特效识别和酶活性抑制:矿化机理的化学和生物化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由不同的研究课题组成,首先是分子识别,特别是手性分子与蛋白质大分子(BSA)的特异性相互作用的研究。然后是论文的主体部分,分子识别研究被应用并扩展至探寻不同方面的可以选择性作用于生物矿化相关酶(碱性磷酸酶等)的特效抑制剂分子。更准确地讲,是寻找能够通过不同途径和功能抑制病态矿化的抑制剂。主要工作包括以下四个方面:
     (1)分子识别:由于丹酰基团对环境的高灵敏度和在疏水条件下的较强的荧光响应,我们合成了丹酰-D-苯丙氨酸,丹酰-D-色氨酸,丹酰-D-丝氨酸(其中L型异构体为商品化化合物),并利用荧光光谱法研究了牛血清白蛋白(BSA)对手性氨基酸衍生物的特效识别过程。
     (2)碱性磷酸酶抑制剂的筛选:我们将用于分子识别研究的丹酰氨基酸衍生物以及130多种苯并噻吩系列物——包括苯并噻吩-四咪唑的衍生物,都应用到碱性磷酸酶的研究体系,研究了化合物对猪肾中提取的组织非特异性碱性磷酸酶(TNAP)和牛肠碱性磷酸酶(BIAP)活性的抑制效应。
     (3)诱导矿化新模型的构建和矿物形成抑制剂的筛选:一个抑制矿化的有效方法就是寻找类似焦磷酸盐这种能够直接抑制羟磷灰石形成的抑制剂分子。我们构建了一个简单生物的模型在37°C和pH 7.6的条件下模拟矿化过程。这个新模型可以类似基质囊泡在生理条件下诱导HA的生成,从而应用于矿物形成抑制剂的筛选。同时,由于模型中没有任何酶和细胞的干扰,有利于监测HA的成核过程以及其抑制机理的进一步揭示。
     (4)将抗关节炎特效中药应用于碱性磷酸酶活性检测和基质囊泡诱导的矿化过程的研究:我们将从小鸡胚胎的骺软骨中提取的基质囊泡为模型,利用浑浊度进行原位检测,比较性研究了一系列中药和碱性磷酸酶可溶性抑制剂对碱性磷酸酶活性和矿化过程的不同影响。实验中,通过引入不同底物及改变底物浓度,揭示了这些分子对矿化过程的抑制机理。
Although specific recognition of biologically important substrates by enzymes and other biological macromolecules is well known, the detailed molecular mechanisms involved in these specific interactions are only partially elucidated. My Ph D thesis is focused on distinct topics starting from molecular recognition, especially on chiral molecules interacting specifically with proteins such as bovine serum abumin (BSA). Such property was also observed in the case of alkaline phosphatase, which could have medical applications. One application of the ligand recognition by enzymes is the search for their new inhibitors. Tissue non-specific alkaline phosphatase (TNAP), a marker in mineral formation, is enriched in matrix vesicles (MVs) implicated in the initiation of mineral formation. Molecular recognition was exploited by searching inhibitors that can interact selectively with enzymes implicated in the mineralization process. More precisely, our aim was to find inhibitors which can inhibit pathological mineralization by acting in different ways, for example, by altering the enzyme TNAP activity, or by inhibiting HA formation, or by suppressing the calcium and phosphate fluxes. Such specific inhibitors could serve as therapeutical options for curing osteoarthritis.
     Firstly, during the molecular recognition research, dansyl-D-phenylalanine, dansyl- D-tryptophan, and dansyl-D-serine were successful synthesized (because L-isomers are commercially available). The specific recognition of three amino acid derivatives by BSA indicated that BSA could interact selectively with stereoisomers. The enantioselective ratios (KL/KD) were determined by fluorescence titration spectrum. The findings confirmed that the complex binding was controlled by both the size and the aromaticity of side groups in the process of chiral recognition.
     Further more, the amino acids derivetives for investigating the molecular recognition as well as a library of over 130 benzothiophenes were screened for their inhibition effects on alkaline phosphatase. Amone them, dansyl-L-phenylalanine was found to be an inhibitor which can selectively interacte with calf intestinal AP. We found also that benzothiophene derivative tetramisoles are water soluble specific inhibitors of TNAP. Both of them were determined as uncompetitive inhibitors.
     To search inhibitors such as PPi which can directly inhibit HA formation, and to elucidate the inhibition mechanism of mineralization, a simple biological model which can produce HA as MVs was developed by addition of DMSO (4% v/v) in synthetic cartilage lymph (SCL) medium containing calcium and inorganic phosphate at pH 7.6 and 37°C. Inhibitors of HA formation were screened, providing the evidence that several nucleotides are inhibitors of HA formation and the inhibition mechanism was elucidated.
     In addition, MVs which initiate calcification in osseous tissues undergoing both physiological and pathological calcifications served to determine the effects of Chinese drugs on TNAP activity and mineralization process. We demonstrated that the anti-rheumatic Chinese medicine sinomenine having no effect on TNAP, sinomenine and theophylline (a TNAP inhibitor), both slowed down the HA formation by interfering probably with Pi or Ca2+ transports. It was concluded that Sinomenine, by delaying HA formation could indirectly boost its anti-inflammatory effect. Although the mineralization models do not address cellular issues, they presented great potential to screen putative drugs to cure osteoarthritis.
引文
[1] Lehn, J.M. Supramolecular Chemistry. Science, 1993, 260: 1762-1763.
    [2] Gellman, S.H. Introduction: Molecular Recognition. Chem. Rev., 1997, 97(5): 1231-1232.
    [3] Reinhoudt, D.N. Supramolecular Technology. ?Comprehensive Supramolecular Chemistry? Pergamon Press, New York, 1996, vol. 10.
    [4] Kubo, Y., Maeda, S., Tokita, S. and Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature, 1996, 382: 522-524.
    [5] Murakami, Y., Kikuchi, J., Hisaeda, Y. and Hayashida, O. Artificial Enzymes. Chem. Rev., 1996, 96: 721-758.
    [6] Sanders, J.K.M. Supramolecular Catalysis in Transition. Chem. Eur. J., 1998, 4: 1378-1383.
    [7] Peczuh, M.W. and Hamilton, A.D. Peptide and Protein Recognition by Designed Molecules. Chem. Rev., 2000, 100: 2479-2494.
    [8] Al Rabaa, A.R., Tfibel, F., Mérola, F., Pernot, P. and Fontaine-Aupart M.P. Spectroscopic and photophysical study of an anthryl probe: DNA binding and chiral recognition. J. Chem. Soc. Perkin Trans., 1999, 2: 341-351.
    [9] Schneider, H.J. Mechanisms of Molecular Recognition: Investigations of Organic Host-Guest Complexes. Angew. Chem., Int. Ed. Engl., 1991, 30: 1417-1436.
    [10] Lehn, J.M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angew. Chem. Int. Ed. Engl., 1988, 27: 89-112.
    [11] Testa, B. Mechanisms of chiral recognition in xenobiotic metabolism and drug-receptor interactions. Chirality, 2004, 1: 7-9.
    [12] Crossley, R. Chirality and the Biological Activity of Drugs. CRC Press: Boca Raton, FL., 1995, Chapter 2.
    [13] Scott, A.K. Stereoisomers and drug toxicity. The value of single stereoisomer therapy. Drug Saf., 1993, 8: 149-159.
    [14] Booth, T.D., Wahnon, D. and Wainer, I.W. Is Chiral Recognition a Three-Point Process? Chirality, 1997, 9: 96-98.
    [15] Henriksson, H., St?hlberg, J., Isaksson, R., Pettersson, G. The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Letters, 1996, 390: 339-344.
    [16] Bachmann, S., Knudsen, K.R. and J?rgensen, K.A. Mimicking enzymatic transaminations: attempts to understand and develop a catalytic asymmetric approach to chiralα-amino acids. Org. Biomol. Chem., 2004, 2: 2044-2049.
    [17] Fishman, W.H., Sie, H.G. Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; L-phenylalanine, L-tryptophan and L-homoarginine. Enzymologia, 1971, 41: 140-167.
    [18] Lin, C.W., Sie, H.G., Fishman, W.H. L-tryptophan. A non-allosteric organ-specific uncompetitive inhibitor of human placental alkaline phosphatase. Biochem. J., 1971, 124: 509-516.
    [19] Peyrin, E., Guillaume, Y.C. Morin, N., Guinchard, C. Retention behavior of D,L-dansyl-amino acids on a human serum albumin chiral stationary phase: effect of a mobile phase modifier. Journal of Chromatography A, 1998, 808: 113-120.
    [20] Bang, E., Jung, J.W., Lee, W., Lee, D.W. and Lee, W. Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectroscopy. J. Chem. Soc. Perkin Trans., 2001, 2: 1685-1692.
    [21] Qian, P., Matsuda, M., Miyashita, T. Chiral molecular recognition in polymer Langmuir-Blodgett films containing axially chiral binaphthyl groups. J. Am. Chem. Soc., 1993, 115: 5624-5628.
    [22] Wang, C.Z., Zhu, Z.A., Li, Y., Chen, Y.T., Wen, X., Miao, F.M., Chan, W.L. and Chan, A.S.C. Chiral recognition of amino acid esters by zinc porphyrin derivatives. New J. Chem., 2001, 25: 801-806.
