含钾矿物生物转化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国可溶性钾矿资源极其缺乏,严重制约了钾肥生产和应用,国际钾肥市场被几个主要发达国家所垄断,钾肥价格连年上涨,这些因素使得我国农业生产中钾肥施用量严重不足,土壤缺钾情况日趋严重,影响了农业生产的快速发展。相反,我国低品位含钾矿物资源储量巨大,如果能够采用一定的方法有效地利用低品位含钾矿物,促使其释放活性钾素,那么对于缓解我国土壤缺钾问题会有所帮助。本文初步研究了一株兼性嗜热真菌烟曲霉(Aspergillus fumigatus)TH003菌株以及一株胶质芽胞杆菌(Bacillus mucilaginosus)BM03菌株对低品位含钾矿物的生物转化作用。
     采用固体培养方法研究了烟曲霉TH003菌株对低品位含钾矿物的生物转化作用,多种配方对比实验结果证明,以平菇栽培废料为主要基质并添加一定量其他有机质的培养基配方,微生物对含钾矿物的转化作用效果较好;通过单因子实验和正交实验优化,矿粉添加量60%、培养时间20d、培养温度40℃的实验条件组合,微生物作用含钾矿粉的释钾量较高,可达1965.079μg/g。利用硅酸盐细菌BM03菌株对含钾矿物进行生物浸出,钾释出量达到616.227μg/g。将两种作用方法组合起来开展对含钾矿物生物转化的研究,结果表明,矿粉钾的释出量最终能够达到2354.980μg/g。
     复合工艺对低品位含钾矿物的作用分为烟曲霉TH003菌株的微生物转化作用和硅酸盐细菌BM03菌株的生物浸出作用,因此,复合工艺的作用机理也包括这两个部分。烟曲霉TH003菌株的微生物转化作用机理,通过实验对比能够发现烟曲霉TH003菌株对低品位含钾岩石有解钾作用,这种作用的机理解释可以分为酸解作用、络解作用、离子交换吸附和微生物物理破坏作用等。硅酸盐细菌BM03菌株对含钾矿物的解钾作用机理分为直接作用、间接作用和协同作用三种,直接作用是指硅酸盐细菌对含钾矿物的直接磨蚀或溶蚀作用,间接作用是指硅酸盐细菌代谢产物对含钾矿物的化学降解作用,协同作用是指直接作用和间接作用中的多种作用形式同时存在;硅酸盐细菌能够与含钾矿物形成细菌-矿物复合体,这为细菌与矿物之间的相互作用提供了有利条件,在复合体这个微环境中细菌对含钾矿物的作用更为充分。
     与传统的含钾矿石加工工艺相比,生物转化方法对环境友好,无污染,且产物中富含多种可被植物吸收利用的营养成分,可用作进一步研制多功能有机肥料的基质。本文为研发新型低品位含钾矿物的生物加工技术提供了参考资料。
In our country, the scarcity of soluble potassium mineral seriously affects the production and application of potassium fertilizer. What's more, the international potassium market is monopolized by some developed countries, which results in the continuously rise of potassium's price. All the above reasons result in seriously lack of use of potassium in the agricultural production. With the bad situation deteriorate day by day; the development of agriculture industry is restricted. Reversely, our country is full of low-grade potassium-bearing minerals. If some special methods on the low-grade potassium-bearing minerals could be used to get the released active potassium element, the potassium-shortage situation will somewhat be relieved. So, a preliminary research on the bioconversion effect of Aspergillus fumigatus TH003 and Bacillus mucilaginosus BM03 on low-grade potassium-bearing minerals were made in this article.
     Through the researchs on the bioconversion effect of A. fumigatus TH003 on low-grade potassium-bearing minerals by using solid cultivate method with using some different cultivate mediums. People obtained better effects if oyster mushroom's cultivate waste material were added with some other organic elements as the cultivate medium. Under the conditions of mineral powder account for 60%, cultivate time 20d, cultivate temperature 40℃, the result of 1965.079μg/g potassium was received with single factor experiment and orthogonal experiment. And the potassium of 616.227μg/g was obtained when use B. mucilaginosus BM03 to bioleaching the potassium-bearing minerals. With the combination use of the two methods maintained above, the potassium released from the mineral powder reached 2354.980μg/g.
