regard to cell growth andγ-PGA production in 5L jar fermentor scale. The final optimal conditions were determined as followed: pH 7.0, cultivation at 37℃, strring rate 200r/min and aeration rate 1.0vvm. The highest productivity ofγ-PGA (22.16g/L) could be abtained under the above optimal conditions.
     On the basis of Logistic and Luedelting-Piret equation and the experimental data of batch fermentation in the 5L fermentation reactor, the mathematical models were proposed to describe the fermentation process with Bacillus subtilis NOBEL-007. The parameters of the models were established by using MATLAB software with experimental data and the models.The modes consist of: Cell growth model: Production formation model: Substrate depletion model:
     The above models could fit the profiles of cell growth, production formation and substrate depletion well. It might be helpful to understand and guide further optimization of PGA fermentation in the future.
     we synthesized the flocculation activity of ploy(γ-glutamic acid)(γ-PGA) produced by Bacillus subtilis NOBEL-007.γ-PGA showed high flocculation activities in kaolin, activated carbon suspensions, and the flocculation activity ofγ-PGA is steay to hot, but began to decrease upon heating at 70℃. In activated carbon suspension, theγ-PGA flocculating activity attained upon 90% at concentration of 10mg/L, and the flocculating activity synergistically increased by the addition of metal cations such as Mg~(2+), Ca~(2+), Na~+ and Fe~(3+), Ca~(2+) was the optimum cation that remarkably promoted the flocculating activity; while adding Al~(3+), Fe~(2+) was disadvantageous to them. Using Ca~(2+) cloud lower the cost by dropping the dosage ofγ-PGA, but the excessive Ca~(2+) could obviously restrain the flocculating activity ofγ-PGA. The flocculating activity ofγ-PGA could be improved by adding 10mM Ca~(2+) to the suspensions and keeping the solution netural pH value. Futhermore, the distribution of bioflocculant ofγ-PGA was also researched, the flocculating activity was tested main in culture broth and supernatant, while the flocculating activity of cells was always low. Through synthesizing the correlation ofγ-PGA concentration and the flocculation activity of culture, we could conclude thatγ-PGA was the factor which caused the flocculation in the cluture.
引文
[1]黄山,齐霁,刘相如等.生物高分子聚乳酸的合成研究[J].松辽学刊,2001(1):31-33
    [2]崔孟忠,李竹云,徐世艾.生物高分子黄原胶的性能、应用与功能化[J].高分子通报,2003 (3):23-28
    [3]董惠钧,赵鹏,王卉,贾士儒.均聚氨基酸及其应用[J].食品科学,2003(24):163-165
    [4] Choi HJ, Sadanobu J, Kunioka M. Synthesis and characterization of pH-sensitive and biodegradable hydrogels prepared byγ-irradiation using microbial poly(α-glutamic acid) and poly(ε-lysine) [J]. JAppl Polym Sci, 1995b, 58: 807-814
    [5] Low KC. Synthetic polyaspartic acid and its uses[J]. Polym Eng Sci, 1993, 69: 253-254
    [6] Shoji S. Antimicrobiai action of e-PL[J]. Jantibiot, 1984, 37: 1449-1455
    [7] AshiuchiM, Misono H. Biochemistry and molecular genetics of poly-γ-glutamate synthesis[J]. Appl Microbiol Biotechnol, 2002, 59: 9-14
    [8] Ashiuchi M, Nakamura H, Yamamoto T, et al. Poly-γ-glutamate depolymerade of Bacillus subtilis: production, simple purification and substrate selectivity[J]. JMoI Cat B: Enzym, 2003a, 23: 249-255
    [9] Ashiuchi M, Kamei T, Misono H. Poly-γ-glutamate synthetase of Bacillus subtilis[J]. Jmol Catal B: Enzym, 2003b, 23: 101-106
    [10] Hara T., Chetanachit C., FujioY, et al. Distribution of plasmids in poly glutamate-producing bacillus strains isolated from "natto"-like fermented soybeans, "thua nao," in Thailand[J]. Gen.AppL. 1986, 32(3): 241-249
    [11] Shih IL., Van YT. The Production of poly (gamma-glutamicacid) from microorganism and its various applications[J]. Bioresource TechnoLogy. 2001, 79(3): 207-225