    [23] Motohiro, S. Evaluation of Chiral Recognition of Oligosaccharides using FABMS. J Mass Spectrom Soc Jpn, 2003, 51: 330-333.
    [24] Sawada, M., Takai, Y., Kaneda, T., Arakawa, R., Okamoto, M., Doe, H., Matsuo, T., Naemura, K., Hirose K. and Tobe, Y. Chiral molecular recognition in electrospray ionization mass spectrometry. Chem. Commun., 1996, 1735-1736.
    [25] Wong, W.L., Huang, K.H., Teng, P.F., Lee C.S. and Kwong H.L. A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives. Chem. Commun., 2004, 384-385.
    [26] Abe, Y., Fukui, S., Koshiji, Y., Kobayashi, M., Shoji, T., Sugata, S., Nishizawa, H., Suzuki, H., Iwata, K. Enantioselective binding sites on bovine serum albumin to dansyl amino acids. Biochimica et Biophysica Acta, 1999, 1433: 188-197.
    [27] James, T.D., Sandanayake, K., Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature, 1995, 374: 345-347.
    [28] a. Takeuchi, M., Yoda, S., Imada, T., Shinkai, S. Chiral Sugar Recognition by a Diboronic-Acid-Appended Binaphthyl Derivative through Rigidification Effect. Tetrahedron, 1997, 53: 8335-8348. b. Parker, K.S., Townshend, A., Bale, S.J. Determination of the enantiomeric composition of 1-phenylethylamine based on its quenching of the fluorescence of 2,2’-dihydroxy-1,1’-binaphthalene. Anal. Proc., 1995, 32: 329-332. c. Parker, K.S., Townshend, A., Bale, S.J. Simultaneous determination of the concentrations of each enantiomer of 1-phenylethylamine using their quenching of the fluorescence of two chiral fluorophores. Anal. Commun., 1996, 33: 265-267.
    [29] Grady, T., Harris, S. J., Smyth, M.R., Diamond, D. and Hailey, P. Determination of the Enantiomeric Composition of Chiral Amines Based on theQuenching of the Fluorescence of a Chiral Calixarene. Anal. Chem., 1996, 68: 3775-3782.
    [30] Schuette, J.M., Will, A.Y., Agbaria, R.A., Warner, I.M. Fluorescence Characterization of the Cyclodextrin/Pyrene Complex Interaction with Chiral Alcohols and Diols. Appl. Spectrosc., 1994, 48: 581-586.
    [31] Yang, H., Bohne, C. Chiral discrimination in the fluorescence quenching of pyrene complexed toβ-cyclodextrin. J. Photochem. Photobiol. A, 1995, 86: 209-217.
    [32] Voet, D., Voet, J.G. Biochemistry. Ed. John Wiley & Sons, Inc., 1995, New York (USA).
    [33] Allenmark, S., Bomgren, B., Boren, H. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases III. Optical resolution of a series of N-aroyl D,L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica. J. Chromatogr. A, 1983, 264: 63-68.
    [34] Allenmark, S. Optical Resolution by Liquid Chromatography on Immobilized Bovine Serum Albumin. J. Liq. Chromatogr., 1986, 9: 425-442.
    [35] Schwartz, J.H. and Lipmann, F. Phosphate incorporation into alkaline phosphatase of E. coli. Proc. Natl. Acad. Sci. U.S.A., 1961, 47: 1996-2005.
    [36] Hull, W.E., Halford, S.E., Gutfreund, H. and Sykes, B.D. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Biochemistry, 1976, 15: 1547-1561.
    [37] Noda, M., Yoon, K., Rodan, G.A., Koppel, D.E. High lateral mobility of endogenous and transfected alkaline phosphatase: a phosphatidylinositol-anchored membrane protein. J. Cell Biol., 1987, 105: 1671-1677.
    [38] Bradshaw, R.A., Cancedda, F. and Ericsson, L.H. Amino acid sequence of Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. U.S.A., 1981, 78: 3473-3477.
    [39] Kim, E.E. and Wyckoff, H.W. Structure of alkaline phosphatase. Clin. Chim. Acta, 1989, 186: 175–188.
    [40] Kim, E.E. and Wyckoff, H.W. Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol., 1991, 218: 449-464.
    [41] Harris, H. The human alkaline phosphatases: what we know and what we don’t know. Clin. Chim. Acta, 1989, 186:133-150.
    [42] Kam, W., Clauser, E., Kim, Y.S., Kan, Y.W., Rutter, W. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. U.S.A., 1985, 82: 8715-8719.
    [43] Millan, J.L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J. Biol. Chem., 1986, 261: 3112-3115.
    [44] Henthorn, P.S, Raducha, M, Edwards, Y.H., Weiss, M.J., Slaughter, C., Lafferty, M.A., Harris, H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc. Natl. Acad. Sci. U.S.A., 1987, 84: 1234-1238.
    [45] Millan, J.L., Manes, T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc. Natl. Acad. Sci. U.S.A., 1988, 85: 3024-3028.
    [46] Weiss, M.J., Henthorn, P.S., Lafferty, M.A., Slaughter, C., Raducha, M. and Harris, H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Natl. Acad. Sci. U.S.A., 1986, 83: 7182-7186.
    [47] Moss, D.W. Perspectives in alkaline phosphatase research. Clin. Chem., 1992, 38: 2486-2492.
    [48] Murphy, J.E. and Kantrowttz, E.R. Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases? Molecular Microbiology, 1994, 12: 351-357.
    [49] Zhang, L., Buchet, R. and Azzar G. Distinct structure and activity recoveries reveal differences in metal binding between mammalian and Escherichia coli alkaline phosphatases. Biochem. J., 2005, 392: 407-415.
    [50] Kozlenkov, A., Du, M.H., Cuniasse, P., Ny, T., Hoylaerts, M.F. and Millan, J.L. Residues Determining the Binding Specificity of Uncompetitive Inhibitors to Tissue-Nonspecific Alkaline Phosphatase. J. Bone. Miner. Res., 2004, 19: 1862-1872.
    [51] Van Belle, H. Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem, 1976, 22: 972-976.
    [52] Cox, R.P., Macleod, C.M. Repression of alkaline phosphatase in human cell cultures by cystine and cysteine. Proc. Nat. Acad. Sci. U.S.A., 1963, 49: 504-510.
    [53] Zhu, C.M., Chen, Q.C., Lin, H.N., Yang, Y., Park, Y.D., Zhang, R.Q., Zhou, H.M. Kinetics of inhibition of green crab (Scylla serrata) alkaline phosphatase by L-cysteine. J. Protein Chem., 1999, 18: 603-607.
    [54] So, P.P., Tsui, F.W., Vieth, R., Tupy, J.H., Pritzker, K.P. Inhibition of Alkaline Phosphatase by Cysteine: Implications for Calcium Pyrophosphate Dihydrate Crystal Deposition Disease. J. Rheumatol., 2007, 34: 1313-1322.
    [55] Cyboron, G.W., Vejins, M.S., Wuthier, R.E. Activity of epiphyseal cartilage membrane alkaline phosphatase and the effects of its inhibitors at physiological pH. J. Biol. Chem., 1982, 257: 4141-4146.
    [56] Zhang, L., Buchet, R. and Azzar, G. Phosphate Binding in the Active Site of Alkaline Phosphatase and the Interactions of 2-Nitrosoacetophenone with Alkaline Phosphatase-Induced Small Structural Changes. Biophysical Journal, 2004, 86: 3873-3881.
    [57] Whisnant, A.R. and Gilman, S.D. Studies of reversible inhibition, irreversible inhibition, and activation of alkaline phosphatase by capillary electrophoresis. Anal. Biochem., 2002, 307: 226-234.
    [58] Glogowski, J., Danforth, D.R., Ciereszko, A. Inhibition of alkaline phosphatase activity of boar semen by pentoxifylline, caffeine, and theophylline. J. Androl., 2002, 23: 783-792.
    [59] Yoon, K., Golub, E., Rodan, G. Alkaline phosphatase cDNA transfected cells promote calcium and phosphate deposition. Connect. Tissue. Res., 1989, 22: 17-25.
    [60] Beertsen, W., van den Bos, T. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J. Clin. Invest., 1992, 89: 1874-1980.
    [61] Fedde, K.N., Blair, L., Silverstein, J., Coburn, S.P., Ryan, L.M., Weinstein, R.S., Waymire, K., Narisawa, S., Millan, J.L., MacGregor, G.R., Whyte, M.P. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone. Miner. Res., 1999, 14: 2015-2026.
    [62] Balcerzak, M., Hamade, E., Zhang, L., Pikula, S., Azzar, G., Radisson, J., Bandorowicz-Pikula, J. and Buchet, R. The roles of annexins and alkaline phosphatase in mineralization process. Acta. Biochimica. Polonica.; 2003, 50: 1019-1038.
    [63] Risteli, L., Risteli, J. Biochemical markers of bone metabolism. Ann. Med., 1993, 25: 385-393.
    [64] Garnero, P., Delmas, P.D. New developments in biochemical markers for osteoporosis. Calcif. Tissue Int., 1996, 59: 2–9.
    [65] Pizauro, J.M., Ciancaglini, P., Leone, F.A. Osseous plate alkaline phosphatase is anchored by GPI. Braz. J. Med. Biol. Res., 1994, 27: 453-456.
