猪粪堆肥过程有机质降解动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机质降解动力学模型是建立好氧堆肥过程数学模型的重要基础。好氧堆肥过程中生物化学形式的产热量、产水量和耗氧量模拟的数学模型往往基于有机质降解动力学而建立。为深入开展有机质降解动力学模型研究,本研究主要包含以下内容:
     1、自由空域对猪粪好氧堆肥过程有机质降解的影响研究
     自由空域对堆肥过程有机质的降解有重要的影响,现有文献鲜见基于数学模型量化表征自由空域对好氧堆肥过程有机质降解影响的报道。本部分研究考虑3种不同自由空域水平对堆肥过程温度变化、氧气浓度变化和有机质降解速率的影响,采用相同质量但不同物料配比的方式获得不同的堆肥自由空域水平,基于实验室小型好氧堆肥反应器进行了好氧堆肥对比试验研究,并进一步基于Matlab软件平台编写、建立了基于温度、氧浓度等多因素堆肥过程有机质降解动力学模型。试验测量、化学分析和模拟结果表明自由空域对堆肥过程中温度、氧气浓度、含水率、有机质的降解速率的变化均有重要的影响。
     2、好氧堆肥过程不同有机质成分的降解规律试验研究
     为对猪粪堆肥过程中不同有机质成分(例如:粗蛋白、粗脂肪、纤维素和可溶性糖含量)的降解规律进行研究,根据目前比较通用的化验测试手段,研究选取猪粪好氧堆肥过程中可挥发性固体、粗蛋白、粗脂肪、纤维素和可溶性糖含量等成分的变化作为表征有机质降解规律的指标,为猪粪好氧堆肥有机质降解动力学的研究提供数据支持。试验研究采用等粒径且等体积的塑料管或麦秸作为膨胀剂与等质量的猪粪混合堆肥,利用实验室小型好氧堆肥反应器进行了3组好氧堆肥试验,研究了3种不同情况下猪粪好氧堆肥过程中温度、含水率、氧气体积分数、挥发性固体含量、粗蛋白、粗脂肪、纤维素、可溶性糖的变化。研究发现不同有机质成分的降解存在梯次性差异。
     3、基于有机质降解动力学的堆肥过程热量和水分平衡数学模型研究
     基于有机质降解的热量平衡数学模型研究中,依据有机质降解一级动力学方程和系统热量平衡方程,充分考虑堆肥有机质降解的梯次性对数学建模的影响,建立了反应器好氧堆肥过程有机质降解模型和热量平衡模型。水分平衡数学模型研究中,基于水分平衡质量守恒模型和水分蒸发一级动力学方程分别建立了两种不同的猪粪麦秸好氧堆肥水分平衡模型。
     4、基于可溶/不可溶性有机质的猪粪堆肥降解动力学模型构建
     本研究将堆肥有机质划分为可溶性有机质(可溶性糖、脂肪和蛋白质)和不可溶性有机质(纤维素、半纤维素和木质素),基于可溶性和不可溶性有机质建立降解数学模型,并在此基础上,建立了温度、氧气浓度和水分含量变化的数学模型,研究了可溶性和不可溶性有机质降解动力学模型的适用性。结果表明,基于可溶性和不可溶性有机质建立降解数学模型可增加模型对有机质降解特征的描述能力,并可较好的适用于好氧堆肥过程中热量平衡、氧气浓度和水分含量平衡模型的建立和模拟。
Degrading kinetics of aerobic composting process is one of the fundamental factors for composting simulation including modeling of biological heat production, biological water production as well as biological oxygen demand. In other words, mathematical modelings of heat production, water production and biological oxygen demand are often based on degrading kinetics. In addition, the changes of organic maters during composting process makes a significant influence on degradation yields for heat, water as well as carbon oxygen. Therefore, studies of degrading kinetics are of great interest. In order to get a better understanding on degradation kinetics of composting, the following studies were performed with experimental analysis and mathematical simulation.