    [12] Ogawa Y., Hosoyama H., Hamano M., et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus subtilis (natto) [J]. Agric. BioL. Chem. 1991, 55: 2971-2977
    [13] CrescenziV., Dentini M.. Aqueous solution properties of bacterial poly-D- glutamate[J]. ACS Symp.Ser. 1996, 627: 233-242
    [14]董明盛,江晓,江汉湖,陈伯祥.溶栓纳豆菌的筛选与应用[J].中国酿造,2000,109:11-13
    [15] Mitsuiki M; Mizuno A, Tanimoto H, Motoki M. Relationship between the antifreeze antivites and the chemical structures of oligo-and poly(glutamic acids)[J]. J Agr Food Chem, 1998, 46: 891-895
    [16] Kunioka M, Choi H J. Hydrolytic degradation and mechanical properties of hydrogels prepared from microbial poly(amino acids)[J]. Polym Degrad Stabil, 1998, 59: 33-37
    [17] Krecz, A., I.Pocsi, J. Borbely. Preparatonand chemical modification of poly-gamma-L-glutamic acid[J]. Folia Microbiol (Praha), 2001, 46(3): 183-186
    [18]彭师奇.多肽药物化学[M].科学出版社,1993,12
    [19] Sanda F., Endo T.. Chemical synthesis of poly gamma-glutamic acid by polycondensation of gamma-glutamic acid dimmer: Synthesis and reaction of poly-gamma-glutamic acid methyester[J]. Journal of polymer science partA: Polymer Chemistry, 2001, 390(5): 732-741
    [20] Deasy, P.B., M.P Finan, M.J. Meegan. Preparation and characterization of lactic/glycolic acid polymers and copolymers[J]. J Microencapsul, 1989, 6(3): 369-378
    [21] Rickerby, J. A biomedical library of serinol-derived polyesters[J]. J Control Release, 2005, 101(1-3): 21-34
    [22] Hidetoshi K and Kazumichi U, Production of poly(γ-glutamic acid)by Bacillus Subtilis F201[J]. Biosci Biotech Biochem, 1993, 57(7): 1212-1213
    [23] Hanby W E, Rydon H N. The capsule substance of Bacillus anthracis[J]. J Biochem, 1946, 40: 297-309
    [24] Bovarnick M J. The formation of extracellular D(-)glutamic acid polypeptide by Bacillus subtilis[J]. JBiol Chem, 1942, 145: 415-424
    [25] Kubota H, Matsunobu T, Uotani K. et al. Production of poly( Y-glutamic acid) by Bacillus suhtilis F-2-01[J]. Biosci Biotechnol Biochem, 1993a, 57: 1212-1213
    [26] Pérez-Camero G, Congregado F, Bou J, et al. Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid)[J]. Biotechnol Bioeng, 1999, 63: 110-115
    [27] Torii M. Optical isomers of glutamic acid comprising bacterial glutamyl polypeptides[J]. Med J Osaka University, 1956, 6: 1043-1046
    [28] Aono R. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp.C-125[J]. J Biochem, 1987, 245: 467-472
    [29] Niemetz R, K?rcher U, Kandlera O, et al. The cell wall polymer of the extremelyhalophilic archaeon[J]. Natronococcus occultus, Eur J Biochem, 1997, 249: 905-911
    [30] Weber J. Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa Cnidaria)[J]. J Biol Chem, 1990, 265: 9664-9669
    [31] Kunioka M. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms[J]. Appl Microbiol Biotechnol, 1997, 47: 469-475
    [32] Borbely M, Nagasaki Y, Borbely J, et al. Biosynthesis and chemical modification of poly(γ-glutamic acid)[J]. Polym Bull, 1994, 32: 127-132
    [33] Hara T, Ueda S. Regulation of polyglutamate producation in Bacillus.subtilis(natto): transformation of high PGA productivity[J]. Agric Biol Chem, 1982, 46: 2275-2281
    [34] Ashiuchi M, Soda K, Misono H. Characterization of yrpC gene product of Bacillus subtilis IFO3336 as glutamate racemase isozyme[J]. Biosci Biotechnol Biochem, 1999a, 63: 792-798
    [35] Ashiuchi M, Nawa C, Kamei T, et al. Physiological and biochemical characteristics of poly-γ-glutamate synthetase complex of Bacillus subtilis[J]. Eur J Biuchem, 2001b, 268: 5321-5328
    [36] Kambourova M, Tangney M, Priest F G. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis[J]. Appl Environ Microbiol, 2001, 67: 1004-1007