    [66] Radisson, J., Angrand, M., Chavassieux, P., Roux, B., Azzar, G. Differential solubilization of osteoblastic alkaline phosphatase from human primary bone cell cultures. Int. J. Biochem. Cell Biol., 1996, 28: 421-430.
    [67] Bourrat, C., Radisson, J., Chavassieux, P., Azzar, G., Roux, B., Meunier, P.J. Activity increase after extraction of alkaline phosphatase from human osteoblastic membranes by nonionic detergents: influence of age and sex. Calcif. Tissue Int., 2000, 66: 22-28.
    [68] Whyte, M.P. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocrinol. Rev., 1994, 15: 439-461.
    [69] Narisawa, S., Frohlander, N., Millan, J.L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn., 1997, 208: 432-446.
    [70] Bellows, C.G., Aubin, J.E., Heersche, J.N. Initiation and progression in mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner., 1991, 14: 27-40.
    [71] Robison, R. The possible significance of hexosephosphoric esters in ossification. Biochem. J., 1924, 17: 286-293.
    [72] Tenenbaum, H.C. Role of organic phosphate in mineralization of bone in vitro. J. Dent. Res., 1981, 60: 1586-1589.
    [73] Tenenbaum, H.C. Levamisole and inorganic pyrophosphate inhibit beta-glycerophosphate induced mineralization of bone formed in vitro. Bone Miner., 1987, 3: 13-26.
    [74] Anderson, H.C. Molecular Biology of Matrix Vesicles. Clin. Orthop. Relat. Res., 1995, 314: 266-280.
    [75] Hsu, H.H. Further studies on ATP-mediated Ca deposition by isolated matrix vesicles. Bone Miner., 1992, 17: 279-283.
    [76] Akisaka, T., Gay, C.V. The plasma membrane and matrix vesicles of mouse growth plate chondrocytes during differentiation as revealed in freeze-fracture replicas. Am. J. Anat., 1985, 173: 269-286.
    [77] Borg, T.F., Runyon, R., Wuther, R.E. A freeze-fracture study of avian epiphyseal cartilage differentiation. Anat. Rec., 1981, 199: 449-457.
    [78] Cecil, R.N., Anderson, H.C. Freeze-fracture studies of matrix vesicle calcification in epiphyseal growth plate. Metab. Bone Dis. Rel. Res., 1978, 1: 89-97.
    [79] Anderson, H.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol., 1969, 41: 59-72.
    [80] Anderson, H.C. Matrix vesicles and calcification. Curr. Rheumatol. Rep., 2003, 5: 222-226.
    [81] Balcerzak, M., Malinowska, A., Thouverey, C., Sekrecka, A., Dadlez, M., Buchet, R. and Pikula, S. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics, 2008, 8: 192-205.
    [82] Peress, N.S., Anderson, H.C., Sajdera, S.W. The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif. Tiss. Res., 1974, 14: 275-281.
    [83] Ali, S.Y., Sajdera, S.W., Anderson, H.C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Nat. Acad. Sci. U.S.A., 1970, 67: 1513-1520.
    [84] Kanabe, S., Hsu, H.H., Cecil, R.N., Anderson, H.C. Electron microscopic localization of adenosine triphosphate (ATP) hydrolyzing activity in isolated matrix vesicles and reconstituted vesicles from calf cartilage. J. Histochem. Cytochem., 1983, 31: 462-470.
    [85] Hsu, H.H. Purification and partial characterization of ATP pyrophosphohydrolase from fetal bovine epiphyseal cartilage. J. Biol. Chem., 1983, 258: 3463-3468.
    [86] Montessuit, C., Caverzasio, J., Bonjour, J.P. Characterization of a Pi transport system in cartilage matrix vesicles: potential role in the calcification process. J. Biol. Chem., 1991, 266: 17791-17797.
    [87] Stechschulte, D.J., Morris, D.C., Silverton, S.F., Anderson, H.C., V??n?nen, H.K. Presence and specific concentration of carbonic anhydrase II in matrix vesicles. Bone Miner., 1992, 17: 187-191.
    [88] Campo, R.D., Romano, J.E. Changes in cartilage proteoglycans associated with calcification. Calcif. Tissue Int., 1986, 39: 175-184.
    [89] Dziewaitkowski, D.D., Majznerski, L.L. Role of proteoglycans in endochondral ossification: Inhibition of calcification. Calcif. Tissue Int., 1985, 37: 560-564.
    [90] Boskey, A.L. Non-collagenous matrix proteins and their role in mineralization. Bone Miner., 1989, 6: 111-123.
    [91] Van de Lest, C.H.A., Vaandrager, A.B. Mechanism of cell-mediated mineralization. Curr. Opin. Orthop., 2007, 18: 434-443.
    [92] Anderson, H.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell. Biol., 1969, 41:59-72.
    [93] Anderson, H.C., Cecil, R., Sajdera, S.W. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am. J. Pathol., 1975, 79: 237-254.
    [94] Bernard, G.W. Ultrastructural observations of initial calcification in dentine and enamel. J. Ultrastr. Res., 1972, 41: 1-17.
    [95] Arsenault, A.L., Frankland, B.W., Ottsenmeyer, F.P. Vectorial sequence of mineralization in the turkey leg tendon determined by electron microscopic imaging. Calcif. Tissue Int., 1991, 48: 46-55.
    [96] Johnson, T.F., Morris, D.C., Anderson, H.C. Matrix vesicles and calcitication of rachitic rat osteoid. J. Exp. Pathol., 1989, 4: 123-132.
    [97] Sela, J., Schwartz, Z., Amir, D., Swain, L.D., Boyan, B.D. The effect of bone injury on extracellular matrix vesicle proliferation and mineral formation. Bone Miner., 1992, 17: 163-167.
    [98] Arsenault, A.L. A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. Bone Miner., 1989, 6: 165-177.
    [99] Ali, S.Y., Wisby, A. Apatite crystal nodules in arthritic cartilage. Europ. J. Rheumatol. Inflam., 1978, 1: 115-119.
    [100] Einhorn, T.A., Gordon, S.L., Siegel, S.A., Hummel, C.F., Avitable, M.J., Carty, R.P. Matrix vesicle enzymes in human osteoarthritis. J. Orthop. Res., 1985, 3: 160-169.
    [101] Hoyland, J.A., Thomas, J.T., Denn, R., Marriott, A., Ayad, S., Boot-Handford, R.P., Grant, M.E., Freemont, A.J. Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner., 1991, 15: 151-163.
    [102] Hashimoto, S., Ochs, R.L., Komiza, S., Lotz, M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum., 1998, 41: 1632-1638.
    [103] Masuhara, K., Bak Lee, S., Nakai, T., Sugano, N., Ochi, T., Sasaguri, Y. Matrix metalloproteinases in patients with osteoarthritis of the hip. Int. Orthop., 2000, 24: 92-96.
    [104] Lang, A., H?rler, D., Baici, A. The relative importance of cysteine peptidases in osteoarthritis. J. Rheumatol., 2000, 27: 1970-1979.
    [1] Booth, T.D., Wahnon D., and Wainer, I.W. Is Chiral Recognition a Three-Point Process? Chirality, 1997, 9: 96–98.
    [2] Henriksson, H., St?hlberg, J., Isaksson, R., Pettersson, G. The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Letters, 1996, 390: 339-344.
    [3] Bachmann, S., Knudsen, K.R., and J?rgensen, K.A. Mimicking enzymatic transaminations: attempts to understand and develop a catalytic asymmetric approach to chiralα-amino acids. Org.Biomol.Chem., 2004, 2: 2044-2049.
    [4] Allenmark, S., Bomgren, B., Boren, H. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases III. Optical resolution of a series of N-aroyl D,L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica. J. Chromatogr. A, 1983, 264: 63-68.
    [5] Allenmark, S., Andersson, S. Some mechanistic aspects on chiral discrimination of organic acids by immobilized bovine serum albumin (BSA). Chirality, 1992, 4: 24-29.
    [6] Lepri, L., Coas, V., Del Bubba, M., Cincinelli, A. Reversed phase planar chromatography of optical isomers with bovine serum albumin as mobile phase additive. J. Planar. Chromatogr. Mod. TLC, 1999, 12: 221–224.
    [7] Yan, Y. and Myrick, M.L. Simultaneous Enantiomeric Determination of Dansyl-D,L-Phenylalanine by Fluorescence Spectroscopy in the Presence ofα-Acid Glycoprotein. Anal. Chem., 1999, 71, 1958-1962.
    [8] Jia, S.Y., Hao, Y.Q., Li, L.N., Chen, K., Wu, Y.Q., Liu, J.Q., Wu, L.X. and Ding, Y.H. High Chiral Discrimination of 2,2’-Ditellurobis (2-deoxy-β-cyclodextrin) in Recognition of Dansyl-D/L-phenylalanine. Chem. Lett., 2005, 34: 1248-1249.
    [9] LeFevre, J.W. Reversed-phase thin-layer chromatographic separations of enantiomers of dansyl-amino acids usingβ-cyclodextrin as a mobile phase additive. J. Chromatogr. A, 1993, 653: 293-302.
    [10] Wang, R. and Bright, F.V. Effects of Protein Denaturation on the Rotational Reorientation Kinetics of Dansylated Bovine Serum Albumin. J. Phys. Chem., 1993, 97: 10872-10878.