     1. Analysis the influence of free airspace to substrate degradation
     To study the effects of different initial free air space (FAS) on composting degradation of pig slurry-wheat straw with lab-scale reactor system, three levels of FAS (56.70%,62.67%,68.36%) were obtained by mixing pig slurry and wheat straw with the same mass ratio but in different wheat straw sizes (     GUIs were developed to facilitate FAS study based on the model developed.
     2. Degrading analysis of different types of substrate during composting of swine manure in a laboratory-scale reactor
     In order to study the degrading characteristic of volatile solid content, soluble carbohydrate content, cellulose content, crude fat content and crude protein content for processing of swine manure composting, three parallel composting experiments were conducted with laboratory scale composting reactors. Same amount of swine manure was mixed with equal volume of wheat straw or plastic bulking agents. Temperature, oxygen concentration, moisture content, volatile solid content, soluble carbohydrate content, cellulose content, crude fat content and crude protein content were monitored and recorded respectively. Mathematical models were employed to detect changes of free air space and its effect on substrate decomposition. According to the results of composting experiments, temperature of composting pile using wheat straw as bulking agents raise faster than the one with plastic bulking agents at the beginning of the composting. Meanwhile wheat straw bulking agents showed better performance on water-holding capacity. However, plastic bulking agents was better at keeping free air space of the composting pile. Degrading data of soluble carbohydrate content, cellulose content, crude fat content and crude protein content were recorded for next-step studies.
     3. Thermal and moisture balancing models based on substrate degradation kinetics
     In the study regarding thermal balance, simulation models for organic matter content and composting temperature were developed based on the first order assumption with respect to the quantity of biodegradable volatile solid (BVS) and the law of thermal conservation, respectively, during composting. Different kinds of organic matter were mainly degraded in different composting stages and this was considered importantly for constructing models. For the modeling of organic matter degradation, temperature, moisture content, oxygen content and free air space were considered as key influence factors to degeneration rate. Regarding the model for thermal balance, forced convention and conduction were considered as main heat removal forms. In order to verify the models constructed, aerobic co-composting experiment of pig slurry and wheat straw was conducted. Temperature, oxygen content, moisture content and organic matter concentration were monitored during composting. Degrading kinetics constituted important role for thermal-balance modeling.
     Simulation models regarding moisture content were developed respectively by law of conversation of mass and first order assumption with respect to the moisture content. Approaches by law of conversation of mass to moisture content prediction was based on an analysis of biologically produced water, exit gaseous moisture content and inlet gaseous moisture content. The approach for moisture content prediction based on first order moisture evaporation kinetics was developed by an analysis of composting substrate moisture content and aeration rate. An aerobic composting process of pig slurry and wheat straw was conducted in order to verify the models constructed. The experimental results showed that modeling results gave good accuracy, and the relative standard errors were8.01%and8.86%for the models developed, respectively.
     4. An integrated mathematical model of composting process developed to test the feasibility of integrating degradable-substrate distinction into composting models
     Differential equations regarding to heat balances, moisture content, oxygen concentrations, substrate decomposition and microbe growth were developed. Degradable substrates were divided into soluble substrate and insoluble substrate. Consequently, heat conversion factor was described as a state variable related to soluble substrate content. The model was validated against observed data obtained from lab-scale composting experiments with swine manure and wheat straw, regarding temperature, water and oxygen contents as well as substrate variations. Based on the experimental results, distinct substrate degradation model could be integrated with other physical and biological models. Further studies should be continued to build up a more generalized and structured substrate degradation model.
引文
Adhikari, B. K., S. Barrington, J. Martinez, et al. (2009). Effectiveness of three bulking agents for food waste composting. Waste Management 29(1):197-203.
    Ahn, H., T. Richard, H. Choi (2007). Mass and thermal balance during composting of a poultry manure--wood shavings mixture at different aeration rates. Process Biochemistry 42(2):215-223.