    [37] Makino S, Uchida I, Terakado N, et al. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis[J]. J Bacteriol, 1989, 171: 722-730
    [38] Urashibata Y, Shinji T , Yasutaka T. Characterization of the Bacillus subtilis ywsC gene, involved inγ-polyglutamic acid production[J]. J Bact, 2002,184 (2): 337-343
    [39] Ashiuch M, Soda K, Misono H. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli cloned cell [J]. BiochemBiophys Res Commun, 1999, 263(1): 6-12
    [40] Suzuki T, Yasutaka T. Characterization of the Bacillus subtilis gw +D gene, whose product is involved inγ-polyglutamic acid degradation[J]. J of Baereriology, 2003, 185 (7): 2379-2382
    [41] Urushibata Y, Shinji T , Yasutaka T. Difference in transcription levels of cap genes forγ-polyglutamic acid production between Bacillus subtilis IFO16449 andMarburg 168 [J]. J of Bioscience and Bioengineering, 2002, 93(2): 252-254
    [42] Oppermann-Sanio F B, Steinbuchel A. Occurrence, functions and biosynthesis of potyamides in microorganisms and biotechnological production[J]. Naturwissenschaften, 2002, 89: 11-22
    [43] Gardner J M, Troy F A. Chemistry and biosynthesis of the poly(γ-D-glutamate) capsular in Bacillus licheniformis. activation, racemization and polymerization of glutamic acid by a membranous polyglutamyl synthetase complex[J]. JBiol Chem, 1979, 254: 6262-6269
    [44] Troy F A. Capsular poly-γ-D-glutamate synthesis in Bacillus licheniformis[J]. Methods Enzymol, 1985, 113: 146-168
    [45] Leonard CQ, Housewright RD, Thorne CB. Effects of some metallic ions on glutamyl-polypeptide synthesis by Bacillus subtilis[J]. JBacteriol, 1958, 76: 499-503
    [46] Hara T, Nagatomo S, Ogata S, et al. The DNA sequence ofγ-glutamyltranspeptidade gene of B. subtilis (natto)plamid pUIII[J]. Appl Microbiol Biotechnol, 1992, 37: 211-215
    [47] Xu K, Strauch M A. Identication, sequence, and expression of the gene encodingγ-glutamyitranspeptidase in Bacillus subtilis[J]. JBacteriol, 1996, 178: 4319-4322
    [48] Ashiuchi M, Soda K, Misono H. A poly-γ-glutamate synthetic system of Bacillis subtilis IFO3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells[J]. Biochem Biophys Res Commun, 1999b, 263: 6-12
    [49] Oldham, E.A., et al. Comparison of action of paclitaxel and poly(γ-glutamic acid) paclitaxel conjugate in human breast cancer cells[J]. Int J Oncol, 2000, 16(1): 125-132
    [50] Hoste, K., L. Seytnour. New derivatives of polyglutamic acid as drug carrier systems[J]. Controlled Release, 2000, 64(1): 53-61
    [51]张新民,姚克敏,徐虹.新型高效吸水材料(γ-PGA)的农业应用研究初报[J].南京气象学院学报,2004,27(2):224-229
    [52]王传海.保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J]。中国农业气象,2004,25(2):19-22
    [53] Sung, M.H., et al. Natural and edible biopolymer poly-gamma-glutamic acid. synthesis,production, and applications[J]. Chem Rec, 2005, 5(6): 352-366
    [54]施庆珊.γ-聚谷氨酸的微生物合成与应用[J].精细与专用化学品,2004,12(11):20-23
    [55] Choi H. J., KunioLca M. Preparation conditions and swelling eqlilibria of hydrogel prepared byγ-irradiation from microbial poly(γ-glutamic acid)[J] Radiat Phys Chem, 1995, 46(2):175-179
    [56] Yokoi H, Arima T, Hirose J, et al. Flocculation properties of poly (gamma-glutamic acid) produced by Bacillus subtilis[J]. J Ferment Bioeng, 1996,82: 84-87
    [57] Sung Ho Yoon, Jin Hwan Do, Sang Yup Lee, et al. Production ofpoly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis[J]. Chem Rec, 2000, 22: 585-588
    [58] Tin Obst, Alexander Steinbuchel. Mcrobial degration of poly-amino acids[J]. Biomacro. molecules, 2004, 5:1166-1176
    [59] Shih I L, Van Y T, Chang Y N. Application of statistical experimental methods to optimize production of poly(γ-glutamic acid ) by Bacillus licheniformis CCRC 1282[J]. Enzyme and Microbial Technology, 2002, 31 (3): 213-220.