    [11] Ueno, A., Ikeda, A., Ikeda, H., Ikeda, T. and Toda, F. Fluorescent Cyclodextrins Responsive to Molecules and Metal Ions. Fluorescence Properties and Inclusion Phenomena of Nα–Dansyl–L–lysine-β-cyclodextrin and Monensin-Incorporated Nα–Dansyl–L–lysine-β-cyclodextrin. J. Org. Chem., 1999, 64: 382 -387.
    [12] He, X.M. and Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358: 209–215.
    [13] Peters, T.J. Serum Albumin. Adv. Protein Chem., 1985, 37: 161–245.
    [14] FENG, X.Z., JIN R.X., QU Y., HE X.W. Studies on the Ion’s Effect on the Binding Interaction Between HP and BSA. Chem. J. Chinese Univ., 1996, 17: 866-869.
    [15] ZHANG, H.R., GUO S.Y., LI L., CAI M.Y., JIN W.J. and LIU C.S. Study on the Interaction between Sparfloxacin and Serum Albumins by Fluorescence. Spectrosc. Spect. Anal., 2001, 21: 829-832.
    [16] Du, H.Y., Xiang, J.F., Zhang, Y.Z., and Tang, Y.L. A spectroscopic and molecular modeling study of sinomenine binding to transferrin. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 1701-1704.
    [17] Peyrin, E., Guillaume, Y.C., Guinchard, C. Peculiarities of dansyl amino acid enantioselectivity using human serum albumin as a chiral selector. J. Chromatogr. Sci., 1998, 36: 97-103.
    [18] Takeuchi, M., Yoda, S., Imada, T., Shinkai, S. Chiral sugar recognition by a diboronic-acid-appended binaphthyl derivative through rigidification effect. Tetrahedron, 1997, 53: 8335-8348.
    [1] Schwartz J H, Lipmann F. Phosphate incorporation into alkaline phosphatase of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1961, 47: 1996-2005.
    [2] Zhang L, Balcerzak M, Radisson J, Thouverey C, Pikula S, Azzar G and Buchet R. Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles. The Journal of Biological Chemistry, 2005, 280: 37289-37296.
    [3] Fishman W H, Sie, H G. Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; L-phenylalanine, L-tryptophan and L-homoarginine. Enzymologia, 1971, 41: 140-167.
    [4] Lin C W, Sie H G, Fishman W H. L-tryptophan. A non-allosteric organ-specific uncompetitive inhibitor of human placental alkaline phosphatase. Biochem J, 1971, 124: 509-516.
    [5] Hoylaerts M F, Manes T and Millán J L. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochem J, 1992, 286: 23-30.
    [6] Kozlenkov A, Manes T, Hoylaerts M F, Millán J L. Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem, 2002, 277(25): 22992-22999.
    [1] Sun, Y.; Anley, E. N. Jr. Calcium-containing crystals and osteoarthritis. Curr. Opin. Orthop., 2007, 18, 472-477.
    [2] Rosenthal, A.K. Update in calcium deposition diseases. Curr. Opin. Rheumatol., 2007, 19, 158-162.
    [3] Molloy, E.S.; McCarthy, G. M. Basic calcium phosphate crystals:pathways to joint degeneration. Curr. Opin. Rheumatol., 2006, 18, 187-192.
    [4] Rosenthal, A. K. Calcium crystal deposition and osteoarthritis. Rheum. Dis. Clin. North. Am., 2006, 32, 401-412.
    [5] Gordon, G. V.; Villanueva, T.; Schumacher, H. R; Gohel, V. Autopsy study correlating degree of osteoarthritis, synovitis and evidence of articular calfication. J. Rheumatol., 1984, 11, 681-688.
    [6] Carroll, G. J.; Stuart, R. A.; Armstrong, J. A.; Breidhahl, P. D.; Laing, B. A. Hydroxyapatite crystals are a frequent finding in osteoarthritis synovial fluid, but are not related to increased concentrations of keratan sulfate or interleukin 1beta. J. Rheumatol., 1991, 18, 861-866.
    [7] Derfus, B. A.; Kurian, J.B.; Butler, J.J.; Daft, L. J.; Carrera, G. F.; Ryan, L. M.; Rosenthal, A. K. The high prevalence of pathologic calcium crystals in preoperatives knees. J. Rheumatol., 2002, 29, 570-574.
    [8] Nalbant, S.; Martinez, J. A. ; Kitumnuaypong T. ; Clayburne, G. ; Sieck, M. ; Schumacher, H. R. Jr. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage, 2003, 11, 50-54.
    [9] Johnson, K.; Terkeltaub, R. Inorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage. Front Biosc., 2005, 10, 988-997.
    [10] Williams C. J. Familial calcium pyrophosphate dihydrate deposition disease and the ANKH gene. Curr. Opin. Rheumatol., 2003, 15, 326-331.
    [11] Netter, P.; Bardin, T.; Bianchi, A.; Richette, P.; Loeuille, D. The ANKH gene and familial calcium pyrophosphate dihydrate deposition disease. Joint Bone Spine, 2004, 71, 365-368.
    [12] Ali, S. Y. Apatite crystal nodules in arthritic cartilage. Eur. J. Rheumatol. Inflam., 1978, 1, 115-119.
    [13] Golub, E. E.; Boesze-Battalgia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 2007, 18, 444-448.
    [14] Balcerzak, M.; Hamade, E.; Zhang, L.; Pikula, S.; Azzar, G.; Radisson, J. Bandorowicz-Pikula, J.; Buchet R. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim. Pol., 2003, 50, 1019-1038.
    [15] Van Belle, H. Alkaline Phosphatase. I Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin. Chem., 1976, 22, 158-168.
    [16] Schuermans, Y. Levamisole in rheumatoid arthritis. Lancet, 1975, 1(7898), 111.
    [17] McGill, P. E. Levamisole in rheumatoid arthritis. Lancet, 1976, 2, 149.
    [18] Miller, B. ; de Merieux, P.; Srinivasan, R.; Clements, P. ; Fan, P. ; Levy, J. ; Paulus, H. E. Double-blind placebo-controlled cross-over evaluation of levamisole in rheumatoid arthritis. Arthritis Rheum., 1980, 23, 172-82.
    [19] Rosenthal, M.; Breysse, Y.; Dixon, A.S.; Franchimont, P.; Huskisson, E. C.; Schmidt, K. L.; Schuermans, Y.; Veys, E.; Vischer, T. L.; Janssen, P. A.; Brugmans, J.; de Crepe, J.; Symoens, J.; Macnair, A. L.; Amery W.K., Veys E. Levamisole and agranulocytosis. Lancet, 1977, 1(8017), 904-905.
    [20] Mielants, H.; Veys, E. M. A study of the haematological side-effects of Levamisole in rheumatoid arthritis with recommendations. J. Rheumatol., 1978, 5 suppl. 4, 77-83.
    [21] Raeymaekers, A. H. M.; Allewinjn, F. T. N.; Vandenberk, J.; Demoen, P. J. A.; Van Offenwert, T. T. T.; Janssen Novel broad-spectrum anthelmintics. Tetramisole and related derivatives of 6-arylimidazo[2,1-b]thiazole. J. Med.Chem., 1966, 9, 545-551.
    [22] Bhargava, K. K.; Lee, M. H.; Huang, Y.-M.; Cunningham, L. S.; Agrawal, K. C.; Sartorelli, A. C tetramisole Analogues as inhibitors of alkaline phosphatase, an enzyme involved in the resistance of neaplastic cells to 6-thiopurines. J. Med. Chem., 1977, 20, 563-566.
    [23] Collington, E. W.; Middlemiss, D.; Panchal, T. A.; Wilson, D. A convenient synthesis of 4-(2-pyridyl)imidazolidine-2-thiones by the rearrangement of imidazo[1,5-a]pyridine -3-thione. Tetrahedron Lett., 1981, 22, 3675-3678.
    [24] Kumar, D. S.; Rashmi, R.; Satyavan, S. Synthesis of 2-substituted benzothiazoles as tetramisole analogs. Monatsh. Chem., 1981, 112, 1387-1391.
    [25] Nielek, S.; Tadeusz, L. 2,3,5,6-tetrahydro-6-(3-methylbenzofuran-2-yl) imidazo[2,1-b] thiazole. Chem. Ber., 1982, 115, 1247-1251.
    [26] Jones, G. S.; Hanson, R. N.; Davis, M. A. Selenium-sulfur analogs.Selenoisosteres of levamisole. J. Hetero. Chem., 1983, 20, 523-526.
    [27] Gouesnard, J.-P. Sodium nitrite reactivity. Part 3. Reaction with levamisole. J. Chem. Soc. Perkin trans. 1, 1986, 1901-1903.
    [28] Brewer, M. D. ; Dorgan, J. J.; Manger, B. R.; Mamalis, P.; Webster, A. B. Isothiourea derivatives of 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole with broad-spectrum anthelmintic activity. J. Med. Chem., 1987, 30, 1848-1853.
    [29] Amarouch, H.; Loiseau, P. R.; Bonnafous, M.; Caujolle, R. ; Payard, M. ; Loiseau, P. M. ; Bories, C. ; Gayral, P. 5,6-dihydroimidazo[2,1-b]thiazoles and 2,3-dihydroimidazo[2,1-b] benzothiazoles, analogs of levamisole. Farm. Ed. Sci., 1988, 43, 421-437.