     The composite technology of potassium-bearing minerals divides into two steps. The first step was biotransformation by A. fumigatus TH003, and bioleaching of B. mucilaginosus BM03 in the second step. Therefore, the mechanism of composite technology includes two parts. The compared experiment showed that A. fumigatus TH003 can dissolution potassium mineral from low-grade potassium-bearing minerals. This mechanism could be realized as the combined effect of the hydrolyzation acid, complex hydrolyzation, iron exchange adsorption effect, microorganism physics destructive effect and the like. The mechanism of bacteria on release potassium from potassium-bearing minerals includes direct mechanism, indirect mechanism and combined mechanism. Direct mechanism means the dissolution or corrosion effect of silicate bacteria on minerals. Indirect mechanism means the chemical degradation effect of the metabolites of silicate bacteria on minerals. The effect of bacteria on potassium-bearing minerals will be more obvious under the bacteria-mineral complex condition.
     Compare with the traditional process of potassium-bearing minerals, the bioconversion method is environment friendly and pollution free. The offspring of the process contain lots of nutrient elements that could be absorbed by plants. The elements could also be processed to multifunction organic fertilizers. The article could be used as important reference on developing new process on low-grade potassium-bearing minerals.
引文
[1]于滋.不溶性钾资源制钾肥研究现状.化工矿物与加工,2002,8:1-3.
    [2]化工部科技情报所.霞石制碱.化工地质,1992,4:52.
    [3]王淀佐,阮仁满,董清海,温建康.矿物生物提取技术的研究与进展.铜镍湿法冶金技术交流及应用推广会论文集(C).2001:2-9.
    [4]王淑军,杨从发,蔺先明,谈静,刘孝国,曹庆利.固态发酵甘薯渣生产单细胞蛋白.粮食与饲料工业,1995,11:17-22.
    [5]王万金,白志民,马鸿文.利用不溶性钾矿提钾的研究现状及展望.地质科技情报,1996,15(3):59-63.
    [6]王孝峰.我国与世界钾资源及开发利用现状.磷肥与复肥,2005,20(1):10-13.
    [7]王孝峰.我国与世界钾资源及开发利用现状(续完).磷肥与复肥,2005,20(2):14-17.
    [8]王元龙.难溶性含钾岩矿制造钾肥的研究现状及前景分析.地质地球化学,1996.6:55-59.
    [9]卢向阳,饶力群,彭丽莎,向华,鲁小春,罗泽民.酒糟单细胞蛋白饲料生产技术研究.湖南农业大学学报,2001,27:318-320.
    [10]连宾.硅酸盐细菌的解钾作用研究.贵阳:贵州科技出版社,1998,8,27-39,71.
    [11]连宾.硅酸盐细菌GY92对伊利石矿粉释钟作用研究.矿物学报,1998,18(2):234-238.
    [12]连宾,陈骏,傅平秋,刘丛强,陈烨.微生物影响硅酸盐矿物风化作用的模拟研究.高校地质学报,2005,11(2):181-186.
    [13]连宾,傅平秋,莫德明,刘丛强.硅酸盐细菌解钾作用机理的综合效应.矿物学报,2002,22(2):179-183.
    [14]刘冬碧,鲁剑巍,万运帆,陈防.长期施钾对湖北省几种土壤粘土矿物组成影响的初步研究.湖北农业科学,1999,6:27-30.
    [15]刘新才.从水泥窑灰中提取无氯钾肥的工艺流程.矿物岩石,1995,15(4):100-104.
    [16]任志学.高炉冶炼钾长石联产石膏熔渣白水泥总结.化肥工业,1986,3:20-26.
    [17]孙体如.金针菇容器栽培初步观察.江苏林业科技,1990,1:20.
    [18]陈静.含钾岩石资源开发利用及前景预测.化工矿产地质,2000,22(1):58-64.
    [19]陈敏忠,甘习华,徐柏生.微波辐射扫描电镜生物样品制备技术的研究.电子显微学报,1994,1:66-70.
    [20]陈世馆.生物浸出及其在有色冶金中的应用.上海有色金属,2000,21(3):137-146.
    [21]陈廷臻,米清海.利用不溶性钾矿生产钾肥的技术经济评价及发展前景.河南地质,1996,14(3):214-218.
    [22]李廷轩,马国瑞,王昌全,张仁绥,卢益武,张锡州.籽粒苋根际土壤及根系分泌物对矿物态钟的活化作用.土壤通报,2003,34(1):48-51.
    [23]李雄,柴立元,王云燕.生物浸矿技术研究进展.工业安全与环保,2006,32(3):1-3.
    [24]沈萍.微生物学.北京:高等教育出版社,2000,411-439.
    [25]沈萍,范秀容,李广武.微生物实验指导.北京:高等教育出版社,1999,90-92.
    [26]汤炎,封克,殷士学.土壤固定铵和钾过程中铵优先现象.江苏农学院学报,1996,17(2):21-23.