    [60]桑莉,徐虹,李晖等.γ-聚谷氨酸产生菌的筛选及发酵条件[J].过程工程学报,2004,4 (5):462-466
    [61]赵紫华,马霞,刘蕊等.高产γ-聚谷氨酸菌株的选育与鉴定[J].中国酿造,2007,(7):32-34
    [62] Yamaguchi F, Ogawa Y, Kikushi M, et al. Detection of poly(γ-glutamic acid) by SDS-PAGE[J]. Biosci Biotechnol Biochem, 1996, 60: 255-258
    [63]吕莹,郝紫徽,李虹.聚γ-聚谷氨酸的分离提纯[J].食品与发酵工业,2005,31(2):133-134
    [64]马霞,张华,赵紫华等.γ-聚谷氨酸的微生物发酵法生产及其表征初步分析[J].食品研究与开发,2007,28(5):18-20
    [65]万红贵,何小兵,王庭慰等.生物合成聚γ-谷氨酸的结构表征[J].精细化工,2004,21(7):492-495
    [66]宁永成.有机化合物结构鉴定与有机波谱学[M].第二版.北京:科学出版社,2000:494
    [67]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989
    [68]席振峰,姚光庆,项斯芬,等译.生物无机化学[M].北京:北京人学出版社,2000
    [69]夏笃伟,张肇熙.高聚物结构分析[M].北京:化学工业出版社,1990
    [70] Goudar, C., et al. Logistic equation modeling of mammalian cell batch and fed-batch culture kinetics[J]. Abstracts of Papers of the American Chemical Society, 2005, 229: 217
    [71]大连轻工业学院.食品分析[M].中国轻工业出版社,1994:10
    [72] Park, Y, et al. Effect of culture temperature and dissolved oxygen concentration on expression of alpha-amylase gene in batch culture of spore-forming host, Bacillus subtilis IA289[J]. Journal of Fermentation and Bioengineerings, 1997, 84(1): 53-58
    [73] Kim, H., et al. Effects of dissolved oxygen control on cell growth and exopolysaccharides production in batch culture of Agaricus blazei[J]. Korean Journal of Chemical Engineering, 2005, 22(1): 80-84
    [74] Song, C., et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from cottonseed oil and valeric acid in batch culture of Ralstonia sp strain JC-64[J]. Applied Biochemistry and Biotechnology, 2001, 94(2): 169-178
    [75]杨革.细菌聚谷氨酸的研究[D].无锡:江南大学博士学位论文,2001
    [76] Birrer, G.A., A.M. Cromwick, R.A. Gross. Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies[J]. Int J Biol Macromol, 1994, 16(5): 265-275
    [77]王沫然.MATLAB5X与科学计算[M].北京:清华大学出版社,2000
    [78]王济川,郭志刚.Logistic回归模型——方法与应用[M].北京:高等教育出版社,2001
    [79] Lue Piret E I. A kinetic study of the lactic fermentation[J]. Biochem Microbiol Technol Eng, 1959, (1): 393-412
    [80] Mary C Gannon,Jennifer A Nuttall, Frank Q Nutta. The metabolic response to ingested glycine[J]. American Journal of Clinical Nutrition, 2002, 76(6) 1302-1307
    [81] Stefan. S , Boris. N. Kholodenko. Cellular information transfer regarded from a stoichiometry and control analysis perspective[J]. BioSystems, 2000, 55:73-78
    [82] Marco, LF , Giuseppin, Nata1, A W. Metabolic Modeling of Saccharomyces cerevisiae Using the Optimal Control of Homestasis:Acybernetic Model Definition[J]. Metabolic Engineering, 2000, (1): 14-21
    [83] Zhang, J. On the convergence properties of the Levenberg-Marquardt method. Optimization,2003. 52(6): p. 739-756
    [84] Lampton, M. Damping-undamping strategies for the Levenberg-Marquardt nonlinear least-squares method[J]. Computers in Physics, 1997, 11(1): 110-115
    [85]胡筱敏,邓述波,牛力东等.一株芽孢杆菌所产絮凝剂的研究[J].环境科学研究,2001,14(1):36-40
    [86]江锋,黄晓武,胡勇.胞外生物高聚物絮凝剂的研究进展(上)[J].给水排水,2002,28(8):83-90
    [87]栾兴社,张长铠,周凤岩.现代生物化工产品:微生物絮凝剂[J].化工科技,2005,13(1):63-68
    [88] Yokoi H, Natsuda O, Hirose, et al. Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90 [J]. Ferment Bioeng, 1995, (79):378-380
    [89] Yokoi H, Arima T, Hirose, et al. Flocculation properties of poly (gamma-glutamic acid) produced by Bacillus subtilis [J]. Ferment Bioeng, 1996, (82):84-87
    [90] Shih I L, Van Y T, Yeh, et al. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties[J]. Bioresour Technol, 2001, (78):267-272
    [91]姚俊,徐虹.生物絮凝剂γ-聚谷氨酸絮凝性能研究[J].生物加工过程,2004,2(1):35-39
    [92]程金平,张兰英,张玉玲.微生物絮凝剂的絮凝性能研究[J].吉林大学学报(地球科学版),2002,32(4):413-416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700