    Arslan, E. I., A. Unlu, M. Topal (2011). Determination of the Effect of Aeration Rate on Composting of Vegetable-Fruit Wastes. Clean-Soil Air Water 39(11):1014-1021.
    Bach, D. P., M. Shoda, H. Kubota (1985). Composting reaction rate of sewage sludge in an autothermal packed bed reactor. Journal of Fermentation Technology 63(3):271-278.
    Bach, P. D., K. Nakasaki, M. Shoda, et al. (1987). Thermal balance in composting operations. Journal of Fermentation Technology 65(2):199-209.
    Baptista, M., F. Antunes, M. S. Goncalves, et al. (2010). Composting kinetics in full-scale mechanical-biological treatment plants. Waste Management 30(10):1908-1921.
    Batstone, D. J., J. Keller, I. Angelidaki, et al. (2002). The IWA Anaerobic Digestion Model No 1(ADM 1). Water Science & Technology 45(10):65-73.
    Bo, H., W. Zichao, G. Mengchun, et al. (2012). Effect of Aeration Rate on Forced-Aeration Composting of Sewage Sludge and Maize straw. Applied Mechanics and Materials 178-181:843-846.
    Bongochgetsakul, N., T. Ishida (2008). A new analytical approach to optimizing the design of large-scale composting systems. Bioresource Technology 99(6):1630-1641.
    Chang, J. I., Y. Chen (2010). Effects of bulking agents on food waste composting. Bioresource Technology 101(15):5917-5924.
    Chen, T., W. Luo, D. Gao, et al. (2004). Stratification of free air space and its dynamics in the process of co-composting. Huan jing ke xue 25(6):150.
    Crombie, G. (1982). Evolution of a compost plant. Biocycle 23(6):17-25.
    Das, K., H. Keener (1997). Numerical model for the dynamic simulation of a large scale composting system. Transactions of the ASAE 40(4):1179-1189.
    de Guardia, A., C. Petiot, J. C. Benoist, et al. (2012). Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration. Waste Management 32(6): 1091-1105.
    Debosz, K., S. O. Petersen, L. K. Kure, et al. (2002). Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Applied Soil Ecology 19(3):237-248.
    Delgado-Rodriguez, M., M. Ruiz-Montoya, I. Giraldez, et al. (2012). Effect of aeration rate and moisture content on the emissions of selected VOCs during municipal solid waste composting. Journal of Material Cycles and Waste Management 14(4):371-378.
    Eiland, F., M. Klamer, A.-M. Lind, et al. (2001). Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology 41(3):272-280.
    Ekinci, K. (2001). Theoretical and experimental studies on the effects of aeration strategies on the composting process, Ohio State University.
    Faucette, L. B. (2004). Evaluation of environmental benefits and impacts of compost and industry standard erosion and sediment control measures used in construction activities, The University of Georgia.
    Fontenelle, L. T., S. C. Corgie, L. P. Walker (2011). Integrating mixed microbial population dynamics into modeling energy transport during the initial stages of the aerobic composting of a switchgrass mixture. Bioresource Technology 102(8):5162-5168.
    Francou, C., M. Poitrenaud, S. Houot (2005). Stabilization of organic matter during composting: Influence of process and feedstocks. Compost science & utilization 13(1):72-83.
    Garcia, M., S. Fernandez-Barredo, M. T. Perez-Gracia (2014). Detection of hepatitis E virus (HEV) through the different stages of pig manure composting plants. Microbial Biotechnology 7(1):26-31.
    Gea, T., R. Barrena, A. Artola, et al. (2007). Optimal bulking agent particle size and usage for heat retention and disinfection in domestic wastewater sludge composting. Waste Management 27(9): 1108-1116.
    Ghaly, A. E., F. Alkoaik, A. Snow (2006). Thermal balance of invessel composting of tomato plant residues. Canadian Biosystems Engineering 48:6.1-6.11.