    [30] Metaye, T.; Mettey, Y.; Lehuede, J.; Vierfond, J.-M.; Lalegerie, P. Comparative inhibition of human alkaline phosphatase and diamine oxidase by bromo-levamisole, cimetidine and various derivatives. Biochem. Pharm., 1988, 37, 4263-4268.
    [31] Weikert, R. J.; Bingham, S.; Emanuel, M. A.; Fraser-Smith, E. B.; loughhead,D. G.; Nelson, P. H.; Poulton, A. L. Synthesis and anthelmintic activity of 3’-benzoylurea derivatives of 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole. J. Med. Chem., 1991, 34, 1630-1633.
    [32] Comley, J. C. W.; Gutteridge, W. E.; Hudson, A. T.; Jenkins, D. C.; Miller, D. D.; Nicol, R. H.; Randall, A. W.; Stables, J. N.; Thornton, R. Synthesis and anti-filarial activity of 6-(-3-aminophenyl)-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 1992, 27, 503-509.
    [33] Kaugars, G.; Martin, S. E.; Nelson, S. J.; Watt, W. Synthesis of 2,3,5,6-tetrahydroimidazo[2,1-b]thiazoles. Heterocycles, 1994, 38, 2593-2603.
    [34] Fournier Dit Chabert, J.; Joucla, L.; David, E. ; Lemaire, M. An efficient phosphine-free palladium coupling for the synthesis of new 2-arylbenzo[b]thiophenes. Tetrahedron, 2004, 60, 3221-3230.
    [35] David, E.; Perrin, J.; Pellet-Rostaing, S.; Fournier Dit Chabert, J.; Lemaire, M. Efficient acess to 2-aryl-3-substituted benzo[b]thiophenes. J. Org. Chem., 2005, 70, 3569-3573.
    [36] Fournier Dit Chabert, J.; Chatelain, G.; Pellet-Rostaing, S. ; Bouchu, D. ; Lemaire, M. Benzo[b]thiophene as a template for substituted quinolines and tetrahydroquinolines. Tetrahedron Lett., 2006, 47, 1015-1018.
    [37] David, E.; Rangheard, C.; Pellet-Rostaing, S.; Lemaire, M. Synthesis of benz[c]benzothiopheno[2,3-e]azepine via Heck-type coupling and Pictet-Spengler reaction. Synlett, 2006, 13, 2016-2020.
    [38] David, E.; Pellet-Rostaing, S.; Lemaire, M. Heck-like coupling and Pictet-Spengler reaction for the synthesis of benzothieno[3,2-c]quinolines. Tetrahedron, 2007, 63, 8999-9006.
    [39] Fournier Dit Chabert, J.; Marquez, B.; Neville, L. ; Joucla, L. ; Broussous, S. ; Bouhours, P. ; David, E. ; Pellet-Rostaing, S. ; Marquet, B. ; Moreau, N. ; Lemaire, M. Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter ofstaphylococcus aureus. Bioorg. Med. Chem., 2007, 15, 4482-4497.
    [40] Nakamura, I.; Sato, T.; Tamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: synthesis of 2,3-disubstituted benzothiophenes from (α-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed., 2006, 45, 4473-4475.
    [41] Conley, R. A., Heindel, N. D. Thianaphthen-2-one chemistry: the benzylidene thiolactone rearrangement: synthesis of 2-arylthianaphthene-3-carboxylic acids and esters. J. Org. Chem., 1976, 41, 3743-3746.
    [42] Al Nakib, T.; Meegan, M. J.; Burke, M. L. Synthesis of 1- [2 - benzo[b]thiophene - 3 - yl) - 2 - benzyloxyethyl] - 1H - imidazole and 1- [2- benzo[b]thiophene - 3 - yl) - 2 - benzyloxyethyl] - 1H -1,2,4 - triazole with antifungal activity. J. Chem. Res., 1994, 1037-1045.
    [43] Li, L.; Buchet, R.; Wu, Y. Dimethyl sulfoxide-induced hydroxyapatite formation: A biological model of matrix vesicle nucleation to screen inhibitors of mineralization. Anal. Biochem., 2008, 381, 123-128.
    [44] Kirsch, T.; Nah, H.D.; Shapiro, IM.; Pacifici, M. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J. Cell. Biol., 1997, 137, 1149-1160.
    [45] Anderson, H. C. Molecular biology of matrix vesicles. Clin. Orthop. Relat. Res., 1995, 314, 266-280.
    [46] Anderson, H. C.; Garimella, R.; Tague, S. E. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci., 2005, 10, 822-837.
    [47] Pritzker, K.P. Crystal-associated arthropathies: what's new in old joints. J. Am. Geriatr. Soc., 1980, 28, 439-45.
    [48] Ali, S. Y. Apatite-type crystal deposition in arthritic cartilage. Scan Electron Microsc., 1985, 4, 1555-1566.
    [49] Anderson, H.C. Mechanisms of pathologic calcification. Rheum. Dis. Clin. North. Am., 1988, 14, 303-319.
    [50] Anderson, H. C. Matrix vesicles and calcification. Curr. Rheumatol. Rep., 2003, 5, 222-226.
    [51] Santos, N. C.; Figueira-Coelho, J.; Martins-Silva, J.; Saldanha C. Multidisciplinary utilisation of dimethyl sulfoxide: pharmacological, cellular and molecular aspects. Biochemical Pharmacology, 2003, 65 , 1035-1041.
    [52] Pérez-Pastén, R.; Martinez-Galero, E.; Garduno-Siciliano, L.; Conde Lara, I.; Chamorro Cevallos G. Effects of dimethylsulfoxide on mice arsenite-induced dysmorphogenesis in embryo culture and cytoxicity in embryo cells. Toxicology Letters, 2006, 161, 167-173.
    [53] Mereghetti, I.; Cagnotto, A.; Mnnini. T. Dimethyl sulfoxide: An antogonist in scintillation proximity assay [35S]-GTPgS binding to rat 5-HT6 receptor cloned in HEK-293 cells? J. Neuroscience Methods, 2007, 160, 251-255.
    [54] Fossum, E. N.; Lisowski, M. J.; Macey, T. A.; Ingram, S. L.; Morgan. M. M. Microinjection of the vehicule dimethyl sulfoxide (DMSO) into the periaqueductal gray modulates morphine antinociception. Brain Research, 2008 1204, 53-58.
    [55] Narisawa, S.; Harmey, D.; Yadav, M. C.; O’Neill, W. C.; Hoylaerts, M. F.; Millán J. L. Novel Inhibitors of Alkaline Phosphatase Suppress Vascular Smooth Muscle Cell Calcification. J. Bone Min. Res., 2007, 22, 1700-1710.
    [56] A. Kozlenkov, A.; Le Du, M. H.; Cuniasse, P.; Ny, T.; Hoylaerts, M. F.; Millan, J. L. Residues determining the binding specificity of uncompetitive inhibitors to tissue-Nonspecific alkaline phosphatase. J. Bone Min. Res., 2004, 19, 1862-1871.
    [57] Tsumura, M; Ueno, Y; Kinouchi, T; Koyama, I; Komoda, T. Atypical alkaline phosphatase isozymes in serum and urine of patients with renal failure. Clinica Chimica Acta, 2001, 312, 169-178.
    [58] Cyboron, G. W.; Wuthier, R. E. Purification and initial characterization of intrinsic membrane-bound alkaline phosphatase from chicken epiphyseal cartilage.J. Biol. Chem., 1981, 256, 7262-7268.
    [59] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
    [60] Anderson, H. C. The role of matrix vesicles in physiological and pathological calcification Curr. Opin. Orthop., 2007, 18, 428-433.
    [61] Balcerzak, M.; Radisson, J.; Azzar, G.; Farlay, D.; Boivin, G.; Pikula, S. Buchet, R. A comparative analysis of strategies for isolation of matrix vesicles. Anal. Biochem., 2007, 361, 176-182.
    [1] T. Kirsch, Physiological and pathological mineralization: a complex multifactorial process, Curr. Opin. Orthop., 2007, 18, 425-427.
    [2] B. Zimmermann, H.C. Wachtel, C. Noppe, Patterns of mineralization in vitro, Cell Tissue Res., 1991, 263, 483-93.
    [3] C.H.A. Van de Lest, A.B. Vaandrager, Mechanisms of cell-mediated mineralization, Curr. Opin. Orthop., 2007, 18, 434-443.
    [4] H.C. Anderson, The role of matrix vesicles in physiological and pathological calcification Curr. Opin. Orthop., 2007, 18, 428-433.
    [5] H.C. Anderson, R. Garimella, S.E. Tague, The role of matrix vesicles in growth plate development and biomineralization, Front Biosci., 2005, 10, 822-837.
    [6] X. Cao, B.R. Genge, L.N. Wu, W.R. Buzzi, R.M. Showman, R.E. Wuthier, Characterization , cloning and expression of the 67 KDa annexin from chicken growth plate matrix vesicles, Biochem Biophys. Res. Commun., 1993, 197, 556-561.
    [7] T. Kirsch, H.D. Nah, D.R. Demuth, G. Harrison, E.E. Golub, S.L. Adams, M. Pacifici, Annexin V mediated calcium flux across membranes is dependent on the lipid composition: implications for cartilage mineralization, Biochemistry, 1997, 36, 1149-1160.