    [27]张锦亮.固体发酵技术应用的研究进展.重庆科技学院学报(自然科学版),2005,7(1):64-66.
    [28]张晓卫.世界钾肥市场对我国钾肥供求关系的影响及对策.化工矿物与加工,2006.3:1-5.
    [29]张忠伟,芦嘉风,栾少武,薛建臣,姜涛.滑菇反季速生高产栽培技术.食用菌,2005,1:40-41.
    [30]罗怡,戴福盛,孙承兴.某地含钾火山岩释钾能力实验研究.昆明理工大学学报,1999,24(1):80-83.
    [31]郑国华,戴荣衮,蒋云生,陈金水,胡中娥,曾云先,扈才彪.菌糠在养猪生 产上的应用研究.江西农业科技,1990,1:32-33.
    [32]周德庆.微生物学实验手册.北京:科学出版社,1988,137-163.
    [33]周俊,周惠民,储国正.难溶性钾矿资源的开发利用.资源开发与市场,1999,15(4):230-231.
    [34]柳建设.硫化矿物生物提取及腐蚀电化学研究.中南大学博士学位论文,2002.127-134.
    [35]赵立刚,彭清静,黄诚,张永康,邹晓勇.氯化钠熔盐浸取法从钾长石中提钾.吉林大学学报(自然科学版),1997,18(3):55-57.
    [36]格劳德夫.矿物原料的生物选矿.国外金属矿选矿,2000,6:2-9.
    [37]郭峰,袁孝享.钾长石热分解及还原热力学分析.化肥工业,1988,1:29-33.
    [38]郭维烈,郭庆华.新型发酵蛋白饲料.北京:科学技术出版社,1996,147-352.
    [39]桑瑟亚,雨田,李长根.用硫氧化硫杆菌调节方铅矿和闪锌矿的表面性质.国外金属选矿,2002,7:29-36.
    [40]索洛日金.细菌在矿物工程中的应用.国外金属矿选矿,1991,5:1-10.
    [41]陶大权,黎文辉.伊利石粘土岩制氮钾肥工艺探讨.贵州工学院学报,1996,25(5):84-88.
    [42]陶德录.活性饲料酵母生产的工艺对其产品质量的影响.饲料研究,1995,16(1):23-24.
    [43]曹文藻,钱晓刚.地壤地质.北京:地质出版社,1993,18-21.
    [44]黄昌勇.土壤学.北京:中国农业出版社.2000,205-209.
    [45]韩效钊,姚卫棠,胡波,邓正涛.离子交换法从钾长石提钾.应用化学,2003,20(4):373-375.
    [46]谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展.土壤,1999,5:22-32.
    [47]谢建昌.钾与中国农业.南京:河海大学出版社,2000,76-92.
    [48]裘荣庆.微生物冶金的研究和应用现状.微生物学通报,1995,22(3):180-183.
    [49]熊明彪,舒芬,宋光煌,石孝均,毛知耘.多年定位施肥对紫色土钾素形态变化的影响[J].四川农业大学学报,2001,19(1):44-48.
    [50]魏以和,钟康年,王军.生物技术在矿物工程中的应用.国外金属矿选矿,1996.1:1-13.
    [51]A D贝雷,G S汉斯福德.高浓度下硫化矿生物氧化的影响因素综述.国外金属矿选矿,1996,1:28-39.
    [52]NY/T 889-2004,土壤速效钾和缓效钾含量的测定.
    [53]Aide M.T.,Cwick C.J.and Cummings M.F.Clay mineralogy and potassium status of selected soils in the glacial Lake Agassiz region of central Manitoba.Can.J.Soil Sci.,1999,79:141-148.
    [54]Anna Rosling,Andy F.S.Taylor,Roger D.Finlay.Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals.FEMS Microbiology Ecology,2004,47:31-37.
    [55]Ashok Pandey,L.Ashakumary and P.Selvakumar.Copra waste - A novel substrate for solid-state fermentation.Biores Technol.,1995,51(3):217-220.
    [56]Bagheri S.A.,Hassani H R.Isolation and preliminary identification of some iron-and sulfur-oxidizing microorganisms from the Sarcheshmed cooper.Process Metallurgy,2001,11A:393-396.
    [57]Lian Bin,Wang Bin,Pan Mu,Liu Congqiang,and Teng H.Henry.Microbial Release of Potassium from K-Beating Minerals By Thermophilic Fungus Aspergillus fumigatus.Geochimica et Cosmochimica Acta,2008,72(1):87-89.
    [58]Bosecker K.Bioleaching:metal solubilization by microorganisms.FEMS Microbiol Rev.,1997,20:591-604.