    Gironi, F., V. Piemonte (2010). Development of a mathematical model for the composting process. Waste Management and the Environment V. V. Popov, H. Itoh, U. Mander and C. A. Brebbia.140: 191-202.
    Guo, R., G. Li, T. Jiang, et al. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology 112:171-178.
    Hamelers, H. (2001). A mathematical model for composting kinetics, Wageningen University.
    Hamelers, H. (2004). Modeling composting kinetics:A review of approaches. Reviews in Environmental Science and Biotechnology 3(4):331-342.
    Haug, R. T. (1993). The practical handbook of compost engineering. Boca Raton, FL., Lewis Publishers.
    Higgins, C. W., L. P. Walker (2001). Validation of a new model for aerobic organic solids decomposition:simulations with substrate specific kinetics. Process Biochemistry 36(8):875-884.
    Hong, G. H., B. El Hady, K. D. Joo, et al. (2012). Characterization of moisture and free air space effects and the optimal operation of a composting process for minimal waste and energy use.11th International Symposium on Process Systems Engineering, Pts a and B. I. A. Karimi and R. Srinivasan. 31:500-504.
    Hsu, J.-H., S.-L. Lo (2001). Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environmental Pollution 114(1):119-127.
    Hu, B., Z. Wang, M. Gao, et al. (2012). Effect of Aeration Rate on Forced-Aeration Composting of Sewage Sludge and Maize straw. Sustainable Environment and Transportation, Pts 1-4. M. J. Chu, H. H. Xu, Z. Jia, Y. Fan and J. P. Xu.178-181:843-846.
    Huerta-Pujol, O., M. Soliva, F. X. Martinez-Farre, et al. (2010). Bulk density determination as a simple and complementary tool in composting process control. Bioresource Technology 101(3): 995-1001.
    Iqbal, M. K., T. Shafiq, K. Ahmed (2010). Characterization of bulking agents and its effects on physical properties of compost. Bioresource Technology 101(6):1913-1919.
    Jolanun, B., S. Towprayoon (2010). Novel bulking agent from clay residue for food waste composting. Bioresource Technology 101(12):4484-4490.
    Kaiser, J. (1996). Modelling composting as a microbial ecosystem:a simulation approach. Ecological modelling 91(1-3):25-37.
    Khan, E., S. Khaodhir, D. Ruangrote (2009). Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration. Bioresource Technology 100(19):4454-4461.
    Kim, D., J. Kim, J. Lee (2000). Aerobic composting performance and simulation of mixed sludges. Bioprocess and Biosystems Engineering 22(6):533-537.
    Kishimoto, M., C. Preechaphan, T. Yoshida, et al. (1987). Simulation of an aerobic composting of activated sludge using a statistical procedure. World Journal of Microbiology and Biotechnology 3(2): 113-123.
    Lau, A., K. Lo, P. Liao, et al. (1992). Aeration experiments for swine waste composting. Bioresource Technology 41(2):145-152.
    Le Thi Hong, T., A. Palenzuela Rollon (2012). Effect of temperature on composting residual organic fraction of municipal solid waste (OFMSW) after anaerobic digestion. International Journal of Environment and Waste Management 9(1-2):18-40.
    Lei, D.-p., W.-y. Huang, X.-b, Wang (2011). Effect of Moisture Content of Substance on Fermentation and Heat Production of Cattle Manure in Aerobic Composting. Journal of Ecology and Rural Environment 27(5):54-57.
    Liang, C, K. Das, R. McClendon (2003). The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology 86(2):131-137.
    Lin, Y. P., G. H. Huang, H. W. Lu, et al. (2008). Modeling of substrate degradation and oxygen consumption in waste composting processes. Waste Management 28(8):1375-1385.