    [8] Z. Xiao, C.E. Camalier, K. Nagashima, K.C. Chan, D.A. Luca, M.J. de la Cruz, M. Gignac, S. Lockett, H.J. Issaq, T.D. Veenstra, T.P. Conrads, G.R. Jr Beck, Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts, J. Cell. Physiol., 2007, 210, 325-335.
    [9] M. Balcerzak M, A. Malinowska, C. Thouverey, A. Sekrecka, M. Dadlez, R. Buchet, S. Pikula, Proteome analysis of matrix vesicles isolated from femurs of chicken embryo, Proteomics, 2008, 8, 192-205.
    [10] B.R. Genge, L.N.Y. Wu, R.E. Wuthier R.E, Kinetic analysis of mineral formation during in vitro modeling of matrix vesicle mineralization: effect ofannexin A5, phosphatidylserine, and type II collagen, Anal Biochem., 2007, 367, 159-166.
    [11] B.R. Genge , L.N.Y. Wu, R.E. Wuthier, In vitro modelling of matrix vesicle nucleation. Synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J. Biol. Chem., 2007, 282, 26035-24045.
    [12] B.R. Genge, L.N.Y. Wu, R.E. Wuthier R.E, Mineralization of Annexin-5-containing Lipid-Calcium-Phosphate Complexes: MODULATION BY VARYING LIPID COMPOSITION AND INCUBATION WITH CARTILAGE COLLAGENS, J Biol Chem., 2008, 283, 9737-9748.
    [13] E. Hamade, G. Azzar, J. Radisson, R. Buchet, B. Roux, Chick embryo anchored alkaline phosphatase and mineralization process in vitro. Influence of Ca2+ and nature of substrates, Eur. J. Biochem., 2003, 270, 2082-2090.
    [14] G.K. Hunter, H.A. Goldberg, Nucleation of hydroxyapatite by bone salioprotein, Proc. Natl. Acad. Sci. USA, 1993, 90, 8562-8565.
    [15] H.A. Goldberg, K.J. Warner, M.J. Stillman, G.K. Hunter, Determination of the hydroxyapatite-nucleating region of bone salioprotein, Connect. Tissue Res., 1996, 35, 385-392.
    [16] G.K. Hunter, P.V. Hauschka, A.R. Poole, L.C. Rosenberg, H.A. Goldberg, Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins, Biochem. J., 1996, 317, 59-64.
    [17] B. Ganss, R.H. Kim, J. Sodek, Bone sialoprotein, Crit. Rev. Oral. Biol. Med., 1999, 10, 79-98.
    [18] C.E. Tye, K.R. Rattray, K.J. Warner, J.A. Gordon, J. Sodek, G.K. Hunter, H.A. Golberg, Delineation of the hydroxyapatite-nucleating domains of bone salioprotein, J. Biol. Chem., 2003, 273, 7949-7955.
    [19] T. Saito, A.L. Arsenault, M. Yamauchi, Y. Kuboki, M.A. Crenshaw, Mineral induction by immobilized phosphoproteins, Bone, 1997, 21, 305-311.
    [20] S. Gajjeraman, K. Narayanan, J. Hao, C. Qin, A. George, Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite, J. Biol. Chem., 2007, 282, 1193-1204.
    [21] S. Ito, T. Saito, K.J. Amano, In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin, Biomed. Mater. Res., 2004, 69, 11-16.
    [22] K. Yamashita, T. Takagi, Calcification preceding new bone formation induced by demineralised bone matrix gelatin, Arch. Histol. Cytol., 1992, 55, 31-43.
    [23] A. Takeuchi, C. Ohtsuki, T. Miyazaki, M. Kamitakahara, S. Ogata, M. Yamazaki Y. Furatani, H. Kinoshita, M.J.R. Tanihara, Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin, Soc. Interface, 2005, 22, 373-378.
    [24] A.L. Boskey, M.R. Godberg, A.S. Posner, Calcium-phospholipid-phosphate complexes in mineralizing tissue, Proc. Soc. Exp. Biol. Med., 1978, 157, 590-593.
    [25] G.H. Nancollas, A. Tsortos, A. Zieba, The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces, Scanning Microsc., 1996, 10, 499-507.
    [26] C.H. Demos, G.L. Beckloff, M.N. Donin, P.M. Olivier, Dimethyl sulfoxide in musculoskeletal disorder, Ann. NY Acad. Sci., 1967, 141, 517-523.
    [27] R.A Jimenez, R. F. J. Willkens, Dimethyl sulfoxide: a perspective of its use in rheumatic diseases, Lab. Clin. Med., 1982, 100, 489-500.
    [28] J.M. Trice, R.S. Pinals, Dimethyl sulfoxide: a review of its use in the rheumatic disorders, Semin. Arthritis Rheum., 1985, 15, 45-60
    [29] E.D. Rosenstein, Topical agents in the treatment of rheumatic disorders, Rheum. Dis. Clin. North Am., 1999, 25, 899-918.
    [30] S.W. Jacob, R. Herschler, Dimethyl sulfoxide after twenty year, Ann. NY Acad. Sci., 1983, 411, 14-18.
    [31] C.F. Brayton, Dimethyl sulfoxide (DMSO): a review, Cornell Vet., 1986, 76, 61-90.
    [32] A.A. Bookmann, S. Williams, J.Z. Shainhouse, Effect of a topical diclofenac solution for relieving symptoms of primary osteoarthritis of the knee: a randomized controlled trial, CMAJ, 2004, 171, 333-338.
    [33] M. Balcerzak, J. Radisson, G. Azzar, D. Farlay, G. Boivin, S. Pikula, R. Buchet, A comparative analysis of strategies for isolation of matrix vesicles, Anal. Biochem., 2007, 361, 176-82.
    [34] L. N. Wu, B.R. Genge, D.G. Dunkelberger, R.Z. LeGeros, B. Concannon, R.E. Wuthier, Physicochemical characterization of the nucleational core of matrix vesicles, J. Biol. Chem., 1997, 272, 4404-4411.
    [35] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248-254.
    [36] L.N. Wu, G.R. Sauer, B.R. Genge, W.B. Valhmu, R.E. Wuthier, Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens, J. Inorg. Biochem., 2003, 94, 221-235.
    [37] L. Zhang, M. Balcerzak, J. Radisson, C. Thouverey, S. Pikula, G. Azzar, R. Buchet, Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposits in isolated matrix vesicles J. Biol. Chem., 2005, 280, 37289-37296.
    [38] G.R. Sauer, R.E. Wuthier R, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro, J. Biol. Chem., 1988, 268, 13718-13724.
    [39] B.O. Fowler, Vibrational assignments for calcium, strontium, and barrium hydroxyapatites utilizing isotopic substitution, Inorganic Chem., 1974, 13, 194-207.
    [40] N.C. Blumenthal, Mechanisms of inhibition of calcification, Clin. Orthop. Relat. Res., 1989, 247, 279-289.
    [41] T.C. Register, R.E. Wuthier, Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite, Bone, 1985, 6, 307-312.
    [42] A. Tanimura, D.H. McGregor, H.C. Anderson, Matrix vesicles in arthrosclerotic calcification, Proc. Soc. Exp. Biol. Med., 1983, 172, 173-177.
    [43] H.C. Tenenbaum, Levamisole and inorganic pyrophosphate inhibit beta-glycerophosphate induced mineralization of bone formed in vitro, Bone Miner., 1987, 3, 13-26.
    [44] R.A. Terkeltaub, Inorganic pyrophosphate generation and disposition in pathophysiology, Am. J. Physiol. Cell. Physiol., 2001, 381, C1-C11.
    [45] A.A. Rezende, J.M. Pizauro, P. Cinacaglini P.; Leone F.A. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate, Biochem. J., 1994, 301, 517-522.
    [46] P.J. O’Brien, D. Herschlag, Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase, Biochemistry, 2001, 40, 5691-5699.
    [47] J.G. Zalatan, T.D. Fenn, A.T. Brunger, D. Herschlag D, Structural and functional comparisons of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase: Implications for mechanisms and evolution, Biochemistry, 2006, 45, 9788-9803.
    [48] C. Thouverey, F. Bleicher, J. Bandorowicz-Pikula, Extracellular ATP and its effects on physiological and pathological mineralization, J. Curr. Opin. Orthop., 2007, 18, 460-466.
    [49] I.R. Orriss, J.C. Utting, A. Brandao-Burch, K. Colston, B.R. Grubb, G. Burnstock, T.R. Arnett, Extracellular nucleotides block bone mineralization invitro: evidence for dual inhibitory mechanisms involving both P2Y2 receptors and pyrophosphate, Endocrinology, 2007, 148, 4208-4216.
    [50] R. Garimella, X. Bi, H.C. Anderson, N.P. Camacho, Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: An FTIR imaging study, Bone, 2006, 38, 811-817.
    [51] R.J. Zaka, C. Williams, The inorganic phosphate/inorganic pyrophosphate axis in the mineralization of cartilage and bone. Curr. Opin. Orthop., 2007, 18, 454-459.
    [52] A.L. Boskey, B.D. Boyan, Z. Schwartz, Matrix vesicles promote mineralization in a gelatin gel. Calcif. Tissue Int., 1997, 60, 309-315.
    [1] Yamasaki H, Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum. Acta Med Okayama., 1976, 30:1–20.
    [2] Liu L, Resch K, Kaever V, Inhibition of lymphocyte proliferation by the anti-arthritic drug sinomenine. Int J Immunopharmacol., 1994, 16:685-691.