    [59]Colmer A.R.and Hinckle M.E.The role of microorganisms in acid mine drainage.A Preliminary Report,Science,1947,106:253-256.
    [60]Douglas E.R.Biomining:Theory,Microbes and Industrial Processes.Springer-Verlag and Landes Bioscience,1997,56-62.
    [61]E.Gumbira-Sa'id,P.F.Greenfield,D.A.Mitchell and H.W.Doelle.Operational parameters for packed beds in solid-state cultivation.Biotechnology Advances,1993,11(3):599-610.
    [62]Elzeky M.,Attia Y.A.Effect of bacterial adaptation on kinetics and mechanisms bioleaching ferrous sulfides.The chemical Engineering Journal,1995,56B:115-124.
    [63]Fisher J.R.Bacterial leaching of Elliot Lake Uranium Ore.Can.Min.Met.Bull., 1966,69: 167-171.
    [64]Harahuc Lesia, Lizama H. M., Suzuki I. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores. Biotechnol. Bioeng., 2000, 69(2): 196-203.
    [65]Leathen W. W., Kinsel N. A. and Braley S. A. Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium. Bacterial., 1956, 72: 700-704.
    [66]Lonsane B. K., Saucedo-Castaneda G., Raimbault M., Roussos S., Viniegra-Gonzalez G., Ghildyal N. P., Ramakrishna M. and Krishnaiah M. M. Scale-up strategies for solid state fermentation systems. Process Bio-chem., 1992, 27(5): 259-273.
    [67]Moslehuddin A. Z. M. and Egashira K. Potassium chemistry in some important paddy soils of Bangladesh. Commun. Soil Sci. Anal., 1999, 30(3&4): 329-344.
    [68]Murr L. E. Theory and practice of copper sulphide leaching in dumps and in-situ. Mine. Sci. Eng., 1980, 12(3): 121-189.
    [69]Ohno A., Ano T., Shoda M. Production of the antifungal peptide antibiotic, iturin by Bacillus subtillus NB22 in solid state fermentation. Ferment Bioeng., 1993, 75(1): 23-27.
    [70]Pandey A. Effect of particle size of substrate of enzyme production in solid-state fermentation. Bioresource Technology, 1991,37(2): 169-172.
    [71]Par A. D. La fermentation en milieu solide. Biofutur., 1998, 181: 41-43.
    
    [72]Patnaik L., Kar R. N., Sukla L. B. Infuluence of pH on bioleaching of copper and zinc from complex sulfide concentrate using Thiobacillus ferrooxidans. Transactions of the Indian Institute of Metals, 2001, 54(4): 139-144.
    [73]Roy P., Mishra A. K. Iron oxidation not coupled to growth in Thiobacillus ferrooxidans in presence of toxic metals. J. Appl. Bacterial, 1981, 52(3): 387-392.
    [74]Shoemaker R. S. and Darrah R. M. The economics of heap leaching. Mining Engineering, Idem, 1968, 20(12): 90-92.
    [75]Springob G.Blocking the release of potassium from clay interlayers by small concentrations of NH~(4+) and Cs~+. Europ. J. Soil Sci., 1999, 50(4): 665-674.
    [76]Srinivasa Rao Ch., Subba Rao A. and Rupa T. R. Plant mobilization of soil reserve potassium from fifteen smectitic soils in relation to soil test potassium and mineralogy. Soil Sci., 2000, 165: 578-586.
    [77]Taylor J. H. and Whelan P. F. The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto. Spain, Trans. Inst. Min. Metal., 1943, 52: 35-71.
    [78]Toma M. K., Ruklisha M. P., Vanags J. J. Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol. Bioeng., 1991, 38: 552-556.
    [79]Varsha Narsian, Patel H H. Aspergillus aculeatus as a rock phosphate solubillizer. Soil Biology and Biochemistry, 2000, 32: 559-565.
    [80]Wilson M. J. K-bearing minerals and their K-release rate in different climates. 1992 Proc. Of the 23nd Colloquium of IPI.
    [81]Wood T. A., Murray K. R., Burgess J. G.Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine-drainage. Appl Microbiol Biotechnol, 2001, 56: 560-565.
    [82]Zhang D Y, Li Y Q, Sun Y K. Feasibility study on biological processing technology of metal material. Science in China (Series C), 1997,27(5): 410-414.
    [83]Zubillaage N. M. and Conti M. Importance of the textural fraction and its mineralogic characteristics in the potassium contents of different Argentine soils. Commun. Soil Sci. Plant Anal., 1994, 25(5&6): 479-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700