    Lopez-Gonzalez, J. A., M. J. Lopez, M. C. Vargas-Garcia, et al. (2013). Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting. Bioresource Technology 146:574-584.
    Maia, G. D. N., G. B. Day, R. S. Gates, et al. (2012). Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters. Water Research 46(9):3023-3031.
    Makan, A., O. Assobhei, M. Mountadar (2013). Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iranian Journal of Environmental Health Science & Engineering 10.
    Marugg, C, M. Grebus, R. Hansen, et al. (1993). A kinetic model of the yard waste composting process. Compost science & utilization 1(1):38-51.
    Mason, I. (2008). An evaluation of substrate degradation patterns in the composting process. Part 1: Profiles at constant temperature. Waste Management 28(9):1598-1608.
    Mason, I. G. (2006). Mathematical modelling of the composting process:A review. Waste Management 26(1):3-21.
    Mason, I. G. (2008). An evaluation of substrate degradation patterns in the composting process. Part 2:Temperature-corrected profiles. Waste Management 28(10):1751-1765.
    Nakasaki, K., Y. Nakano, T. Akiyama, et al. (1987). Oxygen diffusion and microbial activity in the composting of dehydrated sewage sludge cakes. Journal of Fermentation Technology 65(1):43-48.
    Oudart, D., E. Paul, P. Robin, et al. (2012). Modeling organic matter stabilization during windrow composting of livestock effluents. Environmental Technology 33(19):2235-2243.
    Petric, I., V. Selimbasic (2008). Development and validation of mathematical model for aerobic composting process. Chemical Engineering Journal 139(2):304-317.
    Ponsa, S., E. Pagans, A. Sanchez (2009). Composting of dewatered wastewater sludge with various ratios of pruning waste used as a bulking agent and monitored by respirometer. Biosystems Engineering 102(4):433-443.
    Ramirez Coutino, V. A., L. G. Torres Bustillos, L. A. Godinez Mora Tovar, et al. (2013). pH effect on substrate properties and supramolecular structure of humic substances obtained from sewage sludge composting. Revista Internacional De Contamination Ambiental 29(3):191-199.
    Richard, T. L., H. Hamelers, A. Veeken, et al. (2002). Moisture relationships in composting processes. Compost science & utilization 10(4):286-302.
    Rodriguez, L., M. I. Cerrillo, V. Garcia-Albiach, et al. (2012). Domestic sewage sludge composting in a rotary drum reactor:Optimizing the thermophilic stage. Journal of Environmental Management 112: 284-291.
    Scholwin, R, W. Bidlingmaier (2003). Fuzzifying the composting process:A new model based control strategy as a device for achieving a high grade and consistent product quality. Proceedings of the 4th international conference of Orbit association on biological processing of organics.
    Sole-Mauri, F., J. Illa, A. Magri, et al. (2007). An integrated biochemical and physical model for the composting process. Bioresource Technology 98(17):3278-3293.
    Stombaugh, D. P., S. E. Nokes (1996). Development of a biologically based aerobic composting simulation model. Transactions of the American Society of Agricultural Engineers 39(Compendex): 239-250.
    Sundberg, C, D. Yu, I. Franke-Whittle, et al. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management 33(1):204-211.
    Szegda, D., J. Song, M. K. Warby, et al. (2007). Computational modelling of a thermoforming process for thermoplastic starch. NUMIFORM'07:Materials Processing and Design:Modeling, Simulation and Applications, Pts I and II. J. M. A. CeasarDeSa and A. D. Santos.908:35-47.
    Tang, J.-C., A. Shibata, Q. Zhou, et al. (2007). Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. Journal of Bioscience and Bioengineering 104(4):321-328.
    Tremier, A., A. De Guardia, C. Massiani, et al. (2005). A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresource Technology 96(2):169-180.
    Van Lier, J., J. Van Ginkel, G. Straatsma, et al. (1994). Composting of mushroom substrate in a fermentation tunnel:compost parameters and a mathematical model. NJAS Wageningen Journal of Life Sciences 42(4):271-292.