    [3] Liu L, Buchner E, Beitze D, Schmidt-Weber CB, Kaever V, Emmrich F, Kinne RW, Ammelioration of rat experimental arthritides by treatment with the alkaloid sinomenine. Int J Immunopharmacol., 1996, 18:529-543.
    [4] Wang Y, Zhou L, Li R, Study progress in sinomenium acutum (Thunb.) Rehd. et Wils. Zhong Yao Cai., 2002, 25:209-211.
    [5] Feng H, Yamaki K, Takano H, Inoue K, Yanagisawa R, Yoshino S, Effect of sinomenine on collagen-induced arthritis in mice. Autoimmunity., 2007, 40:532-539.
    [6] Qian L, Xu Z, Zhang W, Wilson B, Hong J-S, Flood PM, Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation., 2007, 4:23.
    [7] Rosenthal AK, Calcium Crystal Deposition and Osteoarthritis. Rheum Dis Clin North Am., 2006, 32:401-412.
    [8] Sun Y, Hanley Jr EN, Calcium–containing crystals and osteoarthritis. Curr Opin Orthop., 2007,18:472-478.
    [9] McCarty DJ, Crystal-induced inflammation of the joints. Annu Rev Med., 1970, 21:357-366.
    [10] EA HK, Uzan B, Rey C, Liote F, Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogrn-activated protein kinases in articular chondrocytes. Arthritis Res Ther., 2005, 7:R915-R926.
    [11] Liu-Bryan R, Pritzker K, Firenstein GS, Terkeltaub R, TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol., 2005, 174:5016-5023.
    [12] Cooke MM, McCarthy GM, Sallis JD, Morgan MP. Phosphocitrate inhibits calcium hydroxyapatite induced mitogenesis and upregulation of matrix metalloproteinase-1, interleukin-1beta and cyclooxygenase-2 mRNA in human breast cancer cell lines. Breast Cancer Res Treat., 2003, 79:253-263.
    [13] Gueme PA, Terkeltaub R, Zyraw B, Lotz M, Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum., 1989, 32:1443-1452.
    [14] Nadra I, Mason JC, Philippidis P et al,. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Cir Res., 2005, 96:1248-1256.
    [15] Reginatto AM, Olsen BR, Genetics and Experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr Opin Rheumatol., 2007, 19:134-145.
    [16] Anderson HC, Garimella R, Tague SE, The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10:822-837.
    [17] Anderson HC 2007 The role of matrix vesicles in physiological and pathological calcification. Curr Opin Orthop., 2005, 18:428-433.
    [18] Anderson HC, Calcific diseases. A concept. Arch Pathol Lab Med., 1983, 107:341-348.
    [19] Anderson HC. Mechanisms of pathological calcification. Rheum Dis Clin North Am., 1988,14:303-319.
    [20] Pritzker KP. Crystal-associated arthropathies: what's new in old joints. J Am Geriatr Soc., 1980, 28:439-445.
    [21] Ali SY. Apatite-type crystal deposition in arthritic cartilage. Scan Electron Microsc., 1985, 4:1555-1566.
    [22] Anderson HC, Matrix vesicles and calcification. Curr Rheumatol Rep, 2003, 5:222-226.
    [23] Derfus BA, Kranendonk S, Camacho N, Mandel N, Kushnaryov V, Lynch K, Ryan L, Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int., 1998,63:258-262.
    [24] Derfus BA, Kurtin SM, Camacho NP, Kurup I, Ryan LM, Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage. Connect Tissue Res.,1996, 35:337-342.
    [25] Cheung HS, Kurup IV, Sallis JD, Ryan LM, Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem., 1996, 271:28082-28085.
    [26] Derfus BA, Camacho NP, Olmez U, Kushnaryov VM, Westfall PR, Ryan LM, Rosenthal AK, Transforming growth factor beta-1 stimulates articular chondrocyte elaboration of matrix vesicles capable of greater calcium pyrophosphate precipitation. Osteoarthritis Cartilage., 2001, 9:189-194.
    [27] Gohr C, In vitro models of calcium crystal formation. Curr Opin Rheumatol., 2004, 16:263-267.
    [28] Thouverey C, Bechkoff G, Pikula S, Buchet R, Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage., 2008, Doi:10.1016/j.joca.2008.05.020
    [29] Cox RP, MacLeod CM, Repression of alkaline phosphatase in human cell cultures by cystine and cysteine. Proc Natl Acad Sci USA., 1963, 49:504-510
    [30] Agus SG, Cox RP, Griffin MJ, Inhibition of alkaline phosphatase by cysteine and its analogues. Biochim Biophys Acta., 1966, 118:363-370.
    [31] Zhu CM, Chen QC, Lin HN et al., Kinetics of inhibition of green crab (Scylla serrata) alkaline phosphatase by L-cysteine. J Protein Chem., 1999, 18:603-607.
    [32] Pauline PL, Florence WL, Tssui RV, Jindrah H. Tupy and Pritzker KPH, Inhibition of alkaline phosphatase by cysteine: Implications for calcium pyrophosphate dihydrate crystal deposition disease. J Rheumatol., 2007, 34:1313-1322.
    [33] Borgers M, The Cytochemical Application of New Potent Inhibitors of Alkaline Phosphatases. J Histochem Cytochem., 1973, 21:812-824.
    [34] Van Belle H, Alkaline Phosphatase. I Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem., 1976, 22:972-976.
    [35] Reynolds JT and Dew GW, Comparison of the inhibition of avian and mammalian bone alkaline phosphatases by levamisole and compound R8231. Experientia., 1977, 33:154-155.
    [36] Register TC, Warner GP, Wulthier RE, Effect of L and D tetramisole on 32Pi and 45Ca uptake and mineralization by matrix vesicle-enriched fractions from chicken epipheseal cartilage. J Biol Chem., 1984, 259:922-928.
    [37] Zizian BV, Gauthier B, Characteristics of the inhibition of serum alkaline phosphatase by theophylline. Clin Biochem., 1978, 11:57-61.
    [38] Farley JR, Ivey JL, Baylink DJ, Human skeletal alkaline phosphatase. Kinetic studies including pH dependence and inhibition by theophylline. J Biol Chem., 1980, 255:4680-4686.
    [39] Dai X, Snow LD, Differential theophylline inhibition of alkaline phosphatase and 5’-nucleotidase of bovine milk fat globule membranes. Int J Biochem., 1991, 23:743-747.
    [40] Rezende LA, Ciancaglini P, Pizauro JM, Leonoe FA, Inorganic pyrophosphate-phosphohydrolytic activity associated with rat osseous phosphate alkaline phosphatase. Cell Mol Biol., 1998, 44:293-302.
    [41] Glogowski J, Danforth DR, Ciereszko A, Inhibition of alkaline phosphatase activity of boar semen by pentoxifylline, caffeine and theophylline. Andrology., 2002, 23:783-792.
    [42] Kozlenkov A, Le Du MH, Cuniasse P, Ny T, Hoylaerts MF, Millan JL, Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphate. J Bone Miner Res., 2004, 19:1862-1872.
    [43] Schuermans Y, Levamisole in rheumatoid arthritis. Lancet., 1975, 1:111.
    [44] McGill PE, Levamisole in rheumatoid arthritis. Lancet., 1976, 2:149
    [45] Jacobson KA, Van Rhee AM, Development of selective purinoreceptor agonists and antagonists. In Jacobson KA, Jarvis MF editors. Purinergic approaches in experimental therapeutics. New York: Wiley 1997, 101-128.
    [46] Montesinos MC, Yap JS, Desai A, Posadas I, McGrary CT, Cronstein BN, Reversal of the anti-inflammatory effects of methothrexate by the non selective adenosine receptor antagonists theophylline and caffeine. Arthritis Rheum., 2000, 43:656-663.
    [47] Wu LN, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE, Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem., 1997, 272:4404-4411.
    [48] Balcerzak M, Radisson J, Azzar G, Farlay D, Boivin G, Pikula S, Buchet R, A comparative analysis of strategies for isolation of matrix vesicles. Anal Biochem., 2007, 361:176-182.
    [49] Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 1976, 72:248-254.
    [50] Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature., 1970, 227:680–685.
    [51] Cyboron GW, Wuthier RE, Purification and initial characterization of intrinsic membrane-bound alkaline phosphatase from chicken epiphyseal cartilage, J Biol Chem., 1981, 256:7262-7268. 115
    [52] Wu, LN, Sauer GR, Genge BR, Valhmu WB, Wuthier RE, Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens. J Inorg Biochem., 2003, 94:221-235.
    [53] Li L, Buchet R, Wu Y, DMSO-induced hydroxyapatite formation: A biological model of matrix-vesicle nucleation to screen inhibitors of mineralization. Anal Biochem., 2008, 381:123-128.
    [54] Wu LN, Yoshimori T, Genge BR, Sauer GR, Kirsch T, Ishikawa Y, Wuthier RE, Characterization of the nucleational core complex responsible for mineral induction by growth plate cartilage matrix vesicles. J Biol Chem., 1993, 268:25084-25094.
    [55] Wuthier RE, Chin JE, Hale JE, Register TC, Hale LV, Ishikawa Y, Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J Biol Chem., 1985, 260:15972-15979.
    [56] Kirsch T, Ishikawa Y, Mwale F, Wuthier RE, Roles of the nucleational core complex and collagens (types II and X) in calcification of growth plate cartilage matrix vesicles. J Biol Chem., 1994, 269:20103-20109.
    [57] Zhang L, Balcerzak M, Radisson J, Thouverey C, Pikula S, Azzar G, Buchet R, Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposits in isolated matrix vesicles. J Biol Chem., 2005, 280:37289-37296.
    [58] Blumenthal NC, Mechanisms of inhibition of calcification. Clin Orthop Relat Res., 1989, 247:279-289.
    [59] Register TC, Wuthier RE, Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone., 1985, 6:307-312.
    [60] Tanimura A, McGregor DH, Anderson HC, Matrix vesicles in arthrosclerotic calcification. Proc Soc Exp Biol Med., 1983, 172:173-177. 116 [52] Wu, LN, Sauer GR, Genge BR, Valhmu WB, Wuthier RE, Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens. J Inorg Biochem., 2003, 94:221-235.
    [53] Li L, Buchet R, Wu Y, DMSO-induced hydroxyapatite formation: A biological model of matrix-vesicle nucleation to screen inhibitors of mineralization. Anal Biochem., 2008, 381:123-128.
    [54] Wu LN, Yoshimori T, Genge BR, Sauer GR, Kirsch T, Ishikawa Y, Wuthier RE, Characterization of the nucleational core complex responsible for mineral induction by growth plate cartilage matrix vesicles. J Biol Chem., 1993, 268:25084-25094.
    [55] Wuthier RE, Chin JE, Hale JE, Register TC, Hale LV, Ishikawa Y, Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J Biol Chem., 1985, 260:15972-15979.
    [56] Kirsch T, Ishikawa Y, Mwale F, Wuthier RE, Roles of the nucleational core complex and collagens (types II and X) in calcification of growth plate cartilage matrix vesicles. J Biol Chem., 1994, 269:20103-20109.
    [57] Zhang L, Balcerzak M, Radisson J, Thouverey C, Pikula S, Azzar G, Buchet R, Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposits in isolated matrix vesicles. J Biol Chem., 2005, 280:37289-37296.
    [58] Blumenthal NC, Mechanisms of inhibition of calcification. Clin Orthop Relat Res., 1989, 247:279-289.
    [59] Register TC, Wuthier RE, Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone., 1985, 6:307-312.
    [60] Tanimura A, McGregor DH, Anderson HC, Matrix vesicles in arthrosclerotic calcification. Proc Soc Exp Biol Med., 1983, 172:173-177.
    [61] Tenenbaum HC, Levamisole and inorganic pyrophosphate inhibit beta-glycerophosphate induced mineralization of bone formed in vitro. Bone Miner., 1987, 3:13-26.
    [62] Terkeltaub RA, Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol., 2001,281: C1-C11.
    [63] Hamade E, Azzar G, Radisson J, Buchet R, Roux B, Chick embryo anchored alkaline phosphatase and mineralization process in vitro. Influence of Ca2+ and nature of substrates. Eur J Biochem., 2003, 270: 2082-2090.
    [64] Kirsch T, Physiological and pathological mineralization: a complex multifactorial process. Curr Opin Orthop., 2007, 18: 425-427.
    [65] Xiao Z, Camalier CE, Nagashima K, Chan KC, Luca DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR Jr, Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblast. J Cell Physiol., 2007,210:325-335.
    [66] Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S, Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics., 2008, 8:192-205.
    [67] Balcerzak M, Hamade E, Zhang L, Pikula S, Azzar G, Radisson J, et al. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim Pol., 2003,50:1019-1038.
    [68] Golub EE, Boesze-Battaglia K,The role of alkaline phosphatase in mineralization. Curr Opin Orthop., 2007, 18:444-448.
    [69] Narisawa S, Harmey D, Yadav MC, O’Neil WC, Hoylaerts MF, Millan JL, Novel inhibitors of alkaline phosphatase suppress vascular muscle cell calcification. J Bone Miner Res., 2007, 22:1700-1710.
    [70] Genge BR, Sauer GR, Wu LNY, Mclean FM, Wuthier RE, Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicles-mediated mineralization. J Biol Chem., 1988, 263:18513-18519.
    [71] Montesuit C, Caverzasio J, Bonjour JP, Characterization of a Pi transport system in cartilage matrix vesicles. Potential role in the calcification process. J Biol Chem., 1991, 266:17791-17797.
    [72] Satoh H, Electropharmacological actions of the constituents of Sinomeni Caulis et Rhizome and Mokuboi-to in guinea pig heart. Am J Chin Med., 2005, 33:967–979.
    [73] Nishida S and Satoh H, Vascular Pharmacology of Mokuboito (Mu-Fang-Yi-Tang) and Its Constituents on the Smooth Muscle and the Endothelium in Rat Aorta. Evid Based Complement Alternat Med., 2007, 4:335-341.
    [1] Allenmark, S., Bomgren, B., Boren, H. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases III. Optical resolution of a series of N-aroyl D,L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica. J. Chromatogr. A, 1983, 264: 63-68.
    [2] Allenmark, S. Optical Resolution by Liquid Chromatography on Immobilized Bovine Serum Albumin. J. Liq. Chromatogr., 1986, 9: 425-442.
    [3] Fishman, W.H., Sie, H.G. Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; L-phenylalanine, L-tryptophan and L-homoarginine. Enzymologia, 1971, 41: 140-167.
    [4] Lin, C.W., Sie, H.G., Fishman, W.H. L-tryptophan. A non-allosteric organ-specific uncompetitive inhibitor of human placental alkaline phosphatase. Biochem. J., 1971, 124: 509-516.
    [5] Kozlenkov, A., Du, M.H., Cuniasse, P., Ny, T., Hoylaerts, M.F. and Millan, J.L. Residues Determining the Binding Specificity of Uncompetitive Inhibitors to Tissue-Nonspecific Alkaline Phosphatase. J. Bone. Miner. Res., 2004, 19: 1862-1872.
    [6] Van Belle, H. Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem, 1976, 22: 972-976.
    [7] Ali, S.Y., Wisby, A. Apatite crystal nodules in arthritic cartilage. Europ. J. Rheumatol. Inflam., 1978, 1: 115-119.
    [8] Einhorn, T.A., Gordon, S.L., Siegel, S.A., Hummel, C.F., Avitable, M.J., Carty, R.P. Matrix vesicle enzymes in human osteoarthritis. J. Orthop. Res., 1985, 3: 160-169.
    [9] Hoyland, J.A., Thomas, J.T., Denn, R., Marriott, A., Ayad, S., Boot-Handford, R.P., Grant, M.E., Freemont, A.J. Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner., 1991, 15: 151-163.
    [10] Hashimoto, S., Ochs, R.L., Komiza, S., Lotz, M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum., 1998, 41: 1632-1638.
    [11] Masuhara, K., Bak Lee, S., Nakai, T., Sugano, N., Ochi, T., Sasaguri, Y. Matrix metalloproteinases in patients with osteoarthritis of the hip. Int. Orthop., 2000, 24: 92-96.
    [12] Lang, A., H?rler, D., Baici, A. The relative importance of cysteine peptidases in osteoarthritis. J. Rheumatol., 2000, 27: 1970-1979.
    [13] Tenenbaum, H.C. Levamisole and inorganic pyrophosphate inhibit beta-glycerophosphate induced mineralization of bone formed in vitro. Bone Miner., 1987, 3: 13-26.
    [14] Schuermans, Y. Levamisole in rheumatoid arthritis. Lancet, 1975, 1: 111.
    [15] McGill, P.E. Levamisole in rheumatoid arthritis. Lancet, 1976, 2: 149.
    [16] Gerke, V. and Moss, S.E. Annexins: From Structure to Function. Phys. Rev., 2002, 82: 331-371.
    [17] Solomon, D.H., Wilkins, R.J., Meredith, D. and Browing, J.A. Characterization of Inorganic phosphate transport in bovine articular chondrocyres. Cell Phys. Biochem., 2007, 20: 99-108.
    [18] Wu, L.N., Sauer, G.R., Genge, B.R., Valhmu, W.B., Wuthier, R.E. Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens. J. Inorg. Biochem., 2003, 94: 221-235.
    [19] Register, T.C., Wuthier, R.E. Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone, 1985, 6: 307-312.
    [20] Li, L., Buchet, R., Wu, Y. DMSO-induced hydroxyapatite formation: A biological model of matrix-vesicle nucleation to screen inhibitors of mineralization. Anal. Biochem., 2008, 381: 123-128.
    [21] Gohr, C. In vitro models of calcium crystal formation, Curr. Opin. Rheumatol., 2004, 16: 263-267.
    [22] Register, T.C., Warner, G.P., Wulthier, R.E. Effect of L and D tetramisole on 32Pi and 45Ca uptake and mineralization by matrix vesicle-enriched fractions from chicken epipheseal cartilage. J. Biol. Chem., 1984, 259: 922-928.
    [23] Chen, N.X., O'Neill, K.D., Chen, X., Moe, S.M. Annexin Mediated Matrix Vesicle Calcification in Vascular Smooth Muscle Cells. J. Bone Miner. Res., 2008, doi: 10.1359/jbmr.080604.
    [24] Kim, H.J., Kirsch, T. Collagen/annexin V interactions regulate chondrocyte mineralization. J. Biol. Chem., 2008, 283: 10310-10317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700