    Vandecasteele, B., K. Willekens, G. d. Laing, et al. (2014). Effect of feedstock, organic matter content and pH on Cd, Zn and Mn availability in farm compost based on bark and wood chips. Acta Horticulturae. J. Biala, R. Prange and M. Raviv:661-668.
    VanderGheynst, J. S., L. P. Walker, J. Y. Parlange (1997). Energy Transport in a High-Solids Aerobic Degradation Process:Mathematical Modeling and Analysis. Biotechnology progress 13(3): 238-248.
    Villasenor, J., L. Rodriguez Mayor, L. Rodriguez Romero, et al. (2012). Simulation of carbon degradation in a rotary drum pilot scale composting process. Journal of Environmental Management 108(0):1-7. Vivan, G. A., R Ludwig, F. d. S. Barboza, et al. (2008). Composting:computer model formulation based on CN ration and moisture content of their components. Central theme, technology for all: sharing the knowledge for development. Proceedings of the International Conference of Agricultural Engineering, XXXVII Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium-ILES VIII, Iguassu Falls City, Brazil,31st August to 4th September,2008: unpaginated-unpaginated.
    Vlyssides, A., E. M. Barampouti, S. Mai, et al. (2010). Effect of temperature and aeration rate on co-composting of olive mill wastewater with olive stone wooden residues. Biodegradation 21(6): 957-965.
    Vlyssides, A., S. Mai, E. Barampouti (2009). An integrated mathematical model for co-composting of agricultural solid wastes with industrial wastewater. Bioresource Technology 100(20):4797-4806.
    Wang, W., X. Wang, J. Liu, et al. (2007). Effect of oxygen concentration on the composting process and maturity. Compost science & utilization 15(3):184-190.
    Wang, Y., G. Huang, L. Han (2011). Modeling of organic matter degradation and thermal balance during pig slurry aerobic composting. Nongye Jixie Xuebao= Transactions of the Chinese Society for Agricultural Machinery 42(10):121-115.
    Wolna-Maruwka, A., J. Dach, A. Sawicka (2009). Effect of temperature on the number of selected microorganism groups and enzymatic activityof sewage sludge composted with different additions in cybernetic bioreactors. Agronomy Research 7(2):875-890.
    Woodford, P. B. (2009). In-vessel composting model with multiple substrate and microorganism types, Kansas State University.
    Xi, B., Z. Wei, H. Liu (2005). Dynamic simulation for domestic solid waste composting processes. JAmSci 1(1):34-45.
    Xu, Z., L. L. Zhang, J. Li (2012). Effect of Different Aeration Rates on the Composting Process and Its Enzymatic Activities. Journal of Residuals Science & Technology 9(3):107-112.
    Yafiez, R., J. Alonso, M. Diaz (2009). Influence of bulking agent on sewage sludge composting process. Bioresource Technology 100(23):5827-5833.
    Yu, S., O. Grant Clark, J. J. Leonard (2009). Influence of free air space on microbial kinetics in passively aerated compost. Bioresource Technology 100(2):782-790.
    Zhang, J., D. Gao, T.-B. Chen, et al. (2010). Simulation of substrate degradation in composting of sewage sludge. Waste Management 30(10):1931-1938.
    Zhang, X.-f., H.-t. Wang, Y.-f. Nie (2006). Effect of temperature control on vegetable waste and flower straw co-composting. Huanjing Kexue 27(1):171-174.
    Zhang, Y., G. Lashermes, S. Houot, et al. (2012). Modelling of organic matter dynamics during the composting process. Waste Management 32(1):19-30.
    蔡建成(1990).堆肥工程与堆肥工厂,机械工业出版社.
    陈俊,彭淑婧,张军,等.(2013).污泥好氧发酵工程现状及发展方向.给水排水动态(04):19-21.
    陈世和,张所明(1990).城市垃圾堆肥原理与工艺,复旦大学出版社.
    陈同斌,罗维,高定,等.(2004).混合堆肥过程中自由空域(FAS)的层次效应及动态变化.环境科学(06):150-153.
    陈同斌,郑玉琪,高定,等.(2004).猪粪好氧堆制不同阶段氧气含量变化特征.应用生态学报(11):2179-2183.
    迟文慧,任勇翔,陈威,等.(2013).梨形筒式好氧堆肥反应器的开发与应用.环境工程学报(09):3561-3566.
    褚艳春(2013).生活污泥好氧发酵技术及产品安全性评价,扬州大学.
    邓辉,王成,吕豪豪,等.(2013).堆肥过程放线菌演替及其木质纤维素降解研究进展.应用与环境生物学报(04):581-586.
    邓志辉,张西良(2013).基于蓝牙技术的堆肥发酵仓参数检测系统的设计.农机化研究(11):211-214.
    段丽杰(2013).牛粪与秸秆协同好氧堆肥过程参数变化规律研究.农业资源与环境学报(05):58-62.
    段丽杰(2013).猪粪与不同作物秸秆好氧堆肥特性研究.新疆环境保护(02):45-49.
    方华舟,左雪枝(2013).牛粪堆肥升温菌剂的筛选及其作用机制.环境工程学报(09):3689-3694.
    冯致,李杰,张国斌,等.(2013).不同微生物菌剂对玉米秸秆好氧堆肥效果的影响.中国蔬菜(12):82-87.
    葛春辉,杨新华,孙九胜,等.(2013).施入生活垃圾堆肥对玉米品质、产量及土壤理化性质的影响.中国农学通报(33):237-241.
    龚小强,孙向阳,田赞,等.(2013).复合型有机改良剂对园林废弃物堆肥基质改良研究.西北林学院学报(02):196-201.
    桂阳,韦小庆,朱国胜(2013).玉米秸秆与鸡粪袋装堆肥技术研究.湖北农业科学(13):3041-3045.
    桂阳,韦小庆,朱国胜(2013).玉米秸秆与猪粪袋装堆肥技术研究.广东农业科学(12):67-71+64.
    郭冬生,彭小兰,龚群辉,等.(2012).畜禽粪便污染与治理利用方法研究进展.浙江农业学报24(6):1164-1170.
    郭倩倩,吴拥军,韩丽珍,等.(2013).餐厨垃圾自然升温堆肥工艺研究.环境工程学报(07):2705-2710.
    郭振峰,周楠(2013).好氧堆肥车间污泥料仓冬季保温方案分析.机电信息(21):146-147.
    黄红英,常志州,马艳,等.(2006).两种翻料方式对禽畜粪便槽式发酵效率的影响.江苏农业科学(02):135-138.
    蓝俞静,刘玉德,张媛,等.(2013).餐厨垃圾生物好氧堆肥的影响因素研究.环境科学与技术(S1):30-33.
    李季,彭生平(2005).堆肥工程使用手册,北京:化学工业出版社.
    李秀金,董仁杰(2002).粪草堆肥特性的试验研究.中国农业大学学报(02):31-35.
    李映廷(2012).低碳氮比下生物质炭对高温好氧堆肥的影响,西南大学.硕士.
    李自刚(2006).农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究,南京农业大学.
    刘方(2011).翻堆覆盖工艺及季节对槽式堆肥的影响,河南农业大学.
    刘孟子,游少鸿,张军,等.(2013).生活垃圾与城市污泥共堆肥控制参数.湖北农业科学(23): 5726-5729+5734.
    鲁金忠,卢章平(2003).利用MATLAB语言编程制作图形用户界面.机械与电子(02):71-73.
    罗玮(2004).城市生活垃圾堆肥生产过程控制技术理论与方法研究,湖南大学.
    罗玮,曾光明(2006).城市生活垃圾堆肥过程动力学模型研究.湖南大学学报:自然科学版32(5):14-107.
    吕黄珍(2007).猪粪麦秸好氧堆肥工艺参数优化及过程模拟.北京,中国农业大学.
    吕黄珍,韩鲁佳,杨增玲(2008).猪粪麦秸反应器好氧堆肥工艺参数优化.农业机械学报39(3):101-105.
    毛晖,李荣华,张广权,王权,张增强,(2014).添加矿物质对猪粪好氧堆肥中有机物降解的影响.农业机械学报(06).
    倪梅娣(2006).猪粪好氧堆肥过程中氧气浓度变化规律的研究,浙江大学.
    庞金华,程平宏(1999).高温堆肥的水气矛盾.农业环境保护18(002):73-75.
    孙文彬(2013).生物质炭对城市污泥好氧堆肥过程中碳素转化及堆肥品质的影响,西南大学.
    唐景春(2010).生物质废弃物堆肥过程与调控.天津,中国环境科学出版社.
    田宁宁,王凯军(2000).污水处理厂污泥处置及利用途径研究.环境保护(2):18-20.
    王丽莉,涂淑兰,路鹏,等.(2006).冬季动态槽式堆肥温度的空间变异.环境科学学报(11):1838-1844.
    王巧花,叶平,黄民(2005).基于MATLAB的图形用户界面(GUI)设计.煤矿机械(03):60-62.
    王守红,葛骁,卞新智,等.(2013).菌菇渣和秸秆对生活污泥好氧堆肥的影响.江苏农业学报(02):324-328.
    王永江,黄光群,韩鲁佳(2011).猪粪好氧堆肥过程有机质降解和热量平衡模型.农业机械学报(10):121-124+115.
    王永江,黄光群,韩鲁佳(2011).自由空域对猪粪麦秸好氧堆肥的影响实验分析.农业机械学报(06):122-126.王永江,黄光群,韩鲁佳(2012).猪粪麦秸反应器好氧堆肥水分平衡模型研究.农业机械学报(06):102-106.王永江,黄光群,韩鲁佳,等.(2013).塑料和麦秸膨胀剂对猪粪好氧堆肥的影响试验.农业机械学报(05):158-163.
    魏源送,王敏健,王菊思(1999).堆肥技术及进展.环境科学进展(03):12-24.
    席北斗,李英军,张晓萱,等.(2005).垃圾堆肥工艺过程动态模拟及优化研究.环境污染治理技术与设备6(2):20-23.
    席北斗,李英军,张晓萱,等.(2005).垃圾堆肥工艺过程动态模拟及优化研究.环境污染治理技术与设备(02):20-23.
    杨文卿(2010).固废稳定化与材料老化新型一体反应器的设计与应用研究,福建师范大学.翟红,张衍林,艾平,等.(2011).不同初始含水率对沼渣和秸秆混合堆肥过程的影响.湖北农业科学(21):4357-4360.
    张红玉(2013).碳氮比对厨余垃圾堆肥腐熟度的影响.环境工程(02):87-91.
    张华,李秀金,蔡璐平,等.(2008).槽式堆肥中搅拌螺旋输送能力的研究.农机化研究(04):127-130.
    张琪,郝瑞军,郝冠军,等.(2013).植物材料调理剂对两种污泥好氧堆肥的影响.园林科技(01):16-19.
    张锐(2006).小型试验室好氧堆肥反应器系统研究[D],北京:中国农业大学.
    张锐,韩鲁佳(2006).好氧堆肥反应器系统在废弃物处理中的应用.农机化研究(10):173-175+178.
    赵秀玲(2013).奶牛污粪好氧堆肥处理关键因素研究,新疆农业大学.
    朱能武(2005).强制通风静态仓系统堆肥温度的时空特性.华南理工大学学报(自然科学版)(03